

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86k22-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Highlights:

- Up to Ten CCP/ECCP modules:
 - Up to seven Capture/Compare/PWM (CCP) modules
 - Three Enhanced Capture/Compare/PWM (ECCP) modules
- Up to Eleven 8/16-Bit Timer/Counter modules:
 - Timer0 8/16-bit timer/counter with 8-bit programmable prescaler
 - Timer1,3 16-bit timer/counter
 - Timer2,4,6,8 8-bit timer/counter
 - Timer5,7 16-bit timer/counter for 64k and 128k parts
 - Timer10,12 8-bit timer/counter for 64k and 128k parts
- Three Analog Comparators
- Configurable Reference Clock Output
- Hardware Real-Time Clock and Calendar (RTCC) module with Clock, Calendar and Alarm Functions

- Charge Time Measurement Unit (CTMU):
 - Capacitance measurement for mTouch™ sensing solution
 - Time measurement with 1 ns typical resolution
 - Integrated temperature sensor
- High-Current Sink/Source 25 mA/25 mA (PORTB and PORTC)
- Up to Four External Interrupts
- Two Master Synchronous Serial Port (MSSP) modules:
 - 3/4-wire SPI (supports all four SPI modes)
 - I²C[™] Master and Slave modes
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operationDifferential input mode of operation
- Integrated Voltage Reference

6.1.3.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit (CONFIG4L<0>). When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.4 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. This stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
•	;SAVED IN FAST REGISTER
SUB1 •	;STACK
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.5 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.5.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value, 'nn', to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.5.2 Table Reads

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored, two bytes per program word, while programming. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from the program memory. Data is transferred from program memory, one byte at a time.

The table read operation is discussed further in **Section 7.1 "Table Reads and Table Writes**".

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F87K22 FAMILY (CONTINUED)

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
F3Fh	TMR7H ⁽³⁾	F32h	TMR12 ⁽³⁾	F25h	ANCON0	F18h	PMD1
F3Eh	TMR7L ⁽³⁾	F31h	PR12 ⁽³⁾	F24h	ANCON1	F17h	PMD2
F3Dh	T7CON ⁽³⁾	F30h	T12CON ⁽³⁾	F23h	ANCON2	F16h	PMD3
F3Ch	T7GCON ⁽³⁾	F2Fh	CM2CON	F22h	RCSTA2	_	
F3Bh	TMR6	F2Eh	CM3CON	F21h	TXSTA2		
F3Ah	PR6	F2Dh	CCPTMRS0	F20h	BAUDCON2		
F39H	T6CON	F2Ch	CCPTMRS1	F1Fh	SPBRGH2		
F38h	TMR8	F2Bh	CCPTMRS2	F1Eh	SPBRG2		
F37h	PR8	F2Ah	REFOCON	F1Dh	RCREG2		
F36h	T8CON	F29H	ODCON1	F1Ch	TXREG2		
F35h	TMR10 ⁽³⁾	F28h	ODCON2	F1Bh	PSTR2CON		
F34h	PR10 ⁽³⁾	F27h	ODCON3	F1Ah	PSTR3CON		
F33h	T10CON ⁽³⁾	F26h	MEMCON ⁽³⁾	F19h	PMD0		

Note 1: This is not a physical register.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

