

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash MCUs with 12-Bit A/D and nanoWatt XLP Technology

Low-Power Features:

- Power-Managed modes:
 - Run: CPU on, peripherals on
 - Idle: CPU off, peripherals on
 - Sleep: CPU off, peripherals off
- Two-Speed Oscillator Start-up
- Fail-Safe Clock Monitor
- Power-Saving Peripheral Module Disable (PMD)
- Ultra Low-Power Wake-up
- Fast Wake-up, 1 μs Typical
- Low-Power WDT, 300 nA Typical
- Ultra Low 50 nA Input Leakage
- Run mode Currents Down to 5.5 μA, Typical
- Idle mode Currents Down to 1.7 μA Typical
- Sleep mode Currents Down to Very Low 20 nA, Typical
- RTCC Current Downs to Very Low 700 nA, Typical

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- · Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- · Flash Retention: 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD

	Prog	ram Memory	Data Memory			12-Bit	CCP/	MSSP		SP	Е	tors	t, e	Bus	_	
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	I/O A/D	A/D ECCP		SPI	Master I ² C™	EUSAR	Comparators	Timers 8/16-Bit	External	CTMU	RTCC
PIC18F65K22	32K	16,383	2K	1K	53	16	5/3	2	Y	Y	2	3	4/4	Ν	Y	Y
PIC18F66K22	64K	32,768	4K	1K	53	16	7/3	2	Y	Y	2	3	6/5	Ν	Y	Y
PIC18F67K22	128K	65,536	4K	1K	53	16	7/3	2	Y	Y	2	3	6/5	Ν	Y	Y
PIC18F85K22	32K	16,383	2K	1K	69	24	5/3	2	Y	Y	2	3	4/4	Y	Y	Y
PIC18F86K22	64K	32,768	4K	1K	69	24	7/3	2	Y	Y	2	3	6/5	Y	Y	Y
PIC18F87K22	128K	65,536	4K	1K	69	24	7/3	2	Y	Y	2	3	6/5	Y	Y	Y

4.0 POWER-MANAGED MODES

The PIC18F87K22 family of devices offers a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (such as battery-powered devices).

There are three categories of power-managed mode:

- Run modes
- Idle modes
- · Sleep mode

There is an Ultra Low-Power Wake-up (ULPWU) for waking from the Sleep mode.

These categories define which portions of the device are clocked, and sometimes, at what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block). The Sleep mode does not use a clock source.

The ULPWU mode, on the RA0 pin, enables a slow falling voltage to generate a wake-up, even from Sleep, without excess current consumption. (See **Section 4.7 "Ultra Low-Power Wake-up"**.)

The power-managed modes include several powersaving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices. This feature allows the controller to use the SOSC oscillator instead of the primary one. Another power-saving feature is Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions:

- · Will the CPU be clocked or not
- · What will be the clock source

The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits select one of three clock sources for power-managed modes. Those sources are:

- The primary clock as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the SOSC oscillator)
- The internal oscillator block (for LF-INTOSC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These considerations are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entering the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current and impending mode, a change to a power-managed mode does not always require setting all of the previously discussed bits. Many transitions can be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured as desired, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mode	oscco	ON Bits	Module	Clocking	Available Clock and Oscillator Source
Mode	IDLEN<7> ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off Off		None – All clocks are disabled
PRI_RUN	N/A	00	Clocked	Clocked	Primary – XT, LP, HS, EC, RC and PLL modes. This is the normal, Full-Power Execution mode.
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – SOSC Oscillator
RC_RUN	N/A	1x	Clocked	Clocked	Internal oscillator block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, RC, EC
SEC_IDLE	1	01	Off	Clocked	Secondary – SOSC oscillator
RC_IDLE	1	lx	Off	Clocked	Internal oscillator block ⁽²⁾

TABLE 4-1:POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

^{2:} Includes INTOSC (HF-INTOSC and MG-INTOSC) and INTOSC postscaler, as well as the LF-INTOSC source.

4.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable. The HF-INTOSC and MF-INTOSC are termed as INTOSC in this chapter.

