

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85k22-i-pt

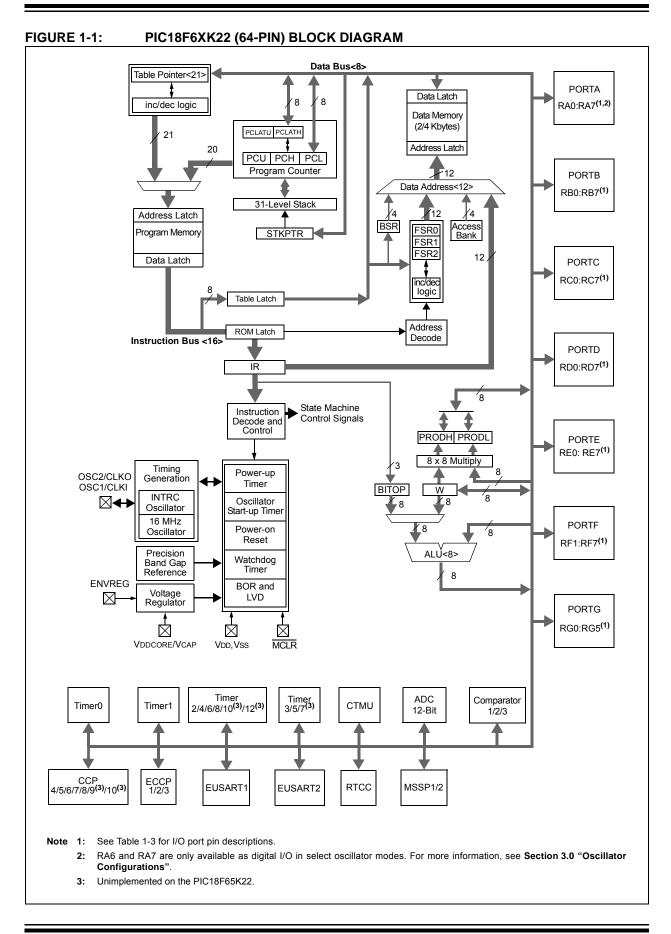
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.6 EASY MIGRATION

All devices share the same rich set of peripherals except that the devices with 32 Kbytes of program memory (PIC18F65K22 and PIC18F85K22) have two less CCPs and three less timers. This provides a smooth migration path within the device family as applications evolve and grow.

The consistent pinout scheme, used throughout the entire family, also aids in migrating to the next larger device. This is true when moving between the 64-pin members, between the 80-pin members, or even jumping from 64-pin to 80-pin devices.


All of the devices in the family share the same rich set of peripherals, except for those with 32 Kbytes of program memory (PIC18F65K22 and PIC18F85K22). Those devices have two less CCPs and three less timers.

The PIC18F87K22 family is also largely pin compatible with other PIC18 families, such as the PIC18F8720 and PIC18F8722 and the PIC18F85J11. This allows a new dimension to the evolution of applications, allowing developers to select different price points within Microchip's PIC18 portfolio, while maintaining a similar feature set.

1.2 Other Special Features

- Communications: The PIC18F87K22 family incorporates a range of serial communication peripherals, including two Enhanced USARTs (EUSART) that support LIN/J2602, and two Master SSP modules, capable of both SPI and I²C[™] (Master and Slave) modes of operation.
- CCP Modules: PIC18F87K22 family devices incorporate up to seven Capture/Compare/PWM (CCP) modules. Up to six different time bases can be used to perform several different operations at once.
- ECCP Modules: The PIC18F87K22 family has three Enhanced CCP (ECCP) modules to maximize flexibility in control applications:
 - Up to eight different time bases for performing several different operations at once
 - Up to four PWM outputs for each module, for a total of 12 PWMs
 - Other beneficial features, such as polarity selection, programmable dead time, auto-shutdown and restart, and Half-Bridge and Full-Bridge Output modes