- 3: This register is not available on devices with a program memory of 32 Kbytes (PIC18FX5K22).
- 4: Addresses, F16h through F5Fh, are also used by SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	
FFFh	TOSU	—	_	_	Top-of-Stack Upper Byte (TOS<20:16>)						
FFEh	TOSH	Top-of-Stack H	ligh Byte (TOS	S<15:8>)						0000 0000	
FFDh	TOSL	Top-of-Stack L	ow Byte (TOS	<7:0>)						0000 0000	
FFCh	STKPTR	STKFUL	STKUNF	_	Return Stack F	Pointer				uu-0 0000	
FFBh	PCLATU	—	_	—	Holding Regist	er for PC<20:1	6>			0 0000	
FFAh	PCLATH	Holding Regis	ter for PC<15:	8>						0000 0000	
FF9h	PCL	PC Low Byte	(PC<7:0>)							0000 0000	
FF8h	TBLPTRU	_	_	bit 21	Program Mem	ory Table Point	ter Upper Byte	(TBLPTR<20:	16>)	00 0000	
FF7h	TBLPTRH	Program Mem	ory Table Poin	ter High Byte	(TBLPTR<15:8	>)				0000 0000	
FF6h	TBLPTRL	Program Mem	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)								
FF5h	TABLAT	Program Memory Table Latch								0000 0000	
FF4h	PRODH	Product Register High Byte								XXXX XXXX	
FF3h	PRODL	Product Regis	ter Low Byte							XXXX XXXX	
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	
FF0h	INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	
FEFh	INDF0	Uses contents	of FSR0 to ac	dress data me	emory – value o	f FSR0 not cha	anged (not a pł	nysical register)		
FEEh	POSTINC0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 post-in	cremented (no	t a physical reg	gister)		
FEDh	POSTDEC0	Uses contents	of FSR0 to ac	dress data me	emory – value o	f FSR0 post-de	ecremented (no	ot a physical re	gister)		
FECh	PREINC0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 pre-inc	remented (not	a physical regi	ster)		
FEBh	PLUSW0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W									
FEAh	FSR0H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 0 H	igh	0000	
FE9h	FSR0L	Indirect Data N	lemory Addre	ss Pointer 0 Lo	ow Byte					XXXX XXXX	
FE8h	WREG	Working Regis	ster							XXXX XXXX	
FE7h	INDF1	Uses contents	of FSR1 to ac	dress data me	emory – value o	f FSR1 not cha	anged (not a pl	nysical register)		

TABLE 6-2: PIC18F87K22 FAMILY REGISTER FILE SUMMARY

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

3: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

8.0 EXTERNAL MEMORY BUS

Note:	The	External	Memory	Bus	is	not		
implemented on 64-pin devices.								

The External Memory Bus (EMB) allows the device to access external memory devices (such as Flash, EPROM or SRAM) as program or data memory. It supports both 8 and 16-Bit Data Width modes and three address widths of up to 20 bits.

The bus is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals.

A list of the pins and their functions is provided in Table 8-1.

TABLE 8-1:	PIC18F87K22 FAMILY EXTERNAL BUS – I/O PORT FUNCTIONS

Name	Port	Bit	External Memory Bus Function
RD0/AD0	PORTD	0	Address Bit 0 or Data Bit 0
RD1/AD1	PORTD	1	Address Bit 1 or Data Bit 1
RD2/AD2	PORTD	2	Address Bit 2 or Data Bit 2
RD3/AD3	PORTD	3	Address Bit 3 or Data Bit 3
RD4/AD4	PORTD	4	Address Bit 4 or Data Bit 4
RD5/AD5	PORTD	5	Address Bit 5 or Data Bit 5
RD6/AD6	PORTD	6	Address Bit 6 or Data Bit 6
RD7/AD7	PORTD	7	Address Bit 7 or Data Bit 7
RE0/AD8	PORTE	0	Address Bit 8 or Data Bit 8
RE1/AD9	PORTE	1	Address Bit 9 or Data Bit 9
RE2/AD10	PORTE	2	Address Bit 10 or Data Bit 10
RE3/AD11	PORTE	3	Address Bit 11 or Data Bit 11
RE4/AD12	PORTE	4	Address Bit 12 or Data Bit 12
RE5/AD13	PORTE	5	Address Bit 13 or Data Bit 13
RE6/AD14	PORTE	6	Address Bit 14 or Data Bit 14
RE7/AD15	PORTE	7	Address Bit 15 or Data Bit 15
RH0/A16	PORTH	0	Address Bit 16
RH1/A17	PORTH	1	Address Bit 17
RH2/A18	PORTH	2	Address Bit 18
RH3/A19	PORTH	3	Address Bit 19
RJ0/ALE	PORTJ	0	Address Latch Enable (ALE) Control pin
RJ1/OE	PORTJ	1	Output Enable (OE) Control pin
RJ2/WRL	PORTJ	2	Write Low (WRL) Control pin
RJ3/WRH	PORTJ	3	Write High (WRH) Control pin
RJ4/BA0	PORTJ	4	Byte Address Bit 0 (BA0)
RJ5/CE	PORTJ	5	Chip Enable (CE) Control pin
RJ6/LB	PORTJ	6	Lower Byte Enable (IB) Control pin
RJ7/UB	PORTJ	7	Upper Byte Enable (UB) Control pin

Note: For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional multiplexed features may be available on some pins.

