

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86k22-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	in Buffer	Description			
Pin Name	QFN/TQFP	Туре Туре		Description			
	7			Master Clear (input) or programming voltage (input).			
MCLR/RG5							
MCLR		1	ST	This pin is an active-low Reset to the device.			
RG5		1	ST	General purpose, input only pin.			
OSC1/CLKI/RA7	39			Oscillator crystal or external clock input.			
OSC1		1	CMOS	Oscillator crystal input.			
CLKI		1	CMOS	External clock source input. Always associated			
				with pin function, OSC1. (See related OSC1/CLKI,			
				OSC2/CLKO pins.)			
RA7		I/O	TTL	General purpose I/O pin.			
OSC2/CLKO/RA6	40			Oscillator crystal or clock output.			
OSC2		0	—	Oscillator crystal output. Connects to crystal or			
				resonator in Crystal Oscillator mode.			
CLKO		0	_	In certain oscillator modes, OSC2 pin outputs CLKO,			
		which has 1/4 the frequency of OSC1 and d		which has 1/4 the frequency of OSC1 and denotes the			
				instruction cycle rate.			
RA6		I/O	TTL	General purpose I/O pin.			
Legend: TTL = TTL con	npatible input			CMOS = CMOS compatible input or output			
ST = Schmitt	Trigger input w	ith CN	10S levels	Analog = Analog input			

TABLE 1-3: PIC18F6XK22 PINOUT I/O DESCRIPTIONS

1 = Input

Ρ = Power

 $I^2C = I^2C^{TM}/SMBus$

= Output = Open-Drain (no P diode to VDD)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

- 2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.
- 3: Not available on PIC18F65K22 and PIC18F85K22 devices.
- 4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

0

OD

Din Nama	Pin Number	Pin	Buffer	Description
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/SOSCO/SCLKI RC0 SOSCO SCLKI	30	I/O O I	ST — ST	Digital I/O. SOSC oscillator output. Digital SOSC input.
RC1/SOSCI/ECCP2/P2A RC1 SOSCI ECCP2 ⁽¹⁾ P2A	29	I/O I I/O O	ST CMOS ST	Digital I/O. SOSC oscillator input. Capture 2 input/Compare 2 output/PWM2 output. Enhanced PWM2 Output A.
RC2/ECCP1/P1A RC2 ECCP1 P1A	33	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced PWM1 Output A.
RC3/SCK1/SCL1 RC3 SCK1 SCL1 ⁽⁴⁾	34	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI1/SDA1 RC4 SDI1 SDA1 ⁽⁴⁾	35	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1).
Legend: TTL = TTL con ST = Schmitt I = Input	npatible input Trigger input w	∕ith C№	10S levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output

TABLE 1-3: PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

OD

= Open-Drain (no P diode to VDD)

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FXXKXX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F87K22 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

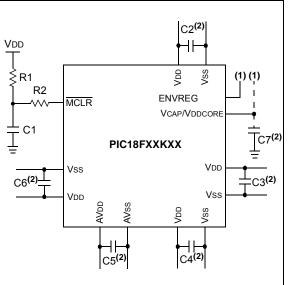
- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG (if implemented) and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:


• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic R1: 10 k Ω

R2: 100Ω to 470Ω

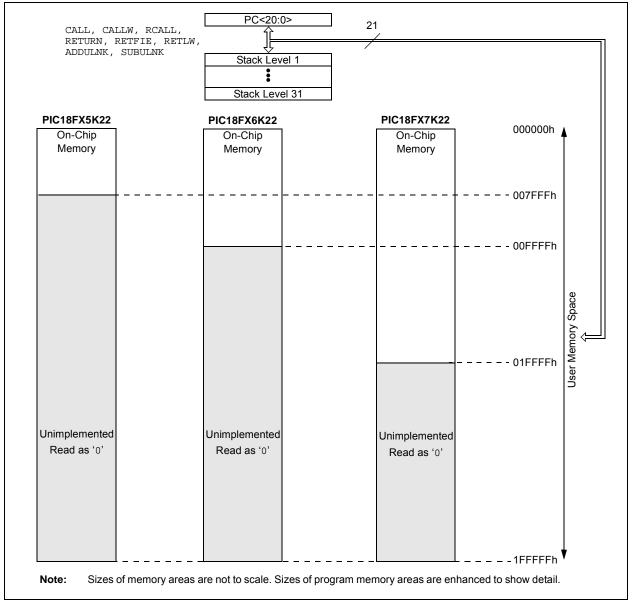
- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)" for explanation of ENVREG pin connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR10MD ⁽¹⁾	TMR8MD	TMR7MD ⁽¹⁾	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP1MD
bit 7							bit (
Lovende							
Legend:	L : 4						
R = Readable		W = Writable k	DIT		nented bit, read		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	TMR10MD: T	MR10MD Disat	ole bit ⁽¹⁾				
		al Module Disab disabled and TM			TMR10MD clo	ck sources are	disabled
bit 6	TMR8MD: TN	AR8MD Disable	bit				
		enabled and all			disabled		
ait E	 PMD is disabled and TMR8MD is enabled TMR7MD: TMR7MD Disable bit⁽¹⁾ 						
bit 5		enabled and all		ak aguraga ara	disabled		
		lisabled and TM			uisabieu		
bit 4	TMR6MD: TN	AR6MD Disable	bit				
		enabled and all			disabled		
bit 3	 PMD is disabled and TMR6MD is enabled TMR5MD Disable bit 						
bit o	1 = PMD is enabled and all TMR5MD clock sources are disabled						
	0 = PMD is disabled and TMR5MD clock sources are disabled						
bit 2	CMP3MD: PI	MD Comparator	3 Enable/Dis	able bit			
	 1 = PMD is enabled for Comparator 3, disabling all of its clock sources 0 = PMD is disabled for Comparator 3 						
bit 1	CMP2MD: PI	MD Comparator	3 Enable/Dis	able bit			
	 1 = PMD is enabled for Comparator 2, disabling all of its clock sources 0 = PMD is disabled for Comparator 2 						
bit 0	CMP1MD: PI	MD Comparator	3 Enable/Dis	able bit			
		enabled for Com		abling all of its	clock sources		
	0 = PMD is c	lisabled for Com	parator 1				

REGISTER 4-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

6.0 MEMORY ORGANIZATION


PIC18F87K22 family devices have these types of memory:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses. This enables concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device because it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**. The data EEPROM is discussed separately in **Section 9.0 "Data EEPROM Memory"**.

FIGURE 6-1: MEMORY MAPS FOR PIC18F87K22 FAMILY DEVICES

11.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are six Peripheral Interrupt Priority registers (IPR1 through IPR6). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit (RCON<7>) be set.

REGISTER 11-16: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP
bit 7							bit 0
l egend.							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit 1 = High priority
	0 = Low priority
bit 6	ADIP: A/D Converter Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5	RC1IP: EUSART Receive Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TX1IP: EUSART Transmit Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	SSP1IP: Master Synchronous Serial Port Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 2	TMR1GIP: Timer1 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1IP: TMR1 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority

