

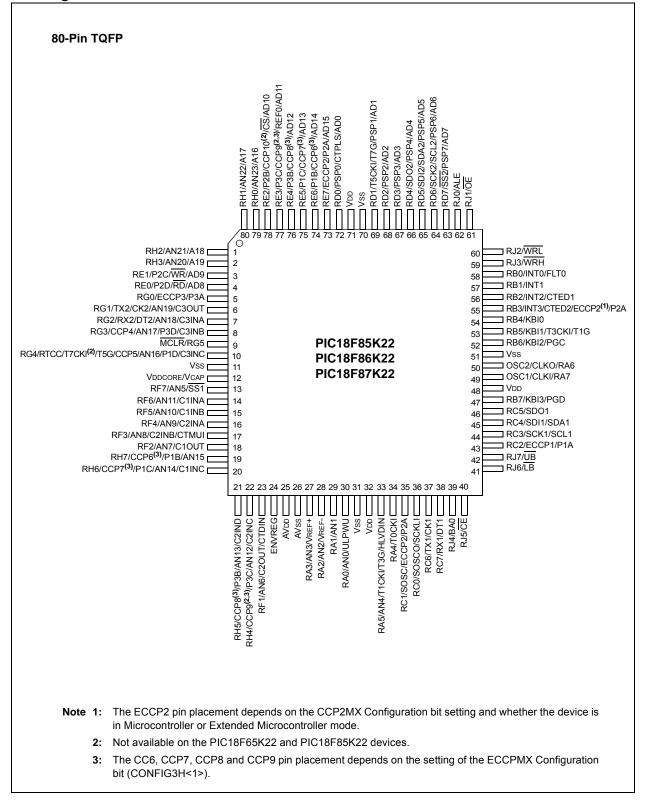
Welcome to E-XFL.COM

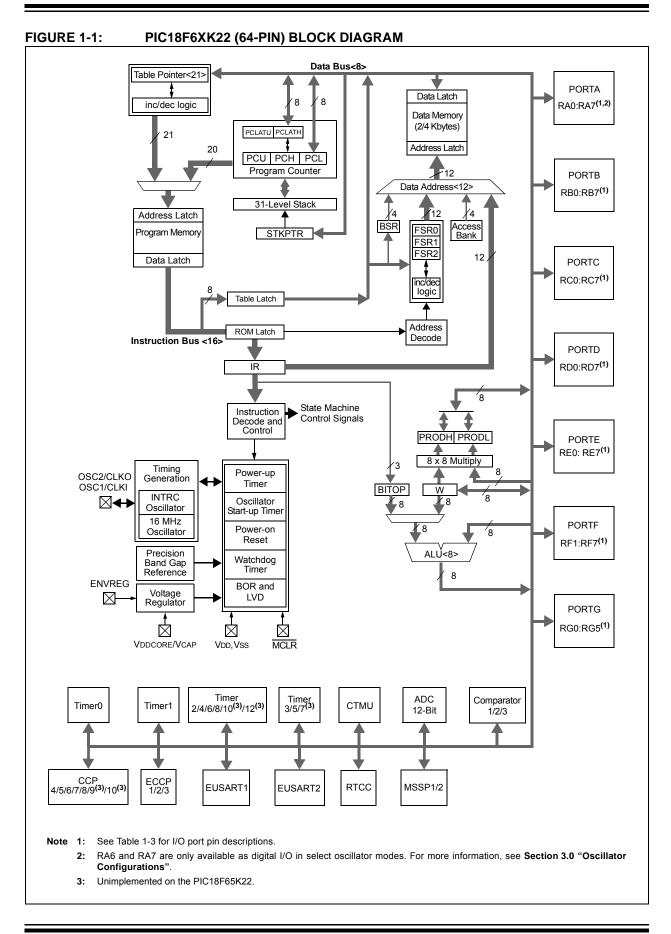
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

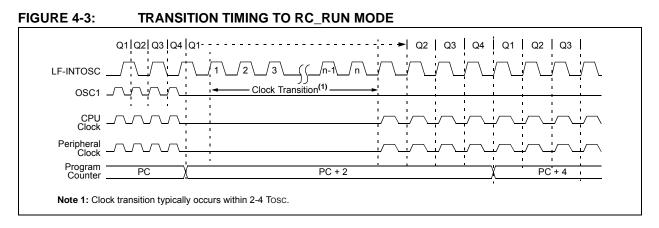

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k22t-i-pt

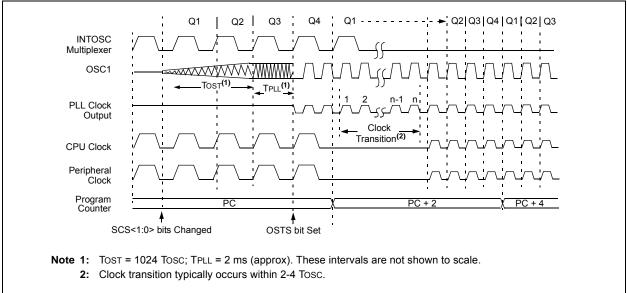
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – PIC18F8XK22



R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit 1 = 31.25 kHz device clock derived from 16 MHz INTOSC source (divide-by-512 enabled, HF-INTC 21 bit is device clock derived from 16 MHz INTOSC source (divide-by-512 enabled, HF-INTC)							
bit 6	 0 = 31 kHz device clock derived from INTRC 31 kHz oscillator (LF-INTOSC) PLLEN: Frequency Multiplier PLL Enable bit 1 = PLL is enabled 0 = PLL is disabled 						
bit 5-0	011111 = Ma 0000001 000000 = Ce 111111	aximum frequer • •	; fast RC oscill	Frequency Tunir	-	d frequency	


REGISTER 3-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST (Parameter 39, Table 31-13).

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the HFIOFS or MFIOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the HFIOFS or MFIOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The LF-INTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD		
bit 7							bit 0		
r									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown		
h:+ 7			hla/Diachla hi						
bit 7		/ID ECCP3 Ena			CD2 disabling	all of its alook a	0.11000		
		lisabled for EC			CP3, disabling a	an of its clock s	ources		
bit 6	CCP2MD: PN	ID ECCP2 Ena	able/Disable bi	it					
	1 = PMD is e	PMD is enabled for ECCP2, disabling all of its clock sources							
	0 = PMD is d	lisabled for EC	CP2						
bit 5	CCP1MD: PM	CP1MD: PMD ECCP1 Enable/Disable bit							
	1 = PMD is enabled for ECCP1, disabling all of its clock sources								
		lisabled for EC	••••						
bit 4	-	D: PMD UART2 Enable/Disable bit is enabled for UART2, disabling all of its clock sources							
		lisabled for UA	•						