8.7 8-Bit Data Width Mode

In 8-Bit Data Width mode, the External Memory Bus operates only in Multiplexed mode; that is, data shares the 8 Least Significant bits of the address bus.

Figure 8-6 shows an example of 8-Bit Multiplexed mode for PIC18F8XK22 devices. This mode is used for a single, 8-bit memory connected for 16-bit operation. The instructions will be fetched as two 8-bit bytes on a shared data/address bus. The two bytes are sequentially fetched within one instruction cycle (TcY). Therefore, the designer must choose external memory devices according to timing calculations based on 1/2 TcY (2 times the instruction rate). For proper memory speed selection, glue logic propagation delay times must be considered, along with setup and hold times.

The Address Latch Enable (ALE) pin indicates that the Address bits, AD<15:0>, are available on the External Memory Bus interface. The Output Enable (OE) signal

will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The Least Significant bit of the address, BA0, must be connected to the memory devices in this mode. The Chip Enable (CE) signal is active at any time that the microcontroller accesses external memory, whether reading or writing. It is inactive (asserted high) whenever the device is in Sleep mode.

This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories.

During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate level of the BA0 control line is strobed on the LSb of the TBLPTR.

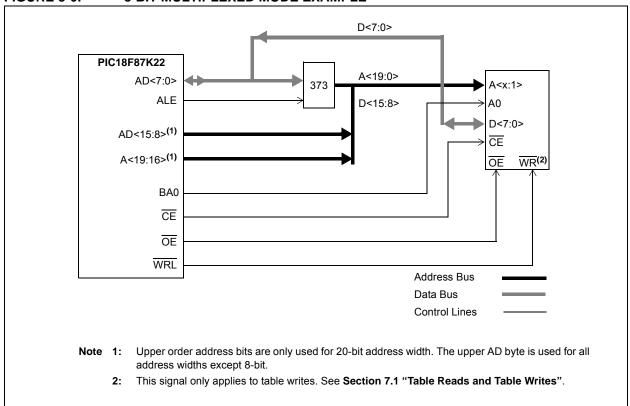


FIGURE 8-6: 8-BIT MULTIPLEXED MODE EXAMPLE

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	RBPU: PORT	B Pull-up Enat	ole bit				
		B pull-ups are					
	0 = PORTB p	oull-ups are ena	abled by individ	dual TRIS regis	ter values		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 5		ternal Interrupt	1 Edge Select	t bit			
		on rising edge on falling edge					
bit 4	•	ternal Interrupt	2 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 3	INTEDG3: Ex	ternal Interrupt	3 Edge Select	t bit			
		on rising edge					
		on falling edge					
bit 2		R0 Overflow Int	errupt Priority	bit			
	1 = High prio 0 = Low prior	•					
bit 1	•	External Intern	int Priority bit				
	1 = High prio		upt i nonty bit				
	0 = Low prior	•					
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	1			
	1 = High prio		2				
	0 = Low prior	ity					

REGISTER 11-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RB3/INT3/CTED2/	RB3	0	0	DIG	LATB<3> data output.
ECCP2/P2A		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.
	INT3	1	I	ST	External Interrupt 3 input.
	CTED2	x	I	ST	CTMU Edge 2 input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.
		1	Ι	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.
	KBI0	1	Ι	TTL	Interrupt-on-pin change.
RB5/KBI1/T3CKI/	RB5	0	0	DIG	LATB<5> data output.
T1G		1	I	TTL	PORTB<5> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI1	1	I	TTL	Interrupt-on-pin change.
	T3CKI	x	I	ST	Timer3 clock input.
	T1G	x	I	ST	Timer1 external clock gate input.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	I	TTL	PORTB<6> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-pin change.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operations.
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.
	KBI3	1	Ι	TTL	Interrupt-on-pin change.
	PGD	х	0	DIG	Serial execution data output for ICSP and ICD operations.
		х	Ι	ST	Serial execution data input for ICSP and ICD operations.

TABLE 12-3: PORTB FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Extended Microcontroller mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON1	SSP10D	CCP2OD	CCP10D		_	_		SSP2OD

Legend: Shaded cells are not used by PORTB.