TABLE 12-9:	Function TRIS I/O I/O Description								
Pin Name	Function	Setting	1/0	Туре	Description				
RE2/CS/P2B/	RE2	0	0	DIG	LATE<2> data output.				
CCP10/AD10		1	Ι	ST	PORTE<2> data input.				
	CS	x	Ι	TTL	Parallel Slave Port chip select.				
	P2B	0	0	—	ECCP2 PWM Output B. May be configured for tri-state during Enhanced PWM shutdown events				
	CCP10	1	I/O	ST	Capture 10 input/Compare 10 output/PWM10 output.				
	AD10 ⁽²⁾	x	0	DIG	External memory interface, Address/Data Bit 10 output.				
		x	-	TTL	External memory interface, Data Bit 10 input.				
RE3/P3C/	RE3	0	0	DIG	LATE<3> data output.				
CCP9/REFO/		1	Ι	ST	PORTE<3> data input.				
AD11	P3C	0	0	ECCP3 PWM Output C. May be configured for tri-state during Enhanced PWM shutdo					
	CCP9 0 O		DIG	CCP9 Compare/PWM output; takes priority over port data.					
		1	Ι	ST	CCP9 capture input.				
	REFO	x	0	DIG	Reference output clock.				
	AD11 ⁽²⁾	x	0	DIG	External memory interface, Address/Data Bit 11 output.				
		x	Ι	TTL	External memory interface, Data Bit 11 input.				
RE4/P3B/	RE4	0	0	DIG	LATE<4> data output.				
CCP8/AD12		1	Ι	ST	PORTE<4> data input.				
-	P3B	0	0	—	ECCP3 PWM Output B. May be configured for tri-state during Enhanced PWM shutdown events				
	CCP8	0	0	DIG	CCP8 compare/PWM output; takes priority over port data.				
		1	I	ST	CCP8 capture input.				
	AD12 ⁽²⁾	x	0	DIG	External memory interface, Address/Data Bit 12 output.				
		x	I	TTL	External memory interface, Data Bit 12 input.				
RE5/P1C/	RE5	0	0	DIG	LATE<5> data output.				
CCP7/AD13		1	Ι	ST	PORTE<5> data input.				
	P1C	0	0	—	ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM shutdown events				
	CCP7	0	0	DIG	CCP7 compare/PWM output; takes priority over port data.				
		1	I	ST	CCP7 capture input.				
	AD13 ⁽²⁾	x	0	DIG	External memory interface, Address/Data Bit 13 output.				
		x	1	TTL	External memory interface, Data Bit 13 input.				
RE6/P1B/	RE6	0	0	DIG	LATE<6> data output.				
CCP6/AD14		1	Ι	ST	PORTE<6> data input.				
	P1B	0	0	—	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM shutdown event				
	CCP6	0	0	DIG	CCP6 compare/PWM output; takes priority over port data.				
		1	I	ST	CCP9 capture input.				
	AD14 ⁽²⁾	x	0	DIG	External memory interface, Address/Data Bit 14 output.				
		x		TTL	External memory interface, Data Bit 14 input.				

TABLE 12-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Microcontroller mode.

2: This feature is only available on PIC18F8XKXX devices.

14.1 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), displayed in Register 14-2, is used to control the Timer1 gate.

REGISTER 14-2: T1GCON: TIMER1 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/T1DONE	T1GVAL	T1GSS1	T1GSS0		
bit 7							bit 0		
Legend:									
R = Readab		W = Writable		U = Unimplemented	d bit, read as				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown		
bit 7	TMR1GE: Ti	mer1 Gate Ena	able bit						
	If TMR1ON =	<u> 0</u> :							
	This bit is igr	ored.							
	If TMR1ON =								
	 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function 								
bit 6	T1GPOL: Timer1 Gate Polarity bit								
	1 = Timer1 gate is active-high (Timer1 counts when gate is high)								
	0 = Timer1 g	ate is active-lo	w (Timer1 co	unts when gate is low	v)				
bit 5	T1GTM: Tim	er1 Gate Togg	e Mode bit						
		Gate Toggle m							
		Jate Toggle me flip-flop toggles		d and toggle flip-flop ing edge.	is cleared				
bit 4	-	mer1 Gate Sin	-						
	1 = Timer1 G	ate Single Pul	se mode is ei	nabled and is controll	ling Timer1 ga	ate			
	0 = Timer1 G	ate Single Pul	se mode is di	sabled					
bit 3	T1GGO/T1D	ONE: Timer1 (Gate Single P	ulse Acquisition State	us bit				
				is ready, waiting for a					
	 Timer1 gate single pulse acquisition has completed or has not been started This bit is automatically cleared when T1GSPM is cleared. 								
bit 2		ner1 Gate Cur		Gor Wild Cleared.					
				gate that could be r	provided to TI		unaffected by		
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L; unaffected by Timer1 Gate Enable (TMR1GE) bit.								
bit 1-0	T1GSS<1:0>	T1GSS<1:0>: Timer1 Gate Source Select bits							
	11 = Compa	rator 2 output							
		rator 1 output							
		o match PR2 c	output						
	00 = Timer1	yate pill							
Note 1: P	Programming the T1GCON prior to T1CON is recommended.								

Note 1: Programming the T1GCON prior to T1CON is recommended.