bit 3	UART1MD: F	MD UART1 E	nable/Disable	bit					
	1 = PMD is e	enabled for UAI	RT1, disabling	all of its clock	sources				
	0 = PMD is d	lisabled for UA	RT1						
bit 2	SSP2MD: PM	1D MSSP2 Ena	able/Disable bi	t					
	1 = PMD is enabled for MSSP2, disabling all of its clock sources								
		lisabled for MS	•••						
bit 1		ID MSSP1 Ena							
		enabled for MS	•	all of its clock	sources				
bit 0	ADCMD: PMI	D Analog/Digita	al Converter P	MD Enable/Dis	sable bit				
		•••			abling all of its	clock sources			
	0 = PMD is d	lisabled for the	Analog/Digital	l Converter	-				

REGISTER 4-4: PMD0: PERIPHERAL MODULE DISABLE REGISTER 0

4.7 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RA0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

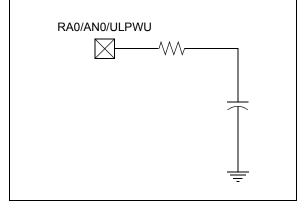
- 1. Charge the capacitor on RA0 by configuring the RA0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RA0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the WDTCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RA0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RA0.

When the ULPWU module wakes the device from Sleep mode, the ULPLVL bit (WDTCON<5>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 4-1 for initializing the ULPWU module.

EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//Charge the capacitor on RAO
       TRISAbits.TRISA0 = 0;
PORTAbits.RA0 = 1;
for(i = 0; i < 10000; i++) Nop();</pre>
       //Stop Charging the capacitor
       //on RAO
       TRISAbits.TRISA0 = 1;
       //Enable the Ultra Low Power
       //Wakeup module and allow
       //capacitor discharge
       WDTCONbits ULPEN = 1;
WDTCONbits.ULPSINK = 1;
       //For Sleep
OSCCONbits.IDLEN = 0;
       //Enter Sleep Mode
       11
Sleep();
       //for sleep, execution will
       //resume here
```

A series resistor, between RA0 and the external capacitor, provides overcurrent protection for the RA0/AN0/ ULPWU pin and enables software calibration of the time-out (see Figure 4-9).