NOTES:

When a shutdown event occurs, two things happen:

- The ECCPxASE bit is set to '1'. The ECCPxASE will remain set until cleared in firmware or an auto-restart occurs. (See Section 20.4.5 "Auto-Restart Mode".)
- The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs (PxA/PxC) and (PxB/PxD). The state of each pin pair is determined by the PSSxAC and PSSxBD bits (ECCPxAS<3:2> and <1:0>, respectively).

Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 20-3: ECCPxAS: ECCPx AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPxASE	ECCPxAS2	ECCPxAS1	ECCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0
bit 7							bit 0

Legend:					
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

0 = ECCP outputs are operating

bit 6-4 ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits

- 000 = Auto-shutdown is disabled
 - 001 = Comparator C1OUT output is high
 - 010 = Comparator C2OUT output is high
 - 011 = Either Comparator C1OUT or C2OUT is high
 - 100 = VIL on FLTO pin
 - 101 = VIL on FLT0 pin or Comparator C1OUT output is high
 - 110 = VIL on FLT0 pin or Comparator C2OUT output is high
 - 111 = VIL on FLT0 pin or Comparator C1OUT or Comparator C2OUT is high

bit 3-2 PSSxAC<1:0>: PxA and PxC Pins Shutdown State Control bits

- 00 = Drive pins, PxA and PxC, to '0'
- 01 = Drive pins, PxA and PxC, to '1'
- 1x = PxA and PxC pins tri-state

bit 1-0 **PSSxBD<1:0>:** Pins PxB and PxD Shutdown State Control bits

- 00 = Drive pins, PxB and PxD, to '0'
- 01 = Drive pins, PxB and PxD, to '1'
- 1x = PxB and PxD pins tri-state

Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.

- 2: Writing to the ECCPxASE bit is disabled while an auto-shutdown condition persists.
- 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

20.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2/4/6/8 will not increment and the state of the module will not change. If the ECCPx pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HF-INTOSC and the postscaler may not be immediately stable.

In PRI_IDLE mode, the primary clock will continue to clock the ECCPx module without change.

20.4.8.1 Operation with Fail-Safe Clock Monitor (FSCM)

If the Fail-Safe Clock Monitor (FSCM) is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit of the PIR2 register will be set. The ECCPx will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

20.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states. This forces the ECCP module to reset to a state compatible with previous, non-Enhanced CCP modules used on other PIC18 and PIC16 devices.

		2314/0/0/10/1	-					
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
PIR3	TMR5GIF	—	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF
PIR4	CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
PIE3	TMR5GIE	—	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
PIE4	CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
IPR3	TMR5GIP	—	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
IPR4	CCP10IP ⁽¹⁾	CCP9IP ⁽¹⁾	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0
TMR1H	Timer1 Register	High Byte						
TMR1L	Timer1 Register	Low Byte						
TMR2	Timer2 Register							
TMR3H	Timer3 Register	High Byte						
TMR3L	Timer3 Register	Low Byte						
TMR4	Timer4 Register							
TMR6	Timer6 Register							
TMR8	Timer8 Register							
TMR10 ⁽¹⁾	TMR10 Register	r						
TMR12 ⁽¹⁾	TMR10 Register	r						
PR2	Timer2 Period R	Register						
PR4	Timer4 Period R	Register						
PR6	Timer6 Period R	Register						
PR8	Timer8 Period R	Register						
PR10 ⁽¹⁾	Timer10 Period	Register						
PR12 ⁽¹⁾	Timer12 Period	Register						

TABLE 20-4: REGISTERS ASSOCIATED WITH ECCP1/2/3 MODULE AND TIMER1/2/3/4/6/8/10/12

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18F65K22 and PIC18F85K22).

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

23.3 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the Charge Holding (CHOLD) capacitor must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 23-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD).

The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected or changed, the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 23-1 can be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 23-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

• CHOLD =	25 pF
• Rs =	2.5 kΩ
• Conversion Error \leq	1/2 LSb
• Vdd =	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature =	85°C

EQUATION 23-1: ACQUISITION TIME

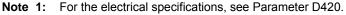
TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 23-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 23-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25°C, TCOFF = 0 ms.
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs
TACQ	=	0.2 μs + 1.05 μs + 1.2 μs 2.45 μs


26.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

The PIC18F87K22 family of devices has a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that sets both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution branches to the interrupt vector address and the software responds to the interrupt. The High/Low-Voltage Detect Control register (Register 26-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The module's block diagram is shown in Figure 26-1.