REGISTER 16-3: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-0	U-0	U-0	R/W-0	U-0	R-x	R/W-0				
_	SOSCRUN			SOSCGO	_	MFIOFS	MFIOSEL				
bit 7											
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as 'd)'								
bit 6	SOSCRUN: S	SOSC Run Stat	us bit								
		lock comes fro									
	0 = System c	lock comes fro	m an oscillato	r other than SO	SC						
bit 5-4	Unimplemen	ted: Read as 'd)'								
bit 3	SOSCGO: Os	SOSCGO: Oscillator Start Control bit									
				ources are requ							
	 0 = Oscillator is shut off if no other sources are requesting it (When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.) 										
bit 2	Unimplemen	ted: Read as 'd)'								
bit 1	MFIOFS: MF-	-INTOSC Frequ	ency Stable b	it							
	1 = MF-INTOSC is stable										
	0 = MF-INTO	0 = MF-INTOSC is not stable									
bit 0	MFIOSEL: M	F-INTOSC Sele	ect bit								
	1 = MF-INTO	SC is used in p	lace of HF-IN	TOSC frequence	ies of 500 kH	z, 250 kHz and	31.25 kHz				
	0 = MF-INTO	SC is not used		1 = MF-INTOSC is used in place of HF-INTOSC frequencies of 500 kHz, 250 kHz and 31.25 kHz 0 = MF-INTOSC is not used							

16.5.2 TIMER3/5/7 GATE SOURCE SELECTION

The Timer3/5/7 gate source can be selected from one of four different sources. Source selection is controlled by the TxGSS<1:0> bits (TxGCON<1:0>). The polarity for each available source is also selectable and is controlled by the TxGPOL bit (TxGCON <6>).

TABLE 16-2:	TIMER3/5/7 GATE SOURCES

TxGSS<1:0>	Timerx Gate Source
00	Timerx Gate Pin
01	TMR(x+1) to Match PR(x+1) (TMR(x+1) increments to match PR(x+1))
10	Comparator 1 Output (comparator logic high output)
11	Comparator 2 Output (comparator logic high output)

16.5.2.1 TxG Pin Gate Operation

The TxG pin is one source for Timer3/5/7 gate control. It can be used to supply an external source to the Timerx gate circuitry.

16.5.2.2 Timer4/6/8 Match Gate Operation

The TMR(x+1) register will increment until it matches the value in the PR(x+1) register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timerx gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on TxGPOL, Timerx increments differently when TMR(x+1) matches PR(x+1). When TxGPOL = 1, Timerx increments for a single instruction

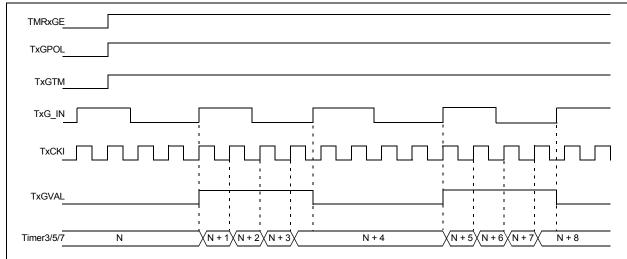
cycle following a TMR(x+1) match with PR(x+1). When TxGPOL = 0, Timerx increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

16.5.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timerx gate circuitry. After setting up Comparator 1 with the CM1CON register, Timerx will increment depending on the transitions of the CMP1OUT (CMSTAT<5>) bit.

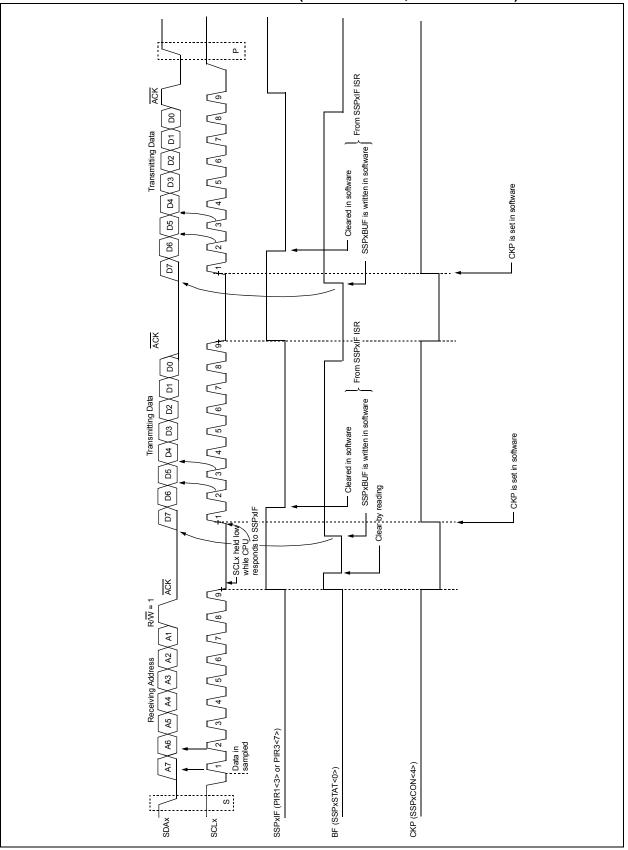
16.5.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timerx gate circuitry. After setting up Comparator 2 with the CM2CON register, Timerx will increment depending on the transitions of the CMP2OUT (CMSTAT<6>) bit.