FIGURE 4-9: ULTRA LOW-POWER WAKE-UP INITIALIZATION

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple Programmable Low-Voltage Detect (LVD) or temperature sensor.

Note: For more information, see AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879).

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (\overline{CM} , \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR}) are set or cleared differently in

different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets, and WDT wake-ups.

TABLE 5-1:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program	n RCON Register STKPTR Register							Register
Condition	Counter ⁽¹⁾	CM	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR Reset during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR Reset during power- managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full-power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an eight-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 7-1 and only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

The TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into the TABLAT.

When a TBLWT is executed, the six LSbs of the Table Pointer register (TBLPTR<5:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 64 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

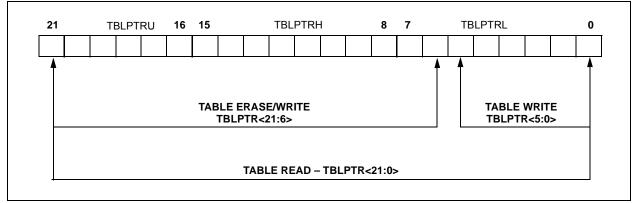

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

TABLE 7-1:	TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

7.5 Writing to Flash Program Memory

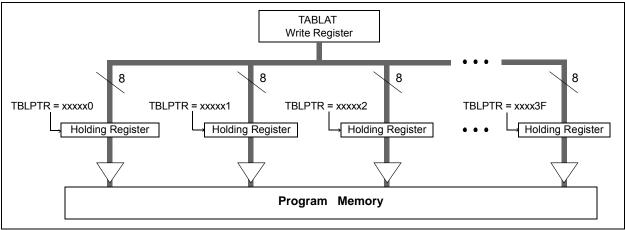
The programming blocks are:

- PIC18FX5K22 and PIC18FX6K22 32 words or 64 bytes
- PIC18FX7K22 64 words or 128 bytes

Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. The number of holding registers used for programming by the table writes are:

- PIC18FX5K22 and PIC18FX6K22 64
- PIC18FX7K22 128


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 or 128 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write is terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets, and after write operations, is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 or 128 holding registers before executing a write operation.

Example 10-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 10-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 10-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 10-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
			; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	i
		PRODL, RESO	;
;		· , ····	
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 10-4 shows the sequence to do a 16 x 16 signed multiply. Equation 10-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 10-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0=	ARG1H:ARG1L • ARG2H:ARG2L
=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H \le 7 \ge \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 10-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
				PRODH:PRODL
	MOVFF	PRODH, RES1	;	
	MOVFF	PRODL, RESO		
;		- ,		
	MOVF	ARG1H, W		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
	ноциг	AROZII		PRODH:PRODL
	MOVFF	PRODH, RES3		TRODITIRODE
	MOVFF			
	MOVEL	FRODE, RESZ	'	
;	MOVE			
		ARG1L, W		
	MULWF	ARG2H		ARG1L * ARG2H ->
				PRODH:PRODL
	MOVF	PRODL, W	;	
		RES1, F		Add cross
	MOVF		;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	;	
	MULWF	ARG2L	;	ARG1H * ARG2L ->
			;	PRODH:PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	-
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG1		no, check ARG1
	MOVF	ARG1L, W	;	, 0110011 11101
	SUBWF	RES2	;	
	MOVF	ARG1H, W	;	
	SUBWFB	RES3		SIGN ARG1
	BTFSS			ARG1H:ARG1L neg?
	BRA	CONT_CODE		no, done
	MOVF	ARG2L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG2H, W	;	
	SUBWFB	RES3		
;				
CC	NT_CODE			
	:			

12.4 PORTC, TRISC and LATC Registers

PORTC is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins.

PORTC is multiplexed with ECCP, MSSP and EUSART peripheral functions (Table 12-5). The pins have Schmitt Trigger input buffers. The pins for ECCP, SPI and EUSART are also configurable for open-drain output whenever these functions are active. Open-drain configuration is selected by setting the SPIOD, CCPxOD and U1OD control bits in the registers, ODCON1 and ODCON3.