Three bits indicate the current clock source and its status, as shown in Table 4-2. The three bits are:

- OSTS (OSCCON<3>)
- HFIOFS (OSCCON<2>)
- SOSCRUN (OSCCON2<6>)

TABLE 4-2: SYSTEM CLOCK INDICATOR

Main Clock Source	OSTS	HFIOFSor MFIOFS	SOSCRUN
Primary Oscillator	1	0	0
INTOSC (HF-INTOSC or MF-INTOSC)	0	1	0
Secondary Oscillator	0	0	1
MF-INTOSC or HF-INTOSC as Primary Clock Source	1	1	0
LF-INTOSC is Running or INTOSC is Not Yet Stable	0	0	0

When the OSTS bit is set, the primary clock is providing the device clock. When the HFIOFS or MFIOFS bit is set, the INTOSC output is providing a stable 16 MHz clock source to a divider that actually drives the device clock. When the SOSCRUN bit is set, the SOSC oscillator is providing the clock. If none of these bits are set, either the LF-INTOSC clock source is clocking the device or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source by the FOSC<3:0> Configuration bits (CONFIG1H<3:0>), then the OSTS and HFIOFS or MFIOFS bits can be set when in PRI_RUN or PRI_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 16 MHz output. Entering another INTOSC power-managed mode at the same frequency would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. At a lower VDD, it is possible to select a higher clock speed than is supportable by that VDD. Improper device operation may result if the VDD/ Fosc specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode or one of the Idle modes, depending on the setting of the IDLEN bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

4.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, Full-Power Execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled. (For details, see **Section 28.4 "Two-Speed Start-up"**.) In this mode, the OSTS bit is set. The HFIOFS or MFIOFS bit may be set if the internal oscillator block is the primary clock source. (See **Section 3.2 "Control Registers"**.)

4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock-switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the SOSC oscillator. This enables lower power consumption while retaining a high-accuracy clock source.

SEC_RUN mode is entered by setting the SCS<1:0> bits to '01'. The device clock source is switched to the SOSC oscillator (see Figure 4-1), the primary oscillator is shut down, the SOSCRUN bit (OSCCON2<6>) is set and the OSTS bit is cleared.

Note:	The SOSC oscillator can be enabled by setting the SOSCGO bit (OSCCON2<3>). If this bit is set, the clock switch to the SEC_RUN mode can switch immediately
	once SCS<1:0> are set to '01'.

On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the SOSC oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 4-2). When the clock switch is complete, the SOSCRUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCS bits are not affected by the wake-up and the SOSC oscillator continues to run.

6.1.3.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit (CONFIG4L<0>). When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.4 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
•	;SAVED IN FAST REGISTER
SUB1 •	;STACK
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.5 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.5.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value, 'nn', to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.5.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored, two bytes per program word, while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory, one byte at a time.

The table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

8.1 External Memory Bus Control

The operation of the interface is controlled by the MEMCON register (Register 8-1). This register is available in all program memory operating modes except Microcontroller mode. In this mode, the register is disabled and cannot be written to.

The EBDIS bit (MEMCON<7>) controls the operation of the bus and related port functions. Clearing EBDIS enables the interface and disables the I/O functions of the ports, as well as any other functions multiplexed to those pins. Setting the bit enables the I/O ports and other functions, but allows the interface to override everything else on the pins when an external memory operation is required. By default, the external bus is always enabled and disables all other I/O. The operation of the EBDIS bit is also influenced by the program memory mode being used. This is discussed in more detail in Section 8.5 "Program Memory Modes and the External Memory Bus".

The WAIT bits allow for the addition of Wait states to external memory operations. The use of these bits is discussed in **Section 8.3 "Wait States**".

The WM bits select the particular operating mode used when the bus is operating in 16-Bit Data Width mode. These bits are discussed in more detail in **Section 8.6 "16-Bit Data Width Modes"**. These bits have no effect when an 8-Bit Data Width mode is selected.

REGISTER 8-1: MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
EBDIS		WAIT1	WAIT0	_	—	WM1	WM0				
bit 7		·				-	bit 0				
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	EBDIS: Exter	nal Bus Disabl	e bit								
	1 = External	bus is enabled	when microco	ontroller access	es external me	emory; otherwis	se, all external				
		rs are mapped									
	0 = External	bus is always e	enabled, I/O po	orts are disabled	1						
bit 6	Unimplemen	ted: Read as ')'								
bit 5-4	WAIT<1:0>:	Table Reads ar	d Writes Bus	Cycle Wait Cour	nt bits						
	11 = Table rea	ads and writes	will wait 0 TCY								
	10 = Table rea	ads and writes	will wait 1 TCY								
		ads and writes									
	00 = Table re	ads and writes	will wait 3 TCY								
bit 3-2	Unimplemen	ted: Read as ')'								
bit 1-0	WM<1:0>: TE	WM<1:0>: TBLWT Operation with 16-Bit Data Bus Width Select bits									
	1x = Word Write mode: TABLAT word output; WRH is active when TABLAT is written										
		01 = Byte Select mode: TABLAT data is copied on both MSB and LSB; WRH and (UB or LB) will activate									
	00 = Byte W	rite mode: TAB	LAT data is co	pied on both MS	SB and LSB; V	VRH or WRL wi	ill activate				
	l la incalana anta da	un C.4 min devile			3						