REGISTER 26-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7						•	bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	VDIRMAG: V	oltage Direction	n Magnitude S	Select bit			
					oint (HLVDL<3:0		
	0 = Event occ	curs when volta	ge equals or	falls below trip	point (HLVDL<	3:0>)	
bit 6		d Gap Referend	•		ag bit		
		and gap voltag					
		and gap voltag					
bit 5		al Reference V	•	•			
					e interrupt flag ate the interrup		
		d the HLVD int				t hay at the spe	ecilieu voltage
bit 4	•	gh/Low-Voltage					
	1 = HLVD is						
	0 = HLVD is	disabled					
bit 3-0	HLVDL<3:0>	: Voltage Deteo	ction Limit bits	(1)			
		• •	it is used (inp	ut comes from	the HLVDIN pin	ı)	
	1110 = Maxir	num setting					
	0000 = Minim	num setting					
	the electrical a			D 400			

REGISTER 28-9: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	_	—	_	_	—
bit 7	·				•	·	bit 0
Legend: C = Clearable bit		bit					
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unkn			nown	
bit 7	CPD: Data E	EPROM Code I	Protection bit				
	1 = Data EE	PROM is not co	de-protected				

- 0 = Data EEPROM is code-protected
- bit 6 **CPB:** Boot Block Code Protection bit 1 = Boot block is not code-protected⁽¹⁾ 0 = Boot block is code-protected⁽¹⁾
- bit 5-0 Unimplemented: Read as '0'

Note 1: For the memory size of the blocks, see Figure 28-6. The boot block size changes with BBSIZO.

29.0 INSTRUCTION SET SUMMARY

The PIC18F87K22 family of devices incorporates the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

29.1 Standard Instruction Set

The standard PIC18 MCU instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 29-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 29-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator, 'b', selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the Program Counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 29-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 29-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

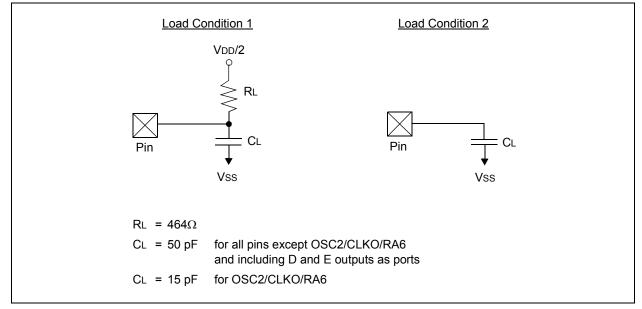
Section 29.1.1 "Standard Instruction Set" provides a description of each instruction.

IORLW	Inclusive (Inclusive OR Literal with W					
Syntax:	IORLW k	IORLW k					
Operands:	$0 \le k \le 255$	i					
Operation:	(W) .OR. k	\rightarrow W					
Status Affected:	N, Z	N, Z					
Encoding:	0000	1001	kkkk	kkkk			
Description:		The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.					
Words:	1	1					
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Proce Data		Vrite to W			
Example:	IORLW	35h					
Before Instruc W	tion = 9Ah						

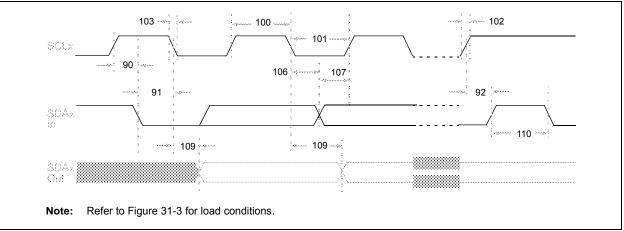
IORWF	Inclusive C	Inclusive OR W with f					
Syntax:	IORWF f	{,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:	(W) .OR. (f)	\rightarrow dest					
Status Affected:	N, Z						
Encoding:	0001	00da	ffff	ffff			
Description:	'0', the resu	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.					
	, -	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					
	If 'a' is '0' ar set is enabl in Indexed I mode when Section 29. Bit-Oriente Literal Offs	ed, this i ₋iteral O ever f ≤ .2.3 "By d Instru	nstruction ffset Addr 95 (5Fh). te-Orient ctions in	operates essing See ed and Indexed			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Proce Data		Vrite to stination			
Example:	IORWF RE	ESULT,	0, 1				