- 12-Bit A/D Converter: The PIC18F87K22 family has differential ADC. It incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and thus, reducing code overhead.
- Charge Time Measurement Unit (CTMU): The CTMU is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation.
- Together with other on-chip analog modules, the CTMU can precisely measure time, measure capacitance or relative changes in capacitance, or generate output pulses that are independent of the system clock.
- LP Watchdog Timer (WDT): This enhanced version incorporates a 22-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 31.0 "Electrical Characteristics" for time-out periods.
- Real-Time Clock and Calendar Module (RTCC): The RTCC module is intended for applications requiring that accurate time be maintained for extended periods of time with minimum to no intervention from the CPU.
- The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Surrey Description	
RH7/CCP6/P1B/AN15	19			
RH7		I/O	ST	Digital I/O.
CCP6 ⁽⁵⁾		I/O	ST	Capture 6 input/Compare 6 output/PWM6 output.
P1B		0	—	ECCP1 PWM Output B.
AN15		I.	Analog	Analog Input 15.
Legend: TTL = TTL com	patible input			CMOS = CMOS compatible input or output
ST = Schmitt T	rigger input wit	h CMC	OS levels	Analog = Analog input
I = Input				O = Output

= Power Ρ

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: PSP is available only in Microcontroller mode.

5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

OD

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
h:+ 7			hla/Diachla hi				
bit 7		/ID ECCP3 Ena			CD2 disabling	all of its alook a	0.11000
		lisabled for EC			CP3, disabling a	an of its clock s	ources
bit 6	CCP2MD: PN	ID ECCP2 Ena	able/Disable bi	it			
	1 = PMD is e	nabled for EC	CP2, disabling	all of its clock	sources		
	0 = PMD is d	lisabled for EC	CP2				
bit 5	CCP1MD: PMD ECCP1 Enable/Disable bit						
	1 = PMD is enabled for ECCP1, disabling all of its clock sources						
		lisabled for EC	••••				
bit 4	-	MD UART2 E					
		enabled for UAI	•	all of its clock	sources		
bit 3	UART1MD: F	MD UART1 E	nable/Disable	bit			
	1 = PMD is e	enabled for UAI	RT1, disabling	all of its clock	sources		
	0 = PMD is d	lisabled for UA	RT1				
bit 2	SSP2MD: PM	1D MSSP2 Ena	able/Disable bi	t			
	1 = PMD is enabled for MSSP2, disabling all of its clock sources						
		lisabled for MS	•••				
bit 1		ID MSSP1 Ena					
		enabled for MS	•	all of its clock	sources		
bit 0	ADCMD: PMI	D Analog/Digita	al Converter P	MD Enable/Dis	sable bit		
		•••			abling all of its	clock sources	
	0 = PMD is d	lisabled for the	Analog/Digital	l Converter	-		

REGISTER 4-4: PMD0: PERIPHERAL MODULE DISABLE REGISTER 0

4.7 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RA0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

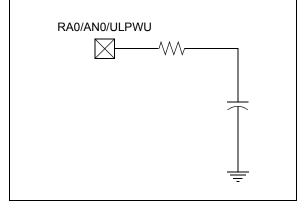
- 1. Charge the capacitor on RA0 by configuring the RA0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RA0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the WDTCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RA0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RA0.

When the ULPWU module wakes the device from Sleep mode, the ULPLVL bit (WDTCON<5>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 4-1 for initializing the ULPWU module.

EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//Charge the capacitor on RAO
       TRISAbits.TRISA0 = 0;
PORTAbits.RA0 = 1;
for(i = 0; i < 10000; i++) Nop();</pre>
       //Stop Charging the capacitor
       //on RAO
       TRISAbits.TRISA0 = 1;
       //Enable the Ultra Low Power
       //Wakeup module and allow
       //capacitor discharge
       WDTCONbits ULPEN = 1;
WDTCONbits.ULPSINK = 1;
       //For Sleep
OSCCONDits.IDLEN = 0;
       //Enter Sleep Mode
       11
Sleep();
       //for sleep, execution will
       //resume here
```

A series resistor, between RA0 and the external capacitor, provides overcurrent protection for the RA0/AN0/ ULPWU pin and enables software calibration of the time-out (see Figure 4-9).

FIGURE 4-9: ULTRA LOW-POWER WAKE-UP INITIALIZATION

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple Programmable Low-Voltage Detect (LVD) or temperature sensor.

Note: For more information, see AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879).

8.8 Operation in Power-Managed Modes

In alternate, power-managed Run modes, the external bus continues to operate normally. If a clock source with a lower speed is selected, bus operations will run at that speed. In these cases, excessive access times for the external memory may result if Wait states have been enabled and added to external memory operations. If operations in a lower power Run mode are anticipated, users should provide in their applications for adjusting memory access times at the lower clock speeds. In Sleep and Idle modes, the microcontroller core does not need to access data; bus operations are suspended. The state of the external bus is frozen, with the address/data pins, and most of the control pins, holding at the same state they were in when the mode was invoked. The only potential changes are to the \overline{CE} , \overline{LB} and \overline{UB} pins, which are held at logic high.

TABLE 8-3 :	REGISTERS ASSOCIATED WITH THE EXTERNAL MEMORY BUS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MEMCON ⁽¹⁾	EBDIS	_	WAIT1	WAIT0		—	WM1	WM0
PADCFG1	RDPU	REPU	RJPU ⁽¹⁾	_	—	RTSECSEL1	RTSECSEL0	
PMD1	PSPMD	CTMUMD	RTCCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	EMBMD

Legend: — = unimplemented, read as '0'. Shaded cells are not used during External Memory Bus access.

Note 1: Unimplemented in 64-pin devices (PIC18F6XK22), read as '0'.

EXAMPLE 9-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDRH	;
MOVWF	EEADRH	; Upper bits of Data Memory Address to read
MOVLW	DATA_EE_ADDR	i
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
NOP		
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 9-2: DATA EEPROM WRITE

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	DATA_EE_ADDRH EEADRH DATA_EE_ADDR EEADR DATA_EE_DATA EEDATA	; ; Upper bits of Data Memory Address to write ; ; Lower bits of Data Memory Address to write ; ; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	0x55	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0xAA	i
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete GOTO \$-2
	BSF	INTCON, GIE	; Enable Interrupts
			· Harr godo ovogution
	DOD		; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

13.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable. Its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>), which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256, in power-of-two increments, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (for example, CLRF TMR0, MOVWF TMR0, BSF TMR0) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

13.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

13.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine (ISR).

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

TABLE 13-1. REGISTERS ASSOCIATED WITH HIMLERD	TABLE 13-1:	REGISTERS ASSOCIATED WITH TIMER0
---	-------------	----------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR0L	Timer0 Regis	ster Low Byte						
TMR0H	Timer0 Regis	Timer0 Register High Byte						
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
	· •					•		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Timer0.

TABLE 16-5: REGISTERS ASSOCIATED WITH TIMER3/5/7 AS A TIMER/COUNTER								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF
PIR5	TMR7GIF ⁽¹⁾	TMR12IF ⁽¹⁾	TMR10IF ⁽¹⁾	TMR8IF	TMR7IF ⁽¹⁾	TMR6IF	TMR5IF	TMR4IF
IPR5	TMR7GIP ⁽¹⁾	TMR12IP ⁽¹⁾	TMR10IP ⁽¹⁾	TMR8IP	TMR7IP ⁽¹⁾	TMR6IP	TMR5IP	TMR4IP
PIE5	TMR7GIE ⁽¹⁾	TMR12IE ⁽¹⁾	TMR10IE ⁽¹⁾	TMR8IE	TMR7IE ⁽¹⁾	TMR6IE	TMR5IE	TMR4IE
PIE3	TMR5GIE	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
PIR3	TMR5GIF	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIE2	OSCFIE	_	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
PIR2	OSCFIF	—	SSP2IF	BCL2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF
IPR2	OSCFIP	_	SSP2IP	BCL2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP
TMR3H	Timer3 Register High Byte							
TMR3L	Timer3 Regist	er Low Byte						
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON
TMR5H	Timer5 Regist	er High Byte						
TMR5L	Timer5 Regist	er Low Byte						
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ T5DONE	T5GVAL	T5GSS1	T5GSS0
T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	SOSCEN	T5SYNC	RD16	TMR5ON
TMR7H ⁽¹⁾	/R7H ⁽¹⁾ Timer7 Register High Byte							
TMR7L ⁽¹⁾	Timer7 Regist	er Low Byte						
T7GCON ⁽¹⁾	TMR7GE	T7GPOL	T7GTM	T7GSPM	T7GGO/ T7DONE	T7GVAL	T7GSS1	T7GSS0
T7CON ⁽¹⁾	TMR7CS1	TMR7CS0	T7CKPS1	T7CKPS0	SOSCEN	T7SYNC	RD16	TMR7ON
OSCCON2	—	SOSCRUN	—		SOSCGO	—	MFIOFS	MFIOSEL
PMD1	PSPMD	CTMUMD	RTCCMD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	EMBMD
PMD2	TMR10MD ⁽¹⁾	TMR8MD	TMR7MD ⁽¹⁾	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP2MD
					•			

TABLE 16-5: REGISTERS ASSOCIATED WITH TIMER3/5/7 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3/5/7 module.

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

17.0 TIMER4/6/8/10/12 MODULES

The Timer4/6/8/10/12 timer modules have the following features:

- Eight-bit Timer register (TMRx)
- Eight-bit Period register (PRx)
- Readable and writable (all registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match of PRx

Timer10 and Timer12 are unimplemented for devices with a program memory of 32 Kbytes (PIC18FX5K22).

Note:	Throughout this section, generic references
	are used for register and bit names that are the
	same, except for an 'x' variable that indicates
	the item's association with the Timer4, Timer6,
	Timer8, Timer10 or Timer12 module. For
	example, the control register is named TxCON
	and refers to T4CON, T6CON, T8CON,
	T10CON and T12CON.

The Timer4/6/8/10/12 modules have a control register, which is shown in Register 17-1. Timer4/6/8/10/12 can be shut off by clearing control bit, TMRxON (TxCON<2>), to minimize power consumption. The prescaler and post-scaler selection of Timer4/6/8/10/12 are also controlled by this register. Figure 17-1 is a simplified block diagram of the Timer4/6/8/10/12 modules.

17.1 Timer4/6/8/10/12 Operation

Timer4/6/8/10/12 can be used as the PWM time base for the PWM mode of the ECCP modules. The TMRx registers are readable and writable, and are cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, TxCKPS<1:0> (TxCON<1:0>). The match output of TMRx goes through a four-bit postscaler (that gives a 1:1 to 1:16 inclusive scaling) to generate a TMRx interrupt, latched in the flag bit, TMRxIF. Table 17-1 shows each module's flag bit.

Timer Module	Flag Bit PIR5 <x></x>	Timer Module	Flag Bit PIR5 <x></x>
4	0	10	5
6	2	12	6
8	4		

TABLE 17-1: TIMER4/6/8/10/12 FLAG BITS

The interrupt can be enabled or disabled by setting or clearing the Timerx Interrupt Enable bit (TMRxIE), shown in Table 17-2.

TABLE 17-2:	TIMER4/6/8/10/12 INTERRUPT
	ENABLE BITS

Timer Module	Flag Bit PIE5 <x></x>	Timer Module	Flag Bit PIE5 <x></x>
4	0	10	5
6	2	12	6
8	4		

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMRx register
- A write to the TxCON register
- <u>Any device Reset</u> Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

A TMRx is not cleared when a TxCON is written.

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 19-2, Register 19-3 and Register 20-2.

FIGURE 18-6: TIMER PULSE GENERATION

RTCEN bit	
ALRMEN bit	
RTCC Alarm Event	
RTCC Pin	

18.4 Sleep Mode

The timer and alarm continue to operate while in Sleep mode. The operation of the alarm is not affected by Sleep, as an alarm event can always wake up the CPU.

The Idle mode does not affect the operation of the timer or alarm.

18.5 Reset

18.5.1 DEVICE RESET