Note 1: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

REGISTER 11-21: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	_		EEIP		CMP3IP	CMP2IP	CMP1IP
bit 7			•	-			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7-5	Unimplem	ented: Read as '	0'				
bit 4	EEIP: EE li	nterrupt Priority b	it				
	1 = High p	riority					
	0 = Low pr	riority					
bit 3	Unimplem	ented: Read as '	0'				
bit 2	CMP3IP: C	MP3 Interrupt Pr	iority bit				
	1 = High p	riority					
	0 = Low priority						
bit 1	CMP2IP: CMP2 Interrupt Priority bit						
1 = High priority							
	0 = Low pr	riority					
bit 0		MP1 Interrupt Pr	iority bit				
	1 = High p						
	0 = Low pr	riority					

REGISTER 12-1: PADCFG1: PAD CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0		
RDPU	REPU	RJPU ⁽²⁾	_	_	RTSECSEL1 ⁽¹⁾	RTSECSEL0 ⁽¹⁾	_		
bit 7		• •					bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cl	eared	x = Bit is unknown			
bit 7	RDPU: POR	RTD Pull-up Ena	able bit						
	1 = PORTD pull-up resistors are enabled by individual port latch values								
	0 = All PORTD pull-up resistors are disabled								
bit 6	REPU: POR	TE Pull-up Ena	able bit						
					I port latch values				
	0 = All POR	TE pull-up resis	stors are disa	bled					
bit 5	RJPU: POR	TJ Pull-up Ena	ble bit ⁽²⁾						
					port latch values				
	0 = All POR	TJ pull-up resis	tors are disa	bled					
bit 4-3	Unimpleme	nted: Read as	'0'						
bit 2-1	RTSECSEL	<1:0>: RTCC 8	Seconds Cloo	k Output Sele	ect bits ⁽¹⁾				
	11 = Reserv	ed; do not use							
10 = RTCC source clock is selected for the RTCC pin (the pin can be LF-INTOSC or SOSC, depen						depending			
on the RTCOSC (CONFIG3L<1>) bit setting)									
	01 = RTCC seconds clock is selected for the RTCC pin 00 = RTCC alarm pulse is selected for the RTCC pin								
hit O		Unimplemented: Read as '0'							
bit 0	Unimpleme	nted: Read as	U						

- **Note 1:** To enable the actual RTCC output, the RTCOE (RTCCFG<2>) bit must be set.
 - 2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RA0/AN0/ULPWU	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.		
		1	I	TTL	PORTA<0> data input; disabled when analog input is enabled.		
	AN0	1	I	ANA	A/D Input Channel 0. Default input configuration on POR; does not affect digital output.		
	ULPWU	1	I	ANA	Ultra Low-Power Wake-up input.		
RA1/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.		
		1	I	TTL	PORTA<1> data input; disabled when analog input is enabled.		
	AN1	1	I	ANA	A/D Input Channel 1. Default input configuration on POR; does not affect digital output.		
RA2/AN2/VREF-	RA2	0	0	DIG	LATA<2> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<2> data input; disabled when analog functions are enabled.		
	AN2	1	Ι	ANA	A/D Input Channel 2. Default input configuration on POR.		
	VREF-	1	-	ANA	A/D and comparator low reference voltage input.		
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<3> data input; disabled when analog input is enabled.		
	AN3	1	Ι	ANA	A/D Input Channel 3. Default input configuration on POR.		
	VREF+	1	-	ANA	A/D and comparator high reference voltage input.		
RA4/T0CKI	RA4	0	0	DIG	LATA<4> data output.		
		1	Ι	ST	PORTA<4> data input. Default configuration on POR.		
	TOCKI	x	Ι	ST	Timer0 clock input.		
RA5/AN4/T1CKI/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.		
T3G/HLVDIN		1	Ι	TTL	PORTA<5> data input; disabled when analog input is enabled.		
	AN4	1	Ι	ANA	A/D Input Channel 4. Default configuration on POR.		
	T1CKI	x	Ι	ST	Timer1 clock input.		
	T3G	x	I	ST	Timer3 external clock gate input.		
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect (HLVD) external trip point input.		
OSC2/CLKO/RA6	OSC2	x	0	ANA	Main oscillator feedback output connection (HS, XT and LP modes).		
	CLKO	x	0	DIG	System cycle clock output (Fosc/4, EC and INTOSC modes).		
	RA6	0	0	DIG	LATA<6> data output; disabled when FOSC2 Configuration bit is set.		
		1	I	TTL	PORTA<6> data input; disabled when FOSC2 Configuration bit is set.		
OSC1/CLKI/RA7	OSC1	x	Ι	ANA	Main oscillator input connection (HS, XT and LP modes).		
	CLKI	x	Ι	ANA	Main external clock source input (EC modes).		
	RA7	0	0	DIG	LATA<7> data output; disabled when FOSC2 Configuration bit is set.		
		1	Ι	TTL	PORTA<7> data input; disabled when FOSC2 Configuration bit is set.		