RC1 is normally configured as the default peripheral pin for the ECCP2 module. The assignment of ECCP2 is controlled by Configuration bit, CCP2MX (default state, CCP2MX = 1). When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note:	These pins are configured as digital inputs
	on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 12-3:	INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
		; data latches
CLRF	LATC	; Alternate method
CLRF	LAIC	, Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description				
RC0/SOSCO/	RC0	0	0	DIG	LATC<0> data output.				
SCLKI/		1	Ι	ST	PORTC<0> data input.				
	SOSCO	1	Ι	ST	SOSC oscillator output.				
	SCLKI	1	I/O Type Description O DIG LATC<0> data output. I ST PORTC<0> data input. I ST PORTC<0> data input. I ST SOSC oscillator output. I ST Digital clock input; enabled when SOSC oscillator is disabled. O DIG LATC<1> data output. I ST PORTC<1> data input. I ANA SOSC oscillator input. O DIG ECCP2 compare output and ECCP2 PWM output; takes priority over I ST ECCP2 capture input. O DIG ECCP2 capture input. O DIG ECCP2 capture input. O DIG ECCP2 capture of tri-state during Enhanced PWM shutdown ever priority over port data. O DIG LATC<2> data output. I ST PORTC<2> data input. O DIG ECCP1 compare output and ECCP1 PWM output; takes priority over prid ata. O	Digital clock input; enabled when SOSC oscillator is disabled.					
RC1/SOSCI/	RC1	0	0	DIG	ST PORTC<1> data input.				
ECCP2/P2A		1	IvoTypeDescription0ODIGLATC<0> data output.1ISTPORTC<0> data input.1ISTPORTC<0> data input.1ISTSOSC oscillator output.1ISTDigital clock input; enabled when SOSC oscillator is disabled.0ODIGLATC<1> data output.1ISTPORTC<1> data input.xIANASOSC oscillator input.0ODIGECCP2 compare output and ECCP2 PWM output; takes priorit1ISTECCP2 capture input.0ODIGECCP2 capture input.0ODIGECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdow priority over port data.0ODIGLATC<2> data output.1ISTPORTC<2> data output.1ISTECCP1 compare output and ECCP1 PWM output; takes priority1ISTECCP1 capture input.0ODIGECCP1 capture input.						
	SOSCI	x	Ι	ANA	SOSC oscillator input.				
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output; takes priority over port data.				
		1	Ι	ST	ECCP2 capture input.				
	1ISTIP2A0ODIGI				May be configured for tri-state during Enhanced PWM shutdown events; takes				
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.				
P1A		1	Ι	ST	PORTC<2> data input.				
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.				
		1	Ι	ST	ECCP1 capture input.				
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.				

TABLE 12-5: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I^2C = I^2C^{TM}$ /SMBus Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

16.3 Timer3/5/7 16-Bit Read/Write Mode

Timer3/5/7 can be configured for 16-bit reads and writes (see Figure 16.3). When the RD16 control bit (TxCON<1>) is set, the address for TMRxH is mapped to a buffer register for the high byte of Timer3/5/7. A read from TMRxL will load the contents of the high byte of Timer3/5/7 into the Timerx High Byte Buffer register. This provides users with the ability to accurately read all 16 bits of Timer3/5/7 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3/5/7 must also take place through the TMRxH Buffer register. The Timer3/5/7 high byte is updated with the contents of TMRxH when a write occurs to TMRxL. This allows users to write all 16 bits to both the high and low bytes of Timer3/5/7 at once.

The high byte of Timer3/5/7 is not directly readable or writable in this mode. All reads and writes must take place through the Timerx High Byte Buffer register.

Writes to TMRxH do not clear the Timer3/5/7 prescaler. The prescaler is only cleared on writes to TMRxL.

16.4 Using the SOSC Oscillator as the Timer3/5/7 Clock Source

The SOSC internal oscillator may be used as the clock source for Timer3/5/7. The SOSC oscillator is enabled by any peripheral that requests it. There are eight ways the SOSC can be enabled: if the SOSC is selected as the source by any of the odd timers, which is done by each respective SOSCEN bit (TxCON<3>), if the SOSC is selected as the RTCC source by the RTCOSC Configuration bit (CONFIG3L<1>), if the SOSC is selected as the CPU clock source by the SCS bits (OSCCON<1:0>) or if the SOSCGO bit is set (OSCCON2<3>). The SOSCGO bit is used to warm up the SOSC so that it is ready before any peripheral requests it. To use it as the Timer3/5/7 clock source, the TMRxCS bit must also be set. As previously noted, this also configures Timer3/5/7 to increment on every rising edge of the oscillator source.