When a device Reset occurs, the ALRMRPT register is forced to its Reset state, causing the alarm to be disabled (if enabled prior to the Reset). If the RTCC was enabled, it will continue to operate when a basic device Reset occurs.

18.5.2 POWER-ON RESET (POR)

The RTCCFG and ALRMRPT registers are reset only on a POR. Once the device exits the POR state, the clock registers should be reloaded with the desired values.

The timer prescaler values can be reset only by writing to the SECONDS register. No device Reset can affect the prescalers.

22.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

22.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.

e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
IPR3	TMR5GIP	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG1	EUSART1 T	ransmit Regis	ster					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGH1	EUSART1 B	aud Rate Gei	nerator Regi	ster High Byt	e			
SPBRG1	EUSART1 B	aud Rate Ger	nerator Regi	ster				
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREG2	EUSART2 T	ransmit Regis	ster					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGH2	EUSART2 B	aud Rate Gei	nerator Regi	ster High Byt	e			
SPBRG2	EUSART2 B	aud Rate Ger	nerator Regi	ster				
ODCON3	U2OD	U10D	_		—		—	CTMUDS
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD

TABLE 22-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

22.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

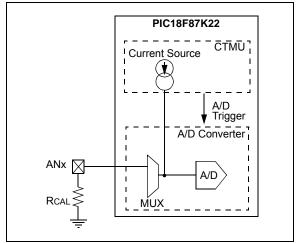
The operation of the Synchronous Master and Slave modes is identical except in the case of Sleep, or any Idle mode, and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREGx register. If the RCxIE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCxIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCxIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREGx register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP
PIR3	TMR5GIF	_	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIE3	TMR5GIE	_	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG1	EUSART1 F	Receive Regis	ter					
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH1	EUSART1 E	aud Rate Ge	nerator Regi	ster High Byt	е			
SPBRG1	EUSART1 E	Baud Rate Ge	nerator Regi	ster				
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREG2	EUSART2 F	Receive Regis	ter					
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN
SPBRGH2	EUSART2 E	aud Rate Ge	nerator Regi	ster High Byt	е			
SPBRG2	EUSART2 E	Baud Rate Ge	nerator Regi	ster				
ODCON3	U2OD	U10D	_	_	—	_	—	CTMUDS
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD

TABLE 22-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION


Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

The CTMU current source may be trimmed with the trim bits in CTMUICON using an iterative process to get the exact current desired. Alternatively, the nominal value without adjustment may be used. That value may be stored by software for use in all subsequent capacitive or time measurements.

To calculate the value for $\ensuremath{\mathrm{RCAL}}$, the nominal current must be chosen. Then, the resistance can be calculated.

For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale (or 2.31V) as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as RCAL = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, RCAL would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 27-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter was in a range that is well above the noise floor. If an exact current is chosen to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL may also be adjusted to allow for available resistor values. RCAL should be of the highest precision available, in light of the precision needed for the circuit that the CTMU will be measuring. A recommended minimum would be 0.1% tolerance.

The following examples show a typical method for performing a CTMU current calibration.

• Example 27-1 demonstrates how to initialize the A/D Converter and the CTMU.

This routine is typical for applications using both modules.

• Example 27-2 demonstrates one method for the actual calibration routine.

This method manually triggers the A/D Converter to demonstrate the entire step-wise process. It is also possible to automatically trigger the conversion by setting the CTMU's CTTRIG bit (CTMUCONH<0>).