16.5.3 TIMER3/5/7 GATE TOGGLE MODE

When Timer3/5/7 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3/5/7 gate signal, as opposed to the duration of a single level pulse.

The Timerx gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 16-3.)


The TxGVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3/5/7 Gate Toggle mode is enabled by setting the TxGTM bit (TxGCON<5>). When the TxGTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

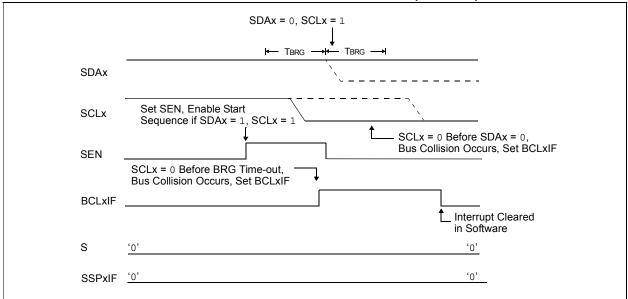
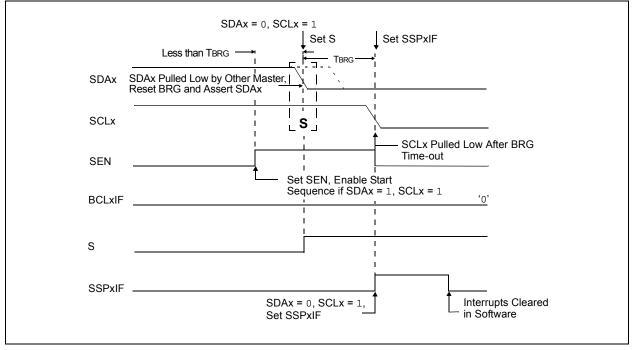


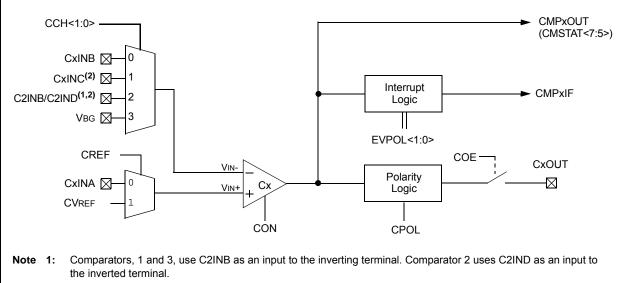
FIGURE 16-3: TIMER3/5/7 GATE TOGGLE MODE



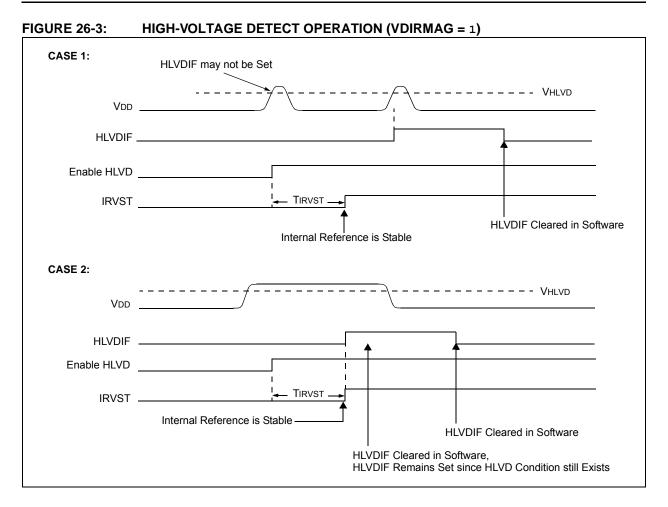
24.0 COMPARATOR MODULE

The analog comparator module contains three comparators that can be independently configured in a variety of ways. The inputs can be selected from the analog inputs and two Internal Reference Voltages. The digital outputs are available at the pin level and can also be read through the control register. Multiple output and interrupt event generation are also available. A generic single comparator from the module is shown in Figure 24-1.