The SOSC oscillator is described in **Section 14.5** "SOSC Oscillator".

REGISTER 18-8: MONTH: MONTH VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0	
bit 7							bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

Unimplemented: Read as '0'
MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
Contains a value of 0 or 1.
MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 18-9: DAY: DAY VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 18-10: WEEKDAY: WEEKDAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—			—	WDAY2	WDAY1	WDAY0
bit 7							bit 0

Legend:					
R = Readable bit	bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-3 Unimplemented: Read as '0'

bit 2-0 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

Note 1: A write to this register is only allowed when RTCWREN = 1.

19.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

19.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers, 1 through 8, which vary with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 19-1.

TABLE 19-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timeri Timeri Timeri 5 en Timeri
Compare	Timer1, Timer3, Timer 5 or Timer7
PWM	Timer2, Timer4, Timer 6 or Timer8

The assignment of a particular timer to a module is determined by the timer to CCP enable bits in the CCPTMRSx registers (see Register 19-2 and Register 19-3). All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

The CCPTMRS1 register selects the timers for CCP modules, 7, 6, 5 and 4, and the CCPTMRS2 register selects the timers for CCP modules, 10, 9 and 8. The possible configurations are shown in Table 19-2 and Table 19-3.

TABLE 19-2: TIMER ASSIGNMENTS FOR CCP MODULES 4, 5, 6 AND 7

	CCPTMRS1 Register										
CCP4 CCP5				CCP6				CCP7			
C4TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C5TSEL0	Capture/ Compare Mode	PWM Mode	C6TSEL0	Capture/ Compare Mode	PWM Mode	C7TSEL <1:0>	Capture/ Compare Mode	
0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2	0 0	TMR1	TMR2
0 1	TMR3	TMR4	1	TMR5	TMR4	1	TMR5	TMR2	0 1	TMR5	TMR4
1 0	TMR3	TMR6							1 0	TMR5	TMR6
1 1	1 1 Reserved ⁽¹⁾							1 1	TMR5	TMR8	

Note 1: Do not use the reserved bits.

TABLE 19-3: TIMER ASSIGNMENTS FOR CCP MODULES 8, 9 AND 10

CCPTMRS2 Register											
CCP8			CCP8 Devices with 32 Kbytes			CCP9 ⁽¹⁾			CCP10 ⁽¹⁾		
C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C9TSEL0	Capture/ Compare Mode	PWM Mode	C10TSEL0	Capture/ Compare Mode	PWM Mode
0 0	TMR1	TMR2	0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2
0 1	TMR7	TMR4	0 1	TMR1	TMR4	1	TMR7	TMR4	1	TMR7	TMR2
1 0	TMR7	TMR6	1 0	TMR1	TMR6						
1 1	Reserv	ed ⁽²⁾	1 1	Reserv	ed ⁽²⁾						

Note 1: The module is not available for devices with 32 Kbytes of program memory (PIC18F65K22 and PIC18F85K22).

2: Do not use the reserved setting.

Bit 0 CP0
CP0
—
I WRT0
—
1 EBTR0
_
יז זי

TABLE 28-4: SUMMARY OF CODE PROTECTION REGISTERS

Legend: Shaded cells are unimplemented.

Note 1: This bit is available only on the PIC18F67K22 and PIC18F87K22 devices.

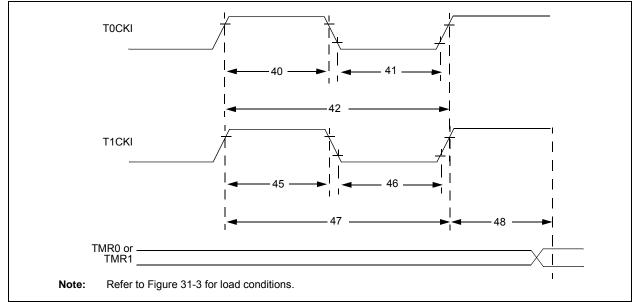
28.6.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to, or written from, any location using the table read and table write instructions. The Device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal Execution mode, the CPx bits have no direct effect. CPx bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTx Configuration bit is '0'.