R/P-1	U-0	U-0	U-0	R/P-1	U-0	R/P-1	R/P-1
MCLRE		_	—	MSSPMSK	—	ECCPMX ⁽¹⁾	CCP2MX
bit 7							bit (
Legend:		P = Programm	ahle hit				
R = Readabl	le hit	W = Writable b		U = Unimplem	ented hit re	ad as '0'	
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unkn	own
					licu		OWIT
bit 7	MCLRE: MCI	_R Pin Enable b	it				
		n is enabled; RG t pin is enabled;					
bit 6-4	Unimplemen	ted: Read as '0	3				
bit 3	MSSPMSK:	MSSP V3 7-Bit /	Address Ma	sking Mode Enal	ble bit		
		ress Masking m ress Masking m					
bit 2		ted: Read as '0					
bit 1	-	CCP MUX bit ⁽¹⁾					
	1 =						
						RE6, and CCP7 RE4, and CCP9	
	0 =					RH7, and CCP7	
						RH5, and CCP9	
bit 0	CCP2MX: EC	CP2 MUX bit					
	0 = ECCP2 i	s multiplexed wi s multiplexed w licrocontroller m	ith RB3 in I	Extended Microc	ontroller mo	de; ECCP2 is mu	Iltiplexed wit
Note 1: U	Inimplemented or	n 64-pin devices	(PIC18F6X	(K22), read as '0	, -		

REGISTER 28-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

2: Not implemented on 32K devices (PIC18F65K22 and PIC18F85K22).

R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
CP7 ⁽¹⁾	CP6 ⁽¹⁾	CP5 ⁽¹⁾	CP4 ⁽¹⁾	CP3	CP2	CP1	CP0
bit 7							bit 0
Legend:		C = Clearable	hit				
R = Readabl	o hit	W = Writable		II – Unimploy	mented bit, rea	ad as '0'	
-n = Value at		'1' = Bit is set		0 = Onimpler		x = Bit is unkr	
	IPOR	I = DILIS SE	L		areu	X = BILIS UNKI	IOWII
bit 7	CP7: Code F	Protection bit ⁽¹⁾					
	1 = Block 7 i	s not code-prot	ected ⁽²⁾				
		s code-protecte	ed(2)				
bit 6	CP6: Code F	Protection bit ⁽¹⁾					
		s not code-prot					
		s code-protecte	ed(2)				
bit 5		Protection bit ⁽¹⁾	(2)				
		s not code-prot s code-protecte					
b :t 4		Protection bit ⁽¹⁾					
bit 4		s not code-prot	ootod(2)				
		s code-protecte					
bit 3	CP3: Code F	Protection bit					
	1 = Block 3 i	s not code-prot	ected ⁽²⁾				
	0 = Block 3 i	s code-protecte	ed ⁽²⁾				
bit 2	CP2: Code F						
		s not code-prot					
		s code-protecte	ed(2)				
bit 1	CP1: Code F		(2)				
		s not code-prot s code-protecte					
bit 0	CP0: Code F	Protection bit					
		s not code-prot					
	0 = Block 0 i	s code-protecte	ed ⁽²⁾				
Note 1: T	his bit is availab	le only on PIC1	8F67K22 and	I PIC18F87K22	devices.		

REGISTER 28-8: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

- This bit is available only on PIC18F67K22 and PIC18F87K22 devices. NOTE 1:
 - 2: For the memory size of the blocks, see Figure 28-6.

RRNCF	Rotate Ri	ight f (No	Carry)					
Syntax:	RRNCF	f {,d {,a}}							
Operands:	$0 \le f \le 253$ $d \in [0,1]$ $a \in [0,1]$	5							
Operation:		$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$							
Status Affected:	N, Z								
Encoding:	0100	00da	fff	f ffff					
Description:	one bit to is placed	the right.	lf 'd' is is '1',	' are rotated '0', the result the result is					
	selected,	n the bank	the BS	nk will be SR value. If 'a' e selected as					
	set is ena in Indexed mode whe Section 2 Bit-Orien	bled, this d Literal O enever $f \le$ 29.2.3 "By	instruc ffset A 95 (5F r te-Ori ictions	ented and s in Indexed					
	Г	► re	egister	f					
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q	3	Q4					
Decode	Read	Proce	ess	Write to					
	register 'f'	Dat	а	destination					
				destination					
Example 1:	RRNCF	REG, 1	, 0	destination					
Before Instruc REG After Instructi	ction = 1101 ion	0111	, 0						
Before Instruct REG After Instructi REG	ction = 1101 ion = 1110	0111 1011							
Before Instruct REG After Instructi REG Example 2:	ction = 1101 ion = 1110 RRNCF	0111 1011							
Before Instruct REG After Instructi REG	ction = 1101 ion = 1110 RRNCF ction = ? = 1101	0111 1011							

SETF	Set f						
Syntax:	SETF f{,a	a}					
Operands:	$0 \leq f \leq 255$						
	a ∈ [0,1]						
Operation:	$FFh\tof$						
Status Affected:	None						
Encoding:	0110	100a	ffff	ffff			
Description:	The conten are set to F		specified r	register			
	lf 'a' is '0', ti lf 'a' is '1', ti GPR bank.						
	If 'a' is '0' a set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	ed, this ir _iteral Off ever f ≤ 9 .2.3 "Byt d Instruc	nstruction fset Addre 95 (5Fh). S e-Oriente ctions in	operates essing See ed and Indexed			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proces Data		Write gister 'f'			