TABLE 12-1: PORTA FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 12-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
--------------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: These bits are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as 'x'.

12.4 PORTC, TRISC and LATC Registers

PORTC is an eight-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins.

PORTC is multiplexed with ECCP, MSSP and EUSART peripheral functions (Table 12-5). The pins have Schmitt Trigger input buffers. The pins for ECCP, SPI and EUSART are also configurable for open-drain output whenever these functions are active. Open-drain configuration is selected by setting the SPIOD, CCPxOD and U1OD control bits in the registers, ODCON1 and ODCON3.

RC1 is normally configured as the default peripheral pin for the ECCP2 module. The assignment of ECCP2 is controlled by Configuration bit, CCP2MX (default state, CCP2MX = 1). When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note:	These pins are configured as digital inputs
	on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 12-3:	INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
		; data latches
CLRF	LATC	; Alternate method
CLRF	LAIC	, Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description		
RC0/SOSCO/	RC0	0	0	DIG	LATC<0> data output.		
SCLKI/		1	Ι	ST	PORTC<0> data input.		
	SOSCO	1	Ι	ST	SOSC oscillator output.		
	SCLKI	1	Ι	ST	Digital clock input; enabled when SOSC oscillator is disabled.		
RC1/SOSCI/	RC1	0 O DIG LATC<1> data output.					
ECCP2/P2A	1	Ι	ST	PORTC<1> data input.			
	SOSCI	x	Ι	ANA	SOSC oscillator input.		
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output; takes priority over port dat		
		1	Ι	ST	ECCP2 capture input.		
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.		
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.		
P1A		1	Ι	ST	PORTC<2> data input.		
	ECCP1	0	0	DIG	ECCP1 compare output and ECCP1 PWM output; takes priority over port data.		
		1	Ι	ST	ECCP1 capture input.		
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events; takes priority over port data.		

TABLE 12-5: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I^2C = I^2C^{TM}$ /SMBus Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

REGISTER 19-3: CCPTMRS2: CCP TIMER SELECT REGISTER 2

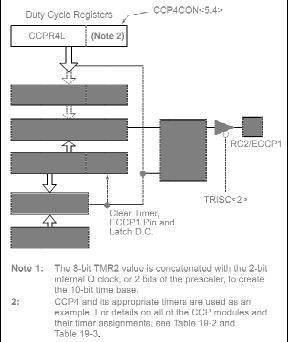
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	C10TSEL0 ⁽¹⁾	—	C9TSEL0 ⁽¹⁾	C8TSEL1	C8TSEL0
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7-5 Unimplemented: Read as '0'							

DIT 7-5	Unimplemented: Read as 10
bit 4	C10TSEL0: CCP10 Timer Selection bit ⁽¹⁾
	0 = CCP10 is based off of TMR1/TMR2
	1 = CCP10 is based off of TMR7/TMR2
bit 3	Unimplemented: Read as '0'
bit 2	C9TSEL0: CCP9 Timer Selection bit ⁽¹⁾
	0 = CCP9 is based off of TMR1/TMR2
	1 = CCP9 is based off of TMR7/TMR4
bit 1-0	C8TSEL<1:0>: CCP8 Timer Selection bits
	On Non 32-Byte Device Variants:
	00 = CCP8 is based off of TMR1/TMR2
	01 = CCP8 is based off of TMR7/TMR4
	10 = CCP8 is based off of TMR7/TMR6
	11 = Reserved; do not use
	On 32-Byte Device Variants (PIC18F65K22 and PIC18F85K22):
	00 = CCP8 is based off of TMR1/TMR2
	01 = CCP8 is based off of TMR1/TMR4
	10 = CCP8 is based off of TMR1/TMR6
	11 - Decembed de petuse

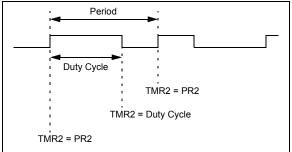
- 11 = Reserved; do not use
- Note 1: This bit is unimplemented and reads as '0' on devices with 32 Kbytes of program memory (PIC18FX5K22).

19.4 PWM Mode

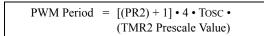

In Pulse-Width Modulation (PWM) mode, the CCP4 pin produces up to a 10-bit resolution PWM output. Since the CCP4 pin is multiplexed with a PORTC or PORTE data latch, the appropriate TRIS bit must be cleared to make the CCP4 pin an output.