The EBTRx bits control table reads. For a block of user memory, with the EBTRx bit set to '0', a table read instruction that executes from within that block is allowed

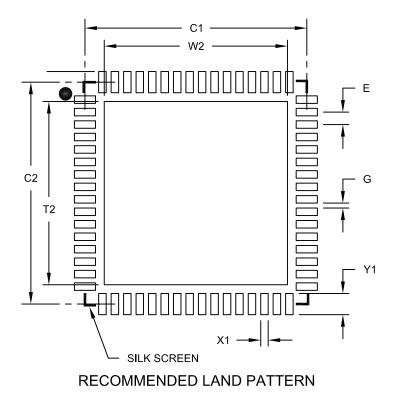
to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 28-7 through 28-9 illustrate table write and table read protection.


Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer. Refer to the device programming specification for more information.

Register Values Program Memory Configuration Bit Settings 000000h WRTB, EBTRB = 11 0007FFh 000800h TBLPTR = 0008FFh WRT0, EBTR0 = 01 PC = 003FFEh TBLWT* 003FFFh 004000h WRT1, EBTR1 = 11 007FFFh 008000h PC = 00BFFEhTBLWT* WRT2, EBTR2 = 11 00BFFFh 00C000h WRT3, EBTR3 = 11 00FFFFh Results: All table writes are disabled to Blockn whenever WRTx = 0.

FIGURE 28-7: TABLE WRITE (WRTx) DISALLOWED

CLRF	Clear f			CLR	WDT	Clear Wato	hdog Timer		
Syntax:	CLRF f{,;	a}		Synt	ax:	CLRWDT			
Operands:	$0 \leq f \leq 255$			Ope	rands:	None			
	$a \in [0,1]$			Ope	ration:	$000h \rightarrow WI$	DT,		
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$					$1 \rightarrow \overline{\text{TO}},$	DT postscaler,		
Status Affected:	Z					$1 \rightarrow PD$			
Encoding:	0110	0110 101a ffff ffff			Status Affected: Encoding: Description:	TO, PD			
Description:	Clears the contents of the specified register.			Enc		0000	0000 00	00 0100	
				Des			CLRWDT instruction resets the		
	,	he Access Bar				Watchdog Timer. It also resets the post- scaler of the WDT. Status bits, TO and PD, are set.			
	lf 'a' is '1', t GPR bank.	he BSR is use	d to select the						
	lf 'a' is '0' a	nd the extende	ed instruction	Wor	ds:	1			
		ed, this instruc		Cyc	es:	1			
		Literal Offset A iever f ≤ 95 (5l	0	QC	Cycle Activity:				
		.2.3 "Byte-Or			Q1	Q2	Q3	Q4	
		ed Instruction set Mode" for			Decode	No operation	Process Data	No operation	
Words:	1								
Cycles:	1			Exa	<u>mple:</u>	CLRWDT			
Q Cycle Activity:					Before Instruc				
Q1	Q2	Q3	Q4		WDT Co After Instruction		?		
Decode	Read	Process	Write		WDT Co		00h		
	register 'f'	Data	register 'f'		WDT Pos		0		
					TO PD	=	1 1		
Example:	CLRF	FLAG_REG,	1		FD	-	Ţ		
Before Instruc									
FLAG_R After Instructio		h							
FLAG R		h							
-									


FIGURE 31-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic	;	Min	Max	Units	Conditions
40	Тт0Н	T0CKI High F	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
41 T⊤0L		T0CKI Low P	ulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
42 T⊤0P		T0CKI Period	l	No prescaler	Tcy + 10		ns	
				With prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T1CKI High Time	Synchronous, no prescaler		0.5 Tcy + 20	—	ns	
			Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	_	ns	
46	T⊤1L	T1CKI Low	Synchronous, no prescaler		0.5 TCY + 5	—	ns	
		Time	Synchronous, with prescaler		10		ns	
			Asynchronous		30	—	ns	
47	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	—	ns	N = prescale value (1, 2, 4, 8)
		Asynchronous			60	—	ns	
	F⊤1	T1CKI Oscilla	ator Input Freque	ncy Range	DC	50	kHz	
48	TCKE2TMRI	Delay from E Timer Increm	ternal T1CKI Clock Edge to		2 Tosc	7 Tosc	—	

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch			0.50 BSC	
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Core Features
Easy Migration10
Extended Instruction Set9
External Memory Bus (EMB)9
Memory Options9
nanoWatt Technology9
Oscillator Options and Features9
CPFSEQ
CPFSGT
CPFSLT
Crystal Oscillator/Ceramic Resonator 50
Customer Change Notification Service 547
Customer Notification Service547
Customer Support547
D
-
Data Addressing Modes
Extended Instruction Set Enabled
Direct
Indexed Literal Offset
BSR
Instructions Affected
Mapping Access Bank
Indirect
Inherent and Literal
Data EEPROM
Code Protection
