

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22t-i-mrrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-272-5

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Din Nome	Pin Number	Pin Buffe	Buffer	Description
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/PSP0/CTPLS RD0 PSP0 CTPLS	58	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. CTMU pulse generator output.
RD1/PSP1/T5CKI/T7G RD1 PSP1 T5CKI T7G	55	I/O I/O I	ST TTL ST ST	Digital I/O. Parallel Slave Port. Timer5 clock input. Timer7 external clock gate input.
RD2/PSP2 RD2 PSP2	54	I/O O	ST TTL	Digital I/O. Parallel Slave Port.
RD3/PSP3 RD3 PSP3	53	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port.
RD4/PSP4/SDO2 RD4 PSP4 SDO2	52	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port. SPI data out.
RD5/PSP5/SDI2/SDA2 RD5 PSP5 SDI2 SDA2	51	I/O I/O I I/O	ST TTL ST I ² C	Digital I/O. Parallel Slave Port. SPI data in. I ² C™ data I/O.
RD6/PSP6/SCK2/SCL2 RD6 PSP6 SCK2 SCL2 ⁽⁴⁾	50	I/O I/O I/O I/O	ST TTL ST I ² C	Digital I/O. Parallel Slave Port. Synchronous serial clock. Synchronous serial clock I/O for I ² C mode.
RD7/PSP7/SS2 RD7 <u>PSP</u> 7 SS2	49	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port. SPI slave select input.
Legend: TTL = TTL cor ST = Schmitt I = Input P = Power	npatible input Trigger input w	vith CM	10S levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3:	PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

l²C = l²C™/SMBus

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

TABLE 1-4: PIC18F8XK22 PINOUT I/O DESCRIPTIONS

Din Nome	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
	9			Master Clear (input) or programming voltage (input).
MCLR/RG5				
RG5		I	ST	This pin is an active-low Reset to the device.
MCLR		I	ST	General purpose, input only pin.
OSC1/CLKI/RA7	49			Oscillator crystal or external clock input.
OSC1		I	CMOS	Oscillator crystal input.
CLKI		I	CMOS	External clock source input. Always associated
				with pin function, OSC1. (See related OSC1/CLKI,
				OSC2/CLKO pins.)
RA7		I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6	50			Oscillator crystal or clock output.
OSC2		0	_	Oscillator crystal output. Connects to crystal or
				resonator in Crystal Oscillator mode.
CLKO		0	_	In certain oscillator modes, OSC2 pin outputs CLKO,
				which has 1/4 the frequency of OSC1 and denotes the
				instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL com	patible input			CMOS = CMOS compatible input or output
ST = Schmitt T	rigger input wit	h CMC	OS levels	Analog = Analog input

- = Input 1
- Ρ = Power
- $I^2C = I^2C^{\text{TM}}/\text{SMBus}$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

- 2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.
- 3: Not available on PIC18F65K22 and PIC18F85K22 devices.
- 4: PSP is available only in Microcontroller mode.
- 5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

0

OD

= Output

= Open-Drain (no P diode to VDD)

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter that is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F87K22 family offers a range of on-chip Flash program memory sizes, from 32 Kbytes (up to 16,384 single-word instructions) to 128 Kbytes (65,536 single-word instructions).

- PIC18F65K22 and PIC18F85K22 32 Kbytes of Flash memory, storing up to 16,384 single-word instructions
- PIC18F66K22 and PIC18F86K22 64 Kbytes of Flash memory, storing up to 32,768 single-word instructions
- PIC18F67K22 and PIC18F87K22 128 Kbytes of Flash memory, storing up to 65,536 single-word instructions

The program memory maps for individual family members are shown in Figure 6-1.

6.1.1 HARD MEMORY VECTORS

All PIC18 devices have a total of three hard-coded return vectors in their program memory space. The Reset vector address is the default value to which the Program Counter returns on all device Resets; it is located at 0000h.

PIC18 devices also have two interrupt vector addresses for handling high-priority and low-priority interrupts. The high-priority interrupt vector is located at 0008h and the low-priority interrupt vector is at 0018h. The locations of these vectors are shown, in relation to the program memory map, in Figure 6-2.