Note:	Clearing the CCP4CON register will force the RC1 or RE7 output latch (depending on device configuration) to the default low level. This is not the PORTC or PORTE
	I/O data latch.

Figure 19-3 shows a simplified block diagram of the ECCP1 module in PWM mode.


For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 19.4.3** "Setup for PWM Operation".

A PWM output (Figure 19-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).


FIGURE 19-4: PWM OUTPUT

19.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 19-1:

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- · The CCP4 pin is set

(An exception: If PWM duty cycle = 0%, the CCP4 pin will not be set)

 The PWM duty cycle is latched from CCPR4L into CCPR4H

Note:	The	Timer2	postscalers	(see
	Section	n 15.0 "Tin	ner2 Module") a	are not
	used ir	n the deter	mination of the	PWM
	frequen	cy. The po	stscaler could be	e used
	to have	a servo up	odate rate at a di	ifferent
	frequen	icy than the	PWM output.	

REGISTER 21-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾			
bit 7							bit (
Legend:										
R = Reada	able bit	W = Writable b	it	U = Unimple	mented bit, rea	d as '0'				
-n = Value		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown			
		i Bitlo oot								
bit 7	WCOL: Write	e Collision Detect	bit							
	In Master Tra				2					
		to the SSPxBUF				onditions were	not valid for a			
	transmis 0 = No collis	sion to be started	d (must be c	leared in softwa	are)					
	In Slave Trar									
		PxBUF register is	written whil	e it is still trans	mitting the prev	vious word (mus	st be cleared i			
	software	-			5					
	0 = No collis	sion								
	<u>In Receive m</u> This is a "doi	<u>node (Master or S</u> n't care" bit.	lave modes	<u>):</u>						
bit 6	SSPOV: Receive Overflow Indicator bit									
	In Receive mode:									
	-	1 = A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in software)								
	software) 0 = No overflow									
	<u>In Transmit mode:</u> This is a "don't care" bit in Transmit mode.									
bit 5	SSPEN: Mas	ster Synchronous	Serial Port	Enable bit ⁽¹⁾						
	1 = Enables	the serial port an serial port and co	d configures	the SDAx and		he serial port p	ins			
bit 4		Release Control	-							
	In Slave mod									
	1 = Releases clock									
	0 = Holds clock low (clock stretch), used to ensure data setup time									
	In Master mo Unused in th									
bit 3-0		: Master Synchro	nous Serial	Port Mode Sele	ct bits ⁽²⁾					
	1111 = I²C S	Slave mode: 10-b	it address w	ith Start and Sto	op bit interrupts	enabled				
	1111 = I^2C Slave mode: 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode: 7-bit address with Start and Stop bit interrupts enabled									
		irmware Controll								
		SSPMSK registe								
	1000 = I ² C Master mode: clock = Fosc/(4 * (SSPxADD + 1)) 0111 = I ² C Slave mode: 10-bit address									
		Slave mode: 7-bit								
Note 1:	When enabled, t	he SDAx and SC	Lx pins mus	t be configured	as inputs.					
2:		not specifically li	•	•	•	ted in SPI mod	e only.			
3:	When SSPM<3:0 SSPxMSK regist	0> = 1001, any re					-			
4:	This mode is onl		7-Rit Addree	ss Masking mo	te is selected (MSSPMSK Co	nfiguration bit			
ч.		y available witell		so maaking mot	10 10 301001 0 0 (mgarau011 DIL			

27.1 CTMU Registers

The control registers for the CTMU are:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 27-1 and Register 27-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 27-3) has bits for selecting the current source range and current source trim.

REGISTER 27-1: CTMUCONH: CTMU CONTROL HIGH REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation0 = Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked0 = Edges are blocked
bit 2	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded0 = Analog current source output is not grounded
bit 0	CTTRIG: Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled

27.4.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor, as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed.

After removing the capacitance to be measured:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time, t.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$COFFSET = CSTRAY + CAD = (I \cdot t)/V$$

Where:

- I is known from the current source measurement step
- · t is a fixed delay
- V is measured by performing an A/D conversion

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known; CAD is approximately 4 pF.

An iterative process may be required to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value and solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD or 2.31V, t would be:

$$(4 \text{ pF} + 11 \text{ pF}) \bullet 2.31 \text{V}/0.55 \text{ }\mu\text{A}$$

or 63 µs.

See Example 27-3 for a typical routine for CTMU capacitance calibration.