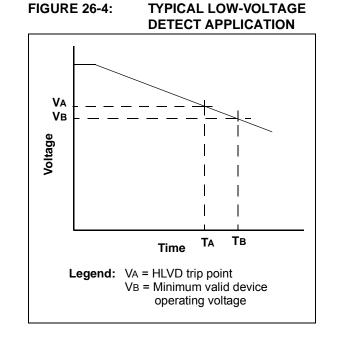
Key features of the module includes:


- · Independent comparator control
- · Programmable input configuration
- · Output to both pin and register levels
- · Programmable output polarity
- Independent interrupt generation for each comparator with configurable interrupt-on-change

24.1 Registers


The CMxCON registers (CM1CON, CM2CON and CM3CON) select the input and output configuration for each comparator, as well as the settings for interrupt generation (see Register 24-1).

The CMSTAT register (Register 24-2) provides the output results of the comparators. The bits in this register are read-only.


2: C1INC, C2INC and C2IND are all unavailable for 64-pin devices (PIC18F6XK22).

26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an Interrupt Service Routine (ISR), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

26.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

26.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	—	SSP2IF	BLC2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF
PIE2	OSCFIE	_	SSP2IE	BLC2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE
IPR2	OSCFIP	_	SSP2IP	BLC2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0

TABLE 26-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

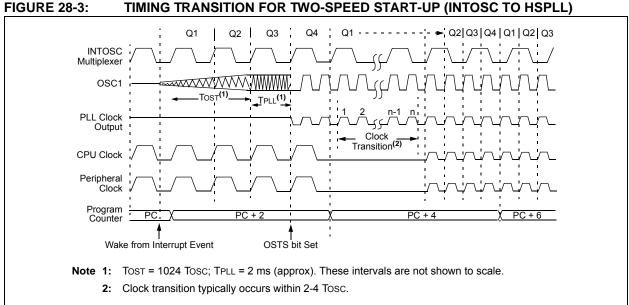
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

28.4 **Two-Speed Start-up**

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTOSC (LF-INTOSC, MF-INTOSC, HF-INTOSC) oscillator as a clock source until the primary clock source is available; it is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT or HS (Crystal-Based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI RUN mode.


To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Startup is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

28.4.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTOSC oscillator in Two-Speed Startup, the device still obeys the normal command sequences for entering power-managed modes, including multiple SLEEP instructions (refer to Section 4.1.4 "Multiple Sleep Commands"). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

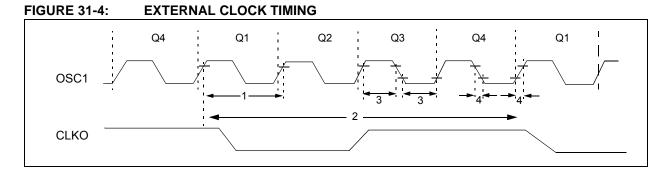
User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	42	73	μA	-40°C				
		42	73	μA	+25°C	VDD = 1.8V ⁽⁴⁾	Fosc = 1 MHz (PRI_IDLE mode, EC oscillator)		
		43	74	μA	+85°C	Regulator Disabled			
		53	100	μA	+125°C				
	All devices	110	190	μA	-40°C				
		110	195	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		110	195	μA	+85°C	Regulator Disabled			
		130	250	μA	+125°C				
	All devices	280	450	μA	-40°C				
		290	440	μA	+25°C	VDD = 5√ ⁽⁵⁾			
		300	460	μA	+85°C	Regulator Enabled			
		330	500	μA	+125°C				
	All devices	160	360	μA	-40°C	V _{DD} = 1.8V ⁽⁴⁾ Regulator Disabled			
		160	360	μA	+25°C				
		170	370	μA	+85°C				
		200	400	μA	+125°C				
	All devices	330	650	μA	-40°C		Fosc = 4 MHz (PRI IDLE mode,		
		340	660	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		340	660	μA	+85°C	Regulator Disabled	EC oscillator)		
		370	700	μA	+125°C		20 000mator)		
	All devices	510	900	μA	-40°C				
		520	950	μA	+25°C	VDD = 5V ⁽⁵⁾			
		540	990	μA	+85°C	Regulator Enabled			
		600	1200	μA	+125°C				
	All devices	4.7	9	mA	-40°C				
		4.8	9	mA	+25°C	VDD = 3.3V ⁽⁴⁾			
		4.8	10	mA	+85°C	Regulator Disabled			
		5.2	12	mA	+125°C ⁽⁶⁾		Fosc = 64 MHz (PRI_IDLE mode,		
	All devices	5.1	11	mA	-40°C		EC oscillator)		
		5.1	11	mA	+25°C	VDD = 5√ ⁽⁵⁾			
		5.2	12	mA	+85°C	Regulator Enabled			
		5.7	14	mA	+125ºC ⁽⁶⁾				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.