FIGURE 6-2: HARD VECTOR FOR PIC18F87K22 FAMILY DEVICES

	Reset Vector	0000h
	High-Priority Interrupt Vector	0008h
	Low-Priority Interrupt Vector	0018h
	On-Chip Program Memory	
	Read '0'	
		1FFFFFh
Le	gend: (Top of Memory) repr of on-chip program n Figure 6-1 for device Shaded area represe memory. Areas are n	esents upper boundary nemory space (see -specific values). ents unimplemented ot shown to scale.

6.1.2 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and contained in three separate 8-bit registers.

The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the Program Counter by any operation that writes PCL. Similarly, the upper two bytes of the Program Counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 6.1.5.1 "Computed GOTO").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the Program Counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the Program Counter.

6.1.3 RETURN ADDRESS STACK

The return address stack enables execution of any combination of up to 31 program calls and interrupts. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. The value also is pulled off the stack on ADDULNK and SUBULNK instructions, if the extended instruction set is enabled. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack Special Function Registers. Data can also be pushed to, or popped from, the stack using these registers.

A CALL type instruction causes a push onto the stack. The Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack. The contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full, has overflowed or has underflowed.

6.1.3.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, holds the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt (or ADDULNK and SUBULNK instructions, if the extended instruction set is enabled), the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

While accessing the stack, users must disable the Global Interrupt Enable bits to prevent inadvertent stack corruption.

PIC18F87K22 FAMILY

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command
	(cleared by completion of erase operation)
1.11.0	0 = Perform white-only
DIT 3	WRERR: Flash Program/Data EEPROM Error Flag bit
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle
	(The operation is self-timed and the bit is cleared by hardware once the write is complete.
	M = Write cycle to the EEPROM is complete
hit 0	BD: Read Central bit
DILU	RD. Read Control bit
	I = IIIIIIales an EEPROW read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. The RD bit cannot be set when EEPGD = 1 or CEGS = 1.)
	0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

8.8 Operation in Power-Managed Modes

In alternate, power-managed Run modes, the external bus continues to operate normally. If a clock source with a lower speed is selected, bus operations will run at that speed. In these cases, excessive access times for the external memory may result if Wait states have been enabled and added to external memory operations. If operations in a lower power Run mode are anticipated, users should provide in their applications for adjusting memory access times at the lower clock speeds. In Sleep and Idle modes, the microcontroller core does not need to access data; bus operations are suspended. The state of the external bus is frozen, with the address/data pins, and most of the control pins, holding at the same state they were in when the mode was invoked. The only potential changes are to the \overline{CE} , \overline{LB} and \overline{UB} pins, which are held at logic high.

TABLE 8-3:	REGISTERS ASSOCIATED WITH THE EXTERNAL MEMORY BUS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MEMCON ⁽¹⁾	EBDIS	_	WAIT1	WAIT0	_	—	WM1	WM0
PADCFG1	RDPU	REPU	RJPU ⁽¹⁾	—	—	RTSECSEL1	RTSECSEL0	—
PMD1	PSPMD	CTMUMD	RTCCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	EMBMD

Legend: — = unimplemented, read as '0'. Shaded cells are not used during External Memory Bus access.

Note 1: Unimplemented in 64-pin devices (PIC18F6XK22), read as '0'.

PIC18F87K22 FAMILY

12.11 Parallel Slave Port

PORTD can function as an 8-bit-wide Parallel Slave Port (PSP), or microprocessor port, when control bit, PSPMODE (PSPCON<4>), is set. The port is asynchronously readable and writable by the external world through the RD control input pin (RE0/P2D/RD/AD8) and WR control input pin (RE1/P2C/WR/AD9).

Note:	The Parallel Slave Port is available only in
	Microcontroller mode.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an eight-bit latch.

Setting bit, PSPMODE, enables port pin, RE0/P2D/RD/AD8, to be the RD input, RE1/P2C/WR/AD9 to be the WR input and RE2/P2B/CCP10/CS/AD10 to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (= 111).

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits (PIR1<7> and PSPCON<7>, respectively) are set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit (PSPCON<6>) is set. If the user writes new data to PORTD to set OBF, the data is immediately read out, but the OBF bit is not set.

When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 12-4 and Figure 12-5, respectively.

FIGURE 12-3: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

18.1.4 RTCEN BIT WRITE

RTCWREN (RTCCFG<5>) must be set before a write to RTCEN can take place. Any write to the RTCEN bit, while RTCWREN = 0, will be ignored.