TABLE 29	-2. 1	1C18F8/K22 FAMILY INSTRU								
Mnemonic,		Description	Cycles	16-Bit Instruction Word				Status	Notes	
Opera	Operands		Cycles	MSb			LSb	Affected	notes	
LITERAL (OPERA	TIONS								
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N		
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N		
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N		
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None		
		to FSR(f) 1st word		1111	0000	kkkk	kkkk			
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None		
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None		
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None		
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None		
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N		
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N		
DATA MEN	NORY +	PROGRAM MEMORY OPERATI	ONS							
TBLRD*		Table Read	2	0000	0000	0000	1000	None		
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None		
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None		
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None		
TBLWT*		Table Write	2	0000	0000	0000	1100	None		
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None		
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None		
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None		

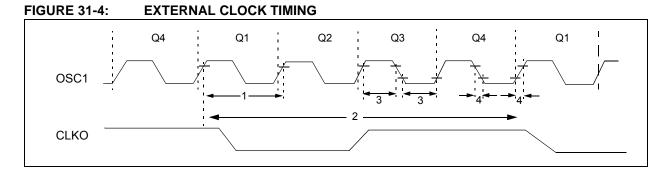
TABLE 29-2: PIC18F87K22 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.


RLNCF	Rotate Let	ft f (No C	arry)			
Syntax:	RLNCF	f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$		L>,			
Status Affected:	N, Z					
Encoding:	0100	01da	fff	f	ffff	
Description:	one bit to t is placed ir	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the resul is placed in W. If 'd' is '1', the result is stored back in register 'f'.				
	If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR i				
	If 'a' is '0' a set is enab in Indexed mode whe Section 29 Bit-Oriente Literal Off	led, this in Literal O never f ≤ 9.2.3 "By ed Instru	nstruct ffset A 95 (5F te-Ori ictions	tion ddre h). ente s in	operates essing See ed and Indexed	
	-	regi	ster f]•	
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3			Q4	
Decode	Read register 'f'	Proce: Data			rite to tination	
Example:	RLNCF	REG,	1, (0		
Before Instruct REG After Instructio REG	= 1010 1					

RRCF	Rotate Rig	ht f thro	ugh Ca	arry
Syntax:	RRCF f{	,d {,a}}		
Operands:	$0 \leq f \leq 255$			
	$d \in [0,1]$			
	a ∈ [0,1]			
Operation:	$(f \le n >) \rightarrow de$		>,	
	$(f<0>) \rightarrow C$	-		
	$(C) \rightarrow dest$			
Status Affected:	C, N, Z			
Encoding:	0011	00da	fff	f fff:
Description:	The conten one bit to th flag. If 'd' is If 'd' is '1', t register 'f'.	ne right th '0', the re	nrough esult is	the Carry placed in
	If 'a' is '0', t If 'a' is '1', t GPR bank.	he BSR i		
	If 'a' is '0' a set is enab in Indexed	led, this i Literal Of	nstruct fset Ad	ion operat
	set is enab	led, this in Literal Of never f ≤ 9 0.2.3 "Byt ed Instru	nstruct fset Ac 95 (5F te-Orie ctions	ion operat ddressing h). See ented and in Indexe
	set is enab in Indexed mode wher Section 29 Bit-Oriente	led, this in Literal Of never f ≤ 9 2.2.3 "Byte ed Instru set Mode	nstruct fset Ac 95 (5F te-Orie ctions	ion operat ddressing h). See anted and in Indexe letails.
Words:	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	led, this in Literal Of never f ≤ 9 2.2.3 "Byte ed Instru set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d	ion operat ddressing h). See anted and in Indexe letails.
	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	led, this in Literal Of never f ≤ 9 2.2.3 "Byte ed Instru set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d	ion operat ddressing h). See anted and in Indexe letails.
Cycles:	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	led, this in Literal Of never f ≤ 9 2.2.3 "Byte ed Instru set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d	ion operat ddressing h). See anted and in Indexe letails.
Cycles: Q Cycle Activity:	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs 1	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode	nstruct fset Ac 95 (5F) te-Orie ctions " for d gister	ion operation op
Cycles: Q Cycle Activity: Q1	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs 1 1 2 2	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode re Q3	nstruct fset Ac 95 (5F te-Orie ctions 2" for d	ion operation op
	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs 1 1 1 2 Q2 Read	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode	nstruct fset Ac 95 (5F ctions a for d gister	ion operation op
Cycles: Q Cycle Activity: Q1	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs 1 1 2 2	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode re Q3 Q3	nstruct fset Ac 95 (5F ctions a for d gister	ion operation op
Cycles: Q Cycle Activity: Q1 Decode	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs 1 1 1 2 Q2 Read	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode re Q3 Q3	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op
Cycles: Q Cycle Activity: Q1 Decode	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f'	led, this in Literal Of never f ≤ 9 0.2.3 "Byt ed Instru- set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f RRCF ction = 1110 (led, this in Literal Of never f ≤ 9 2.3 "Byted Instru- set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs C 1 1 1 2 Read register 'f' RRCF ction = 1110 (= 0	led, this in Literal Of never f ≤ 9 2.3 "Byted Instru- set Mode	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructio	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs C 1 1 1 2 Read register 'f' RRCF etion = 1110 (= 0	led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode → re Q3 Proce Data REG,	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs C 1 1 1 2 Read register 'f' RRCF tion = 1110 (on = 1110 (led, this in Literal Of never f ≤ 9 2.3 "Byt ed Instru- set Mode → re Q3 Proce Data REG,	nstruct fset Ac 95 (5F te-Orie ctions " for d gister ss	ion operation op