Example: Before Instruct REG After Instructio REG	= 5A		8,1				

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

	7K22 Family Istrial/Extended)	Standard (Operating f	•	•	-40°C ≤ Ta ≤	ns (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $40^{\circ}C \le TA \le +125^{\circ}C$ for extended		
Param No.	Device	Тур	Max	Units		Conditions		
	Supply Current (IDD) Cont.	(2,3)						
	All devices	2.1	5.5	μA	-40°C			
		2.1	5.7	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		2.2	6.0	μA	+85°C	Regulator Disabled		
		10	20	μA	+125°C			
	All devices	3.7	7.5	μA	-40°C			
		3.9	7.8	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 31 kHz	
		3.9	8.5	μA	+85°C	Regulator Disabled	(RC_IDLE mode, LF-INTOSC)	
		12	24	μA	+125°C		L	
	All devices	70	180	μA	-40°C			
		80	190	μA	+25°C	VDD = 5V ⁽⁵⁾		
		80	200	μA	+85°C	Regulator Enabled		
		200	420	μA	+125°C			
	All devices	330	650	μA	-40°C			
		330	640	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		330	630	μA	+85°C	Regulator Disabled	Fosc = 1 MHz (RC_IDLE mode, HF-INTOSC)	
		500	850	μA	+125°C			
	All devices	520	850	μA	-40°C			
		520	900	μA	+25°C	VDD = 3.3V ⁽⁴⁾		
		520	850	μA	+85°C	Regulator Disabled		
		800	1200	μA	+125°C			
	All devices	590	940	μA	-40°C			
		600	960	μA	+25°C	VDD = 5√ ⁽⁵⁾		
		620	990	μA	+85°C	Regulator Enabled		
		1000	1400	μA	+125°C			
	All devices	470	770	μA	-40°C			
		470	770	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		460	760	μA	+85°C	Regulator Disabled		
		700	1000	μA	+125°C			
	All devices	800	1400	μA	-40°C			
		800	1350	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 4 MHz	
		790	1300	μA	+85°C	Regulator Disabled	(RC_IDLE mode, internal HF-INTOSC)	
		1100	1400	μA	+125°C			
	All devices	880	1600	μA	-40°C			
		890	1700	μA	+25°C	VDD = 5V ⁽⁵⁾		
		910	1800	μA	+85°C	Regulator Enabled		
		1200	2200	μA	+125°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: 48 MHz, maximum frequency at +125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $							
Param No.			Max	Units	Conditions				
	Module Differential Currer	nts (AlwDT, A	ABOR, Δ	IHLVD, Ale	OSCB, AIAD)				
	Watchdog Timer		,	,					
D022	All devices	0.3	1	μA	-40°C				
(∆IWDT)		0.3	1	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
D022		0.3	1	μA	+85°C	Regulator Disabled			
(∆IWDT)		0.5	2	μA	+125°C				
	All devices	0.6	2	μA	-40°C				
		0.6	2	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		0.7	2	μA	+85°C	Regulator Disabled			
		1	3	μA	+125°C	7			
	All Devices	0.6	2	μA	-40°C				
		0.6	2	μA	+25°C	VDD = 5V ⁽⁵⁾			
		0.7	2	μA	+85°C	Regulator Enabled			
		1.5	4	μA	+125°C				
D022A	Brown-out Reset								
(Δ IBOR)	All devices	4.6	19	μA	-40°C				
(Δ IBOR)		4.5	20	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		4.7	20	μA	+85°C	Regulator Disabled	High-Power BOR		
		18	40	μA	+125°C				
	All devices	4.2	20	μA	-40°C				
		4.3	20	μA	+25°C	VDD = 5V ⁽⁵⁾	Llinh Dower DOD		
		4.4	20	μA	+85°C	Regulator Enabled	High-Power BOR		
		20	40	μA	+125°C				
D022B	High/Low-Voltage Detect			•		·			
(∆Ihlvd)	All devices	3.8	9	μA	-40°C				
		4.2	9	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		4.3	10	μA	+85°C	Regulator Disabled			
		4.5	12	μA	+125°C	7			
	All devices	4.5	11	μA	-40°C				
		4.8	12	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		4.8	12	μA	+85°C	Regulator Disabled			
		5.0	14	μA	+125°C	7			
	All devices	4.9	13	μA	-40°C				
		4.9	13	μA	+25°C	VDD = 5√ ⁽⁵⁾			
		4.9	13	μA	+85°C	Regulator Enabled			
		5.3	15	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: 48 MHz, maximum frequency at +125°C.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX T Temperature Package Pattern Range	 Examples: a) PIC18F87K22-I/PT 301 = Industrial temperature, TQFP package, QTP pattern #301. b) PIC18F87K22T-I/PT = Tape and reel, Industrial temperature, TQFP package c) PIC18F87K22T-E/PT = Tape and reel, Extended temperature, TQFP package
Device ^(1,2)	PIC18F65K22, PIC18F65K22T PIC18F66K22, PIC18F66K22T PIC18F67K22, PIC18F67K22T PIC18F85K22, PIC18F85K22T PIC18F86K22, PIC18F86K22T PIC18F87K22, PIC18F87K22T	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	PT = TQFP (Plastic Thin Quad Flatpack) MR = QFN (Plastic Quad Flat)	Note 1: F = Standard Voltage Range 2: T = In tape and reel PLCC and
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	TQFP packages only 3: RSL = Silicon Revision A3