Like the RTCEN bit, the RTCVALH and RTCVALL registers can only be written to when RTCWREN = 1. A write to these registers, while RTCWREN = 0, will be ignored.

FIGURE 18-2: TIMER DIGIT FORMAT

18.2 Operation

18.2.1 REGISTER INTERFACE

The register interface for the RTCC and alarm values is implemented using the Binary Coded Decimal (BCD) format. This simplifies the firmware when using the module, as each of the digits is contained within its own 4-bit value (see Figure 18-2 and Figure 18-3).

FIGURE 18-3: ALARM DIGIT FORMAT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0			
TMR2	Timer2 Regis	ter		•							
TMR4	Timer4 Register										
TMR6	Timer6 Register										
TMR8	Timer8 Register										
PR2	Timer2 Period Register										
PR4	Timer4 Perio	d Register									
PR6	Timer6 Perio	d Register									
PR8	Timer8 Perio	d Register									
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0			
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0			
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0			
T8CON	—	T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0			
CCPR4L	Capture/Com	pare/PWM F	Register 4 Lo	w Byte							
CCPR4H	Capture/Com	pare/PWM F	Register 4 Hig	gh Byte							
CCPR5L	Capture/Com	pare/PWM F	Register 5 Lo	w Byte							
CCPR5H	Capture/Com	pare/PWM F	Register 5 Hig	gh Byte							
CCPR6L	Capture/Com	pare/PWM F	Register 6 Lo	w Byte							
CCPR6H	Capture/Com	pare/PWM F	Register 6 Hig	gh Byte							
CCPR7L	Capture/Com	pare/PWM F	Register 7 Lo	w Byte							
CCPR7H	Capture/Com	pare/PWM F	Register 7 Hig	gh Byte							
CCPR8L	Capture/Com	pare/PWM F	Register 8 Lo	w Byte							
CCPR8H	Capture/Com	pare/PWM F	Register 8 Hig	gh Byte							
CCPR9L ⁽¹⁾	Capture/Com	pare/PWM F	Register 9 Lo	w Byte							
CCPR9H ⁽¹⁾	Capture/Com	pare/PWM F	Register 9 Hig	gh Byte							
CCPR10L ⁽¹⁾	Capture/Com	pare/PWM F	Register 10 L	ow Byte							
CCPR10H ⁽¹⁾	Capture/Com	pare/PWM F	Register 10 H	ligh Byte							
CCP4CON	—	—	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0			
CCP5CON	—		DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0			
CCP6CON	—	—	DC6B1	DC6B0	CCP6M3	CCP6M2	CCP6M1	CCP6M0			
CCP7CON	—	—	DC7B1	DC7B0	CCP7M3	CCP7M2	CCP7M1	CCP7M0			
CCP8CON	—	—	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0			
CCP9CON ⁽¹⁾	—	—	DC9B1	DC9B0	CCP9M3	CCP9M2	CCP9M1	CCP9M0			
CCP10CON ⁽¹⁾	—	—	DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0			
CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0			
CCPTMRS2	_	-	_	C10TSEL0 ⁽¹⁾		C9TSEL0 ⁽¹⁾	C8TSEL1	C8TSEL0			
PMD3	CCP10MD ⁽¹⁾	CCP9MD ⁽¹⁾	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	TMR12MD ⁽¹⁾			

TABLE 19-7:	REGISTERS ASSOCIATED WITH PWM AND TIMERS (CONTINUED)
-------------	---

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2/4/6/8.

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F65K22 and PIC18F85K22).

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

FIGURE 20-16: SIMPLIFIED STEERING BLOCK DIAGRAM

20.4.7.1 Steering Synchronization

The STRSYNC bit of the PSTRxCON register gives the user two choices for when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 20-17 and 20-18 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 20-17: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 20-18: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4/6/8 will not increment and the state of the module will not change. If the ECCPx pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be immediately stable.