Data EEPROM Memory
Associated Registers
EEADR and EEADRH Registers
EECON1 and EECON2 Registers
Operation During Code-Protect
Overview
Reading
Spurious Write Protection
Using
Write Verify
Writing
Data Memory
Access Bank
Bank Select Register (BSR)94
Extended Instruction Set
General Purpose Registers96
Memory Maps
PIC18FX5K22/X7KJ22 Devices
Special Function Registers
Special Function Registers (SFRs)
DAW450
DC Characteristics
CTMU Current Source
PIC18F87K22 Family (Industrial)
Power-Down and Supply Current 488
Supply Voltage487
DCFSNZ 451
DECF
DECFSZ451
Default System Clock49
Details on Individual Family Members11
Development Support481
Device Overview9

Е

Effect an Oten dead DIO40 is structions	
Effect on Standard PIC18 Instructions 4	78
Effects of Power-Managed Modes on Various	
Clock Sources	55
Electrical Characteristics	85
Enhanced Capture/Compare/PWM (ECCP) 2	
Capture Mode. See Capture.	
Compare Mode. See Compare.	
Enhanced PWM Mode	65
Auto-Restart	
Auto-Nestan	
Direction Change in Full-Bridge	12
Output Mode	
Full-Bridge Application	
Full-Bridge Mode 2	
Half-Bridge Application 2	
Half-Bridge Application Examples 2	275
Half-Bridge Mode 2	68
Output Relationships (Active-High and	
Active-Low) 2	66
Output Relationships Diagram 2	
Programmable Dead-Band Delay 2	
Shoot-Through Current 2	
Start-up Considerations	
Outputs and Configuration	
Timer Resources	
Enhanced Capture/Compare/PWM (ECCP) and	.02
Timer1/2/3/4/6/8/10/12	
Associated Registers	.79
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART). See EUSART.	
Equations	
16 x 16 Signed Multiplication Algorithm 1	
16 x 16 Unsigned Multiplication Algorithm 1	
A/D Acquisition Time 3	62
A/D Minimum Charging Time 3	62
Calculating the Minimum Required	
Acquisition Time 3	62
Errata	. 8
EUSART	
Asynchronous Mode3	37
12-Bit Break Transmit and Receive	
Associated Registers, Receive	
Associated Registers, Transmit	
	39
Auto-Wake-up on Sync Break 3	42
Auto-Wake-up on Sync Break	42 40
Auto-Wake-up on Sync Break	42 40
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled	42 40 40
Auto-Wake-up on Sync Break	42 40 40
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3	42 40 40 40 40
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3	42 40 40 40 40 37
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3	42 40 40 40 40 37
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3	42 40 40 40 40 37 37
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3	42 40 40 40 40 37 37 337
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3	42 40 40 40 40 37 37 337
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3	42 40 40 40 40 37 37 331 331
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3 Baud Rate Generator (BRG) 3	342 340 340 340 337 337 331 331 332
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3 Baud Rate Generator (BRG) 3 Associated Registers 3	42 40 40 40 37 37 337 331 331 332 335
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3 Baud Rate Generator (BRG) 3 Associated Registers 3 Auto-Baud Rate Detect 3 Baud Rate Error, Calculating 3	42 40 40 40 37 37 31 32 35 32
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3 Baud Rate Generator (BRG) 3 Associated Registers 3 Auto-Baud Rate Detect 3 Baud Rate Error, Calculating 3 Baud Rates, Asynchronous Modes 3	42 40 40 40 40 37 337 331 331 332 335 332 333
Auto-Wake-up on Sync Break 3 Receiver 3 Reception Sequence 3 Reception with Address Detect Enabled 3 Sequence 3 Setting up 9-Bit Mode with Address Detect 3 Transmission Sequence 3 Transmitter 3 Baud Rate Generator 3 Operation in Power-Managed Mode 3 Baud Rate Generator (BRG) 3 Associated Registers 3 Auto-Baud Rate Detect 3 Baud Rate Error, Calculating 3	42 40 40 40 40 37 337 331 331 332 335 332 333 331