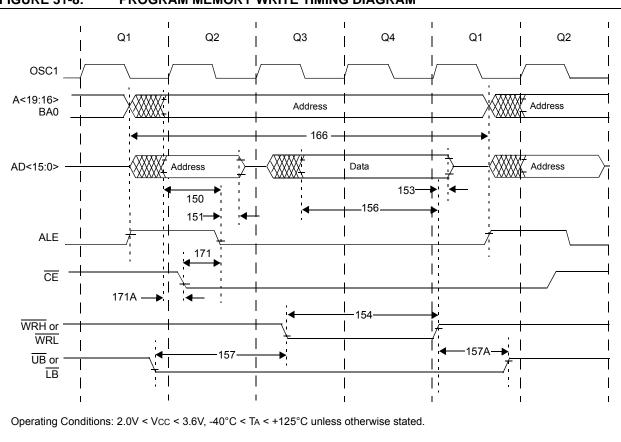

31.5.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 31-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A Fosc		External CLKIN Frequency ⁽¹⁾	DC	64	MHz	EC, ECIO Oscillator mode -40°C ≤ TA ≤ +85°C
			DC	48	MHz	-40°C ≤ TA ≤ +125°C
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	16	MHz	HS Oscillator mode
			4	16	MHz	HS + PLL Oscillator mode
			5	33	kHz	LP Oscillator mode
1	Tosc	External CLKIN Period ⁽¹⁾	15.6	—	ns	EC, ECIO Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	10,000	ns	XT Oscillator mode
			40 62.5	250 250	ns ns	HS Oscillator mode HS + PLL Oscillator mode
			5	200	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	30	_	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	_	μs	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
				7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

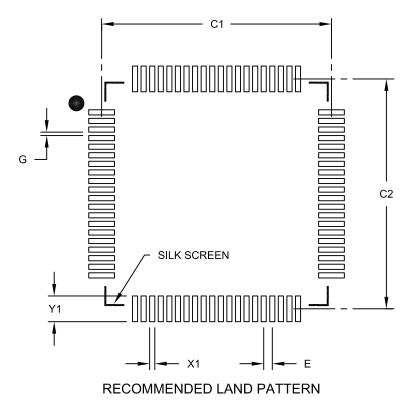


FIGURE 31-8: PROGRAM MEMORY WRITE TIMING DIAGRAM

Param. No	Symbol	Characteristics	Min	Тур	Max	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10	—	_	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	—	ns
153	TwrH2adl	\overline{WRn} \uparrow to Data Out Invalid (data hold time)	5	_	-	ns
154	TwrL	WRn Pulse Width	0.5 Tcy – 5	0.5 TCY		ns
156	TadV2wrH	Data Valid before \overline{WRn} \uparrow (data setup time)	0.5 Tcy – 10	—	_	ns
157	TbsV2wrL	Byte Select Valid before $\overline{\text{WRn}} \downarrow$ (byte select setup time)	0.25 TCY	—	_	ns
157A	TwrH2bsl	WRn ↑ to Byte Select Invalid (byte select hold time)	0.125 Tcy – 5	_	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	Тсү		ns
171	TalH2csL	Chip Enable Active to ALE \downarrow	0.25 Tcy – 20	—	—	ns
171A	TubL2oeH	AD Valid to Chip Enable Active		_	10	ns

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	1	MILLIMETER	S
Dimensi	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B