W	=	9Ah			
After Instruc					
W	BFh				

imple:	IOF	SME,
Before Instructi	on	
RESULT	=	13h
W	=	91h
After Instruction	۱	
RESULT	=	13h
W	=	93h

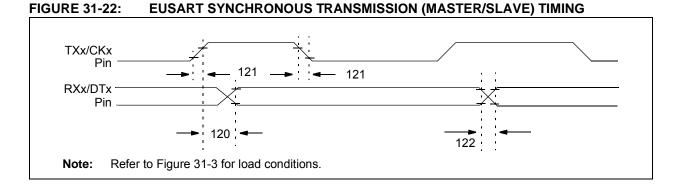

31.5.2 TIMING CONDITIONS

The temperature and voltages specified in Table 31-5 apply to all timing specifications unless otherwise noted. Figure 31-3 specifies the load conditions for the timing specifications.


TABLE 31-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended			
	Operating voltage VDD range as described in Section 31.1 and Section 31.3 .			

FIGURE 31-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0		μS		
			400 kHz mode	0.6	—	μS		
			MSSP module	1.5 TCY	—			
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	1.3	—	μS		
			MSSP module	1.5 TCY	—			
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first clock	
			400 kHz mode	0.6	—	μS	pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode		—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	-	μS	Time the bus must be free before	
			400 kHz mode	1.3	—	μS	a new transmission can start	
D102	Св	Bus Capacitive Loading		—	400	pF		

TABLE 31-22: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

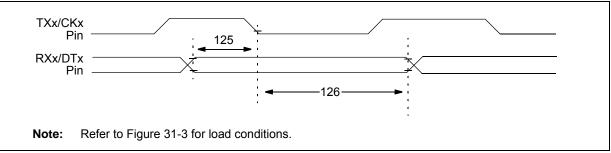
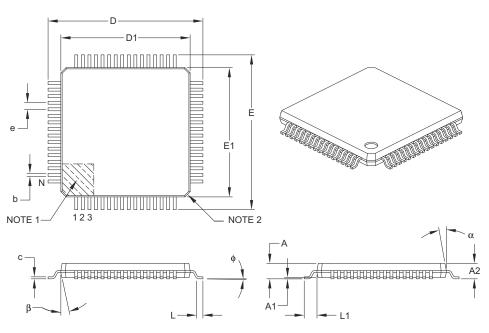

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

TABLE 31-25: EUSART/AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
120	ТскH2ртV	<u>SYNC XMIT (MASTER and SLAVE)</u> Clock High to Data Out Valid	_	40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	—	20	ns	
122	TDTRF	Data Out Rise Time and Fall Time	_	20	ns	

FIGURE 31-23: EUSART/AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 31-26: EUSART/AUSART SYNCHRONOUS RECEIVE REQUIREMENTS


Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE)				
		Data Hold before CKx \downarrow (DTx hold time)	10	—	ns	
126	TCKL2DTL	Data Hold after CKx \downarrow (DTx hold time)	15	_	ns	

32.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
Dimens	ion Limits	MIN	NOM	MAX	
Number of Leads	Ν		64		
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	Е	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX T Temperature Package Pattern Range	 Examples: a) PIC18F87K22-I/PT 301 = Industrial temperature, TQFP package, QTP pattern #301. b) PIC18F87K22T-I/PT = Tape and reel, Industrial temperature, TQFP package
Device ^(1,2)	PIC18F65K22, PIC18F65K22T PIC18F66K22, PIC18F66K22T PIC18F67K22, PIC18F67K22T PIC18F85K22, PIC18F85K22T PIC18F86K22, PIC18F86K22T PIC18F87K22, PIC18F87K22T	 c) PIC18F87K22T-E/PT = Tape and reel, Extended temperature, TQFP package
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	PT = TQFP (Plastic Thin Quad Flatpack) MR = QFN (Plastic Quad Flat)	Note 1: F = Standard Voltage Range 2: T = In tape and reel PLCC and
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	TQFP packages only 3: RSL = Silicon Revision A3