RRNCF	Rotate Rig	ght f (No Carry	7)
Syntax:	RRNCF	f {,d {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	$(f < n >) \rightarrow c$ $(f < 0 >) \rightarrow c$	lest <n 1="" –="">, lest<7></n>	
Status Affected:	N, Z		
Encoding:	0100	00da ff:	ff ffff
Description:	one bit to the state of the second se	nts of register 'f the right. If 'd' is n W. If 'd' is '1', ck in register 'f'	6 '0', the result the result is
	selected, o	the Access Ba overriding the B the bank will b R value.	SR value. If 'a'
	set is enal in Indexed mode whe Section 2 Bit-Orient	and the extend oled, this instruct I Literal Offset A enever f ≤ 95 (5) 9.2.3 "Byte-Or red Instruction fset Mode" for	ction operates Addressing Fh). See iented and s in Indexed
	Г	► register	f ->
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	Data	destination
Example 1:	RRNCF	REG, 1, 0	
Before Instruc REG After Instructio REG	= 1101		
Example 2 [.]	RRNCF	REG. 0. 0	
Example 2: Before Instruc		REG, 0, 0	
Example 2: Before Instruc W REG			

SETF	Set f			
Syntax:	SETF f{,a	a}		
Operands:	$0 \leq f \leq 255$			
	a ∈ [0,1]			
Operation:	$FFh\tof$			
Status Affected:	None			
Encoding:	0110	100a	ffff	ffff
Description:	The conten are set to F		specified r	register
	lf 'a' is '0', ti lf 'a' is '1', ti GPR bank.			
	If 'a' is '0' a set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	ed, this ir _iteral Off ever f ≤ 9 .2.3 "Byt d Instruc	nstruction fset Addre 95 (5Fh). S e-Oriente ctions in	operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data		Write gister 'f'
Example: Before Instruct REG After Instructio REG	= 5A		8,1	

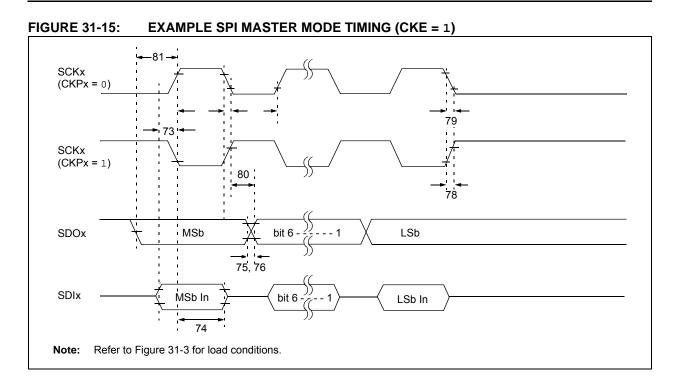

31.5.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 31-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	64	MHz	EC, ECIO Oscillator mode -40°C ≤ TA ≤ +85°C
			DC	48	MHz	-40°C ≤ TA ≤ +125°C
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	16	MHz	HS Oscillator mode
			4	16	MHz	HS + PLL Oscillator mode
			5	33	kHz	LP Oscillator mode
1	Tosc	External CLKIN Period ⁽¹⁾	15.6	—	ns	EC, ECIO Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	10,000	ns	XT Oscillator mode
			40 62.5	250 250	ns ns	HS Oscillator mode HS + PLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	30	_	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	_	μs	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
				7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	_	ns	