and EUSART Operation
and PWM Operation279
and SPI Operation
Clock Transitions and Status Indicators
Entering57
Exiting Idle and Sleep Modes
by Interrupt69
by Reset
by WDT Time-out69
Without an Oscillator Start-up Delay69
Idle Modes
PRI IDLE63
RC_IDLE64
SEC_IDLE63
Multiple Sleep Commands
Run Modes
PRI RUN
RC RUN60
SEC RUN
Selecting
Sleep Mode
OSC1 and OSC2 Pin States
Summary (table)
Power-on Reset (POR)
Power-up Delays
Power-up Timer (PWRT)
Time-out Sequence
Prescaler, Timer0
Prescaler, Timer2
PRI IDLE Mode
—
PRI_RUN Mode
Program Counter
PCL, PCH and PCU Registers
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 89
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 276
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 276 Pulse-Width Modulation. See PWM (CCP Module). 276
PCL, PCH and PCU Registers 89 PCLATH and PCLATU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH and POP Instructions 90
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 431 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476
PCL, PCH and PCU Registers 89 Program Memory 69 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Werification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 276 Pulse Steering 276 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 431 PSP.See Parallel Slave Port. 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 PWM (CCP Module) 476 PUM (CCP Module) 456 Duty Cycle 256 Example Frequencies/Resolutions 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PulsH 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP.See Parallel Slave Port. 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 PWM (CCP Module) 456 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255 Setup for PWM Operation 256
PCL, PCH and PCU Registers 89 Program Memory 60 Code Protection 427 Extended Instruction Set 107 Hard Memory Vectors 88 Instructions 93 Two-Word 93 Interrupt Vector 88 Look-up Tables 91 Memory Maps 87 Reset Vector 88 Program Verification and Code Protection 426 Associated Registers 427 Programming, Device Instructions 431 PSP. See Parallel Slave Port. 276 Pulse Steering 276 PulsH 460 PUSH 460 PUSH 460 PUSH 476 PWM (CCP Module) 476 Associated Registers 256 Duty Cycle 256 Example Frequencies/Resolutions 256 Period 255

279
279
279
276
278

Q

R	
RAM. See Data Memory.	
RC IDLE Mode	64
RC RUN Mode	60
RCON Register	
Bit Status During Initialization	78
Reader Response	
Real-Time Clock and Calendar (RTCC)	
Registers	
Reference Clock Output	
Register File	
Register File Summary	
Registers	
ADCON0 (A/D Control 0)	352
ADCON1 (A/D Control 1)	
ADCON2 (A/D Control 2)	
ADRESH (A/D Result High Byte Left Justified,	
ADFM = 0)	356
ADRESH (A/D Result High Byte Right Justified,	
ADFM = 1)	357
ADRESL (A/D Result High Byte Left Justified,	
ADFM = 0)	356
ADRESL (A/D Result Low Byte Right Justified,	
ADFM = 1)	357
ALRMCFG (Alarm Configuration)	
ALRMDAY (Alarm Day Value)	
ALRMHR (Alarm Hours Value)	
ALRMMIN (Alarm Minutes Value)	
ALRMMNTH (Alarm Month Value)	
ALRMRPT (Alarm Repeat)	
ALRMSEC (Alarm Seconds Value)	
ALRMWD (Alarm Weekday Value)	
ANCON0 (A/D Port Configuration 0)	
ANCON1 (A/D Port Configuration 1)	
ANCON2 (A/D Port Configuration 2)	
BAUDCONX (Baud Rate Control)	
CCPRxH (CCPx Period High Byte)	
CCPRxL (CCPx Period Low Byte)	
CCPTMRS0 (CCP Timer Select 0)	
CCPTMRS1 (CCP Timer Select 1)	
CCPTMRS2 (CCP Timer Select 2)	
CCPxCON (CCP4-CCP10 Control)	
CCPxCON (Enhanced Capture/Compare/	240
PWMx Control)	260
CMSTAT (Comparator Status)	
CMSTAT (Comparator Status) CMxCON (Comparator Control x)	
CONFIG1H (Configuration 1 High)	
CONFIG1L (Configuration 1 Low)	
CONFIG1E (Configuration 1 Edw) CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
00111 102L (00111901all011 2 LOW)	407