In PRI_IDLE mode, the primary clock will continue to clock the ECCPx module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCPx will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states. This forces the ECCP module to reset to a state compatible with previous, non-Enhanced CCP modules used on other PIC18 and PIC16 devices.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF		
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR		
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF		
PIR4	CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF		
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE		
PIE4	CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE		
IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP		
IPR4	CCP10IP ⁽¹⁾	CCP9IP ⁽¹⁾	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0		
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0		
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0		
TMR1H	Timer1 Register	High Byte								
TMR1L	Timer1 Register	Low Byte								
TMR2	Timer2 Register									
TMR3H	Timer3 Register	High Byte								
TMR3L	Timer3 Register	Low Byte								
TMR4	Timer4 Register									
TMR6	Timer6 Register									
TMR8	Timer8 Register									
TMR10 ⁽¹⁾	TMR10 Registe	r								
TMR12 ⁽¹⁾	TMR10 Register									
PR2	Timer2 Period Register									
PR4	Timer4 Period R	Register								
PR6	Timer6 Period R	Register								
PR8	Timer8 Period R	Register								
PR10 ⁽¹⁾	Timer10 Period	Register								
PR12 ⁽¹⁾	Timer12 Period	Register								

TABLE 20-4: REGISTERS ASSOCIATED WITH ECCP1/2/3 MODULE AND TIMER1/2/3/4/6/8/10/12

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F65K22 and PIC18F85K22).

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:			.,				
R = Reada		W = Writable b	Dit		nented bit, rea	d as '0'	
-n = value	at POR	Bit is set		0 = Bit is clea	ared	x = Bit is unk	nown
bit 7	CSRC: Cloc	k Source Select I	bit				
	<u>Asynchrono</u> Don't care.	<u>us mode:</u>					
	<u>Synchronou</u>	<u>s mode:</u>					
	1 = Master r 0 = Slave m	node (clock gene ode (clock from e	rated interna	lly from BRG)			
bit 6	TX9: 9-Bit T	ransmit Enable b	it	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	1 = Selects	9-bit transmissior	า				
	0 = Selects	8-bit transmissior	ו				
bit 5	TXEN: Trans	smit Enable bit ⁽¹⁾					
	1 = Iransm 0 = Transm	it is enabled it is disabled					
bit 4	SYNC: EUS	ART Mode Selec	t bit				
	1 = Synchro	nous mode					
	0 = Asynchr	onous mode					
bit 3	SENDB: Ser	nd Break Charac	ter bit				
	Asynchronou 1 = Send Sy	<u>us mode:</u> /nc Break on next	t transmissio	n (cleared by ha	rdware upon o	completion)	
	0 = Sync Bre	eak transmission	has complete	ed		inplotion)	
	Synchronou	<u>s mode:</u>					
h:1 0	Don't care.	Devel Data Oala	-4 1-14				
DIT 2	Asynchronol	i Baud Rate Sele	Ct Dit				
	1 = High spectrum	ed					
	0 = Low spe	ed					
	Synchronous	<u>s mode:</u>					
bit 1	TRMT: Trans	smit Shift Registe	er Status bit				
bit i	1 = TSR is e	empty					
	0 = TSR is f	ull					
bit 0	TX9D: 9th b	it of Transmit Dat	a				
	Can be addr	ress/data bit or a	parity bit.				
Note 1:	SREN/CREN ov	verrides TXEN in	Sync mode.				

REGISTER 22-1: TXSTAX: TRANSMIT STATUS AND CONTROL REGISTER

25.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 32-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 25-1. The resistor ladder is segmented to provide a range of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides a range of output voltage with 32 levels.

The CVR<4:0> selection bits (CVRCON<4:0>) offer a range of output voltages. Equation 25-1 shows the how the comparator voltage reference is computed.

EQUATION 25-1:

If CVRSS = 1:

 $CVREF = (VREF-) + (CVR < 4:0 > /32) \cdot (VREF+ - VREF-)$

<u>If CVRSS = 0:</u>

 $CVREF = (AVSS) + (CVR < 4:0 > /32) \cdot (AVDD - AVSS)$

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA3 and RA2. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in Section 31.0 "Electrical Characteristics").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown		
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit					
	1 = CVREF ci	rcuit is powered	d on						
	0 = CVREF ci	rcuit is powered	d down						
bit 6	CVROE: Com	nparator VREF C	Dutput Enable	bit					
	1 = CVREF VC	oltage level is o	utput on CVRE	F pin					
	0 = CVREF vc	oltage level is d	isconnected fr	om CVREF pin					
bit 5	CVRSS: Com	parator VREF S	ource Selection	on bit					
	1 = Compara	tor reference s	ource, CVRSR	C = VREF + - VR	EF-				
	0 = Compara	tor reference s	ource, CVRSR	c = AVDD – AVs	S				
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	tion $0 \le CVR < 4$:0> ≤ 31 bits				
	When CVRSS = 1:								
	CVREF = (VRE	:F-) + (CVR<4:()>/32) • (VREF	+ – Vref-)					
	When CVRSS	<u>S = 0:</u>							
	CVREF = (AVS	ss) + (CVR<4:0	>/32) • (AVDD	– AVSS)					