TABLE 31-18: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Timer4/6/8/10/12	223
Associated Registers	
Interrupt	
Operation	
Output	
Postscaler. See Postscaler, Timer4/6/8/10/12.	
Prescaler. See Prescaler, Timer4/6/8/10/12.	
PRx Register	223
TMRx Register	
Timing Diagrams	220
A/D Conversion	524
Asynchronous Reception	
Asynchronous Transmission	
Asynchronous Transmission (Back-to-Back)	
Automatic Baud Rate Calculation	
Auto-Wake-up Bit (WUE) During Normal	550
Operation	313
Auto-Wake-up Bit (WUE) During Sleep	
Baud Rate Generator with Clock Arbitration	
BRG Overflow Sequence	
BRG Reset Due to SDAx Arbitration During	330
Start Condition	272
Brown-out Reset (BOR) Bus Collision During Repeated Start Condition	509
0	204
(Case 1)	324
Bus Collision During Repeated Start Condition	004
(Case 2)	
Bus Collision During Start Condition (SCLx = 0)	
Bus Collision During Start Condition (SDAx Only)	
Bus Collision During Stop Condition (Case 1)	
Bus Collision During Stop Condition (Case 2)	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM	
CLKO and I/O	
Clock Synchronization	
Clock/Instruction Cycle	92
EUSART Synchronous Transmission	
(Master/Slave)	522
EUSART/AUSART Synchronous Receive	
(Master/Slave)	
Example SPI Master Mode (CKE = 0)	
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	516
Example SPI Slave Mode (CKE = 1)	
External Clock	. 503
External Memory Bus for SLEEP (Extended	
Microcontroller Mode)	130
External Memory Bus for TBLRD (Extended	
Microcontroller Mode) 128,	
Fail-Safe Clock Monitor (FSCM)	
First Start Bit Timing	
Full-Bridge PWM Output	
Half-Bridge PWM Output	
High-Voltage Detect Operation (VDIRMAG = 1)	
HLVD Characteristics	
I ² C Acknowledge Sequence	
I ² C Bus Data	519
I ² C Bus Start/Stop Bits	518
I ² C Master Mode (7 or 10-Bit Transmission)	
I ² C Master Mode (7-Bit Reception)	319
I ² C Slave Mode (10-Bit Reception, SEN = 0,	
ADMSK = 01001)	
I ² C Slave Mode (10-Bit Reception, SEN = 0)	
I ² C Slave Mode (10-Bit Reception, SEN = 1)	
I ² C Slave Mode (10-Bit Transmission)	305

I^2C Slave Mode (7-bit Reception, SEN = 0,	
ADMSK = 01011)	
I ² C Slave Mode (7-Bit Reception, SEN = 0)	
I ² C Slave Mode (7-Bit Reception, SEN = 1)	308
I ² C Slave Mode (7-Bit Transmission)	302
I ² C Slave Mode General Call Address Sequence	
(7 or 10-Bit Addressing Mode)	310
I ² C Stop Condition Receive or Transmit Mode	320
Low-Voltage Detect Operation (VDIRMAG = 0)	
MSSP I ² C Bus Data	520
MSSP I ² C Bus Start/Stop Bits	520
Parallel Slave Port (PSP) Read	
Parallel Slave Port (PSP) Write	
Program Memory Fetch (8-bit)	
Program Memory Read	
Program Memory Write	
PWM Auto-Shutdown with Auto-Restart Enabled	500
	274
(PxRSEN = 1)	274
PWM Auto-Shutdown with Firmware Restart	074
(PxRSEN = 0)	
PWM Direction Change	271
PWM Direction Change at Near 100%	
Duty Cycle	
PWM Output	255
PWM Output (Active-High)	266
PWM Output (Active-Low)	
Repeated Start Condition	316
Reset, Watchdog Timer (WDT), Oscillator Start-up	
Timer (OST) and Power-up Timer (PWRT)	509
Send Break Character Sequence	
Slave Synchronization	287
Slow Rise Time (MCLR Tied to VDD,	
VDD Rise > TPWRT)	77
SPI Mode (Master Mode)	
SPI Mode (Slave Mode, CKE = 0)	
SPI Mode (Slave Mode, CKE = 1)	288
Steering Event at Beginning of Instruction	
(STRSYNC = 1)	278
Steering Event at End of Instruction	
(STRSYNC = 0)	278
Synchronous Reception (Master Mode, SREN)	347
Synchronous Transmission	
Synchronous Transmission (Through TXEN)	
Time-out Sequence on Power-up (MCLR	540
	77
Not Tied to VDD), Case 1	77
Time-out Sequence on Power-up (MCLR	77
Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR	//
Time-out Sequence on Power-up (MCLR	
Tied to VDD, VDD Rise TPWRT)	
Timer Pulse Generation	
	242
Timer0 and Timer1 External Clock	242 512
Timer1 Gate Count Enable Mode	242 512 204
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode	242 512 204
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle	242 512 204 206
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode	242 512 204 206 207
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode	242 512 204 206 207 205
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode	242 512 204 206 207 205 217
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse Mode	242 512 204 206 207 205 217
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle	242 512 204 206 207 205 217 219
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode	242 512 204 206 207 205 217 219 220
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode	242 512 204 206 207 205 217 219 220 218
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode	242 512 204 206 207 205 217 219 220 218 63
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode	242 512 204 206 207 205 217 219 220 218 63 59
Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode	242 512 204 206 207 205 217 219 220 218 63 59