EXAMPLE 27-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 25
                                          //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                          //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                         //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                         //Vdd connected to A/D Vr+
#define RCAL .027
                                         //R value is 4200000 (4.2M)
                                          //scaled so that result is in
                                          //1/100th of uA
int main(void)
{
    int i;
   int j = 0;
                                          //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                         //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONHbits.IDISSEN = 1;
                                         //drain charge on the circuit
        DELAY;
                                         //wait 125us
        CTMUCONHbits.IDISSEN = 0;
                                         //end drain of circuit
        CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                         //using CTMU current source
        DELAY;
                                          //wait for 125us
        CTMUCONLbits.EDG1STAT = 0;
                                         //Stop charging circuit
        PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
        ADCON0bits.GO=1;
                                         //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
        Vread = ADRES;
                                         //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                         //Clear A/D Interrupt Flag
        VTot += Vread;
                                         //Add the reading to the total
    }
   Vavg = (float)(VTot/10.000);
                                         //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
                                          //CTMUISrc is in 1/100ths of uA
    CTMUISrc = Vcal/RCAL;
    CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
}
```

27.9 Operation During Sleep/Idle Modes

27.9.1 SLEEP MODE

When the device enters any Sleep mode, the CTMU module current source is always disabled. If the CTMU is performing an operation that depends on the current source when Sleep mode is invoked, the operation may not terminate correctly. Capacitance and time measurements may return erroneous values.

27.9.2 IDLE MODE

The behavior of the CTMU in Idle mode is determined by the CTMUSIDL bit (CTMUCONH<5>). If CTMUSIDL is cleared, the module will continue to operate in Idle mode. If CTMUSIDL is set, the module's current source is disabled when the device enters Idle mode. In this case, if the module is performing an operation when Idle mode is invoked, the results will be similar to those with Sleep mode.

27.10 Effects of a Reset on CTMU

Upon Reset, all registers of the CTMU are cleared. This disables the CTMU module, turns off its current source and returns all configuration options to their default settings. The module needs to be re-initialized following any Reset.

If the CTMU is in the process of taking a measurement at the time of Reset, the measurement will be lost. A partial charge may exist on the circuit that was being measured, which should be properly discharged before the CTMU makes subsequent attempts to make a measurement. The circuit is discharged by setting and clearing the IDISSEN bit (CTMUCONH<1>) while the A/D Converter is connected to the appropriate channel.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CTMUCONH	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
CTMUCONL	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
CTMUICON	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
IPR3	TMR5GIP	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP

TABLE 27-1: REGISTERS ASSOCIATED WITH CTMU MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are not used during ECCP operation.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	_	XINST	_	SOSCSEL1	SOSCSEL0	INTOSCSEL	_	RETEN	-1-1 11
300001h	CONFIG1H	IESO	FCMEN	—	PLLCFG	FOSC3	FOSC2	FOSC1	FOSC0	00-0 1000
300002h	CONFIG2L	_	BORPWR1	BORWPR0	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	-111 1111
300003h	CONFIG2H	—	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN1	WDTEN0	-111 1111
300004h	CONFIG3L	WAIT ⁽²⁾	BW ⁽²⁾	ABW1 ⁽²⁾	ABW0 ⁽²⁾	EASHFT ⁽²⁾	—	_	RTCOSC	1
300005h	CONFIG3H	MCLRE		—		MSSPMSK	—	ECCPMX ⁽²⁾	CCP2MX	1 1-11
300006h	CONFIG4L	DEBUG	-	_	BBSIZ0	—	_	-	STVREN	111
300008h	CONFIG5L	CP7 ⁽¹⁾	CP6 ⁽¹⁾	CP5 ⁽¹⁾	CP4 ⁽¹⁾	CP3	CP2	CP1	CP0	1111 1111
300009h	CONFIG5H	CPD	CPB	—	_	—	—	_	—	11
30000Ah	CONFIG6L	WRT7 ⁽¹⁾	WRT6 ⁽¹⁾	WRT5 ⁽¹⁾	WRT4 ⁽¹⁾	WRT3	WRT2	WRT1	WRT0	1111 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC		—	—		—	111
30000Ch	CONFIG7L	EBTR7 ⁽¹⁾	EBTR6 ⁽¹⁾	EBTR5 ⁽¹⁾	EBTR4 ⁽¹⁾	EBTR3	EBTR2	EBTR1	EBTR0	1111 1111
30000Dh	CONFIG7H	_	EBTRB	_		_	_		_	-1
3FFFFEh	DEVID1 ⁽³⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	XXXX XXXX
3FFFFFh	DEVID2 ⁽³⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	xxxx xxxx

TABLE 28-1: CONFIGURATION BITS AND DEVICE IDs

Legend:x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.Note1:Implemented only on the PIC18F67K22 and PIC18F87K22 devices.

2: Implemented only on the 80-pin devices (PIC18F8XK22).

3: See Register 28-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

30.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		Standard (Operating	Operatir temperat	ig Condi ture	tions (unless of -40°C ≤ TA ≤ -40°C ≤ TA ≤	otherwise stated) +85°C for industrial +125°C for extended				
Param No.	Device	Тур	Max	Units		Conditions				
	Supply Current (IDD) Cont	(2,3)								
	All devices	2.1	5.5	μA	-40°C					
		2.1	5.7	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
		2.2	6.0	μA	+85°C	Regulator Disabled				
		10	20	μA	+125°C					
	All devices	3.7	7.5	μA	-40°C					
		3.9	7.8	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 31 kHz			
		3.9	8.5	μA	+85°C	Regulator Disabled				
		12	24	μA	+125°C					
	All devices	70	180	μA	-40°C					
		80	190	μA	+25°C	VDD = 5V ⁽⁵⁾				
		80	200	μA	+85°C	Regulator Enabled				
		200	420	μA	+125°C					
	All devices	330	650	μA	-40°C					
		330	640	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
			630	μA	+85°C	Regulator Disabled				
		500	850	μA	+125°C					
	All devices	520	850	μA	-40°C					
		520	900	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 1 MHZ			
		520	850	μA	+85°C	Regulator Disabled	HF-INTOSC)			
		800	1200	μA	+125°C					
	All devices	590	940	μA	-40°C					
		600	960	μA	+25°C	VDD = 5V ⁽⁵⁾				
		620	990	μA	+85°C	Regulator Enabled				
		1000	1400	μA	+125°C					
	All devices	470	770	μA	-40°C					
		470	770	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
		460	760	μA	+85°C	Regulator Disabled				
		700	1000	μA	+125°C					
	All devices		1400	μA	-40°C					
		800	1350	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(RC IDLF mode			
		790	1300	μA	+85°C	Regulator Disabled	internal HF-INTOSC)			
			1400	μA	+125°C		,			
	All devices	880	1600	μA	-40°C					
		890	1700	μA	+25°C	VDD = 5V ⁽⁵⁾				
		910	1800	μA	+85°C	Regulator Enabled				
		1200	2200	uА	+125°C					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: 48 MHz, maximum frequency at +125°C.

PIC18F87K22 FAMILY

TABLE 31-9:	CLKO AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 \uparrow to CLKO \downarrow	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)
12	ТскR	CLKO Rise Time	—	15	30	ns	(Note 1)
13	ТскF	CLKO Fall Time	—	15	30	ns	(Note 1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid	—	_	0.5 Tcy + 20	ns	
15	ТюV2скН	Port In Valid before CLKO ↑	0.25 Tcy + 25	_	_	ns	
16	TckH2iol	Port In Hold after CLKO ↑	0	_	_	ns	
17	TosH2IoV	OSC1 \uparrow (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2ıol	OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100	_	_	ns	
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0	_	—	ns	
20	TioR	Port Output Rise Time	—	10	25	ns	
21	TIOF	Port Output Fall Time	—	10	25	ns	
22 <mark>†</mark>	Tinp	INTx pin High or Low Time	20	—	—	ns	
23 <mark>†</mark>	Trbp	RB<7:4> Change INTx High or Low Time	Тсү	_		ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in EC mode, where CLKO output is 4 x Tosc.