

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86k22t-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Details on Individual Family Members

Devices in the PIC18F87K22 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in these ways:

- Flash Program Memory:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – 32 Kbytes
 - PIC18FX6K22 (PIC18F66K22 and PIC18F86K22) 64 Kbytes
 - PIC18FX7K22 (PIC18F67K22 and PIC18F87K22) 128 Kbytes
- Data RAM:
 - All devices except PIC18FX5K22 4 Kbytes
 - PIC18FX5K22 2 Kbytes
- I/O Ports:
 - PIC18F6XK22 (64-pin devices) 7 bidirectional ports
 - PIC18F8XK22 (80-pin devices) 9 bidirectional ports

- CCP modules:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – 5 CCP modules
 - PIC18FX6K22 and PIC18FX7K22 (PIC18F66K22, PIC18F86K22, PIC18F67K22, and PIC18F87K22) – 7 CCP modules
- · Timer modules:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – Four 8-bit timer/counters and four 16-bit timer/counters
 - PIC18FX6K22 and PIC18FX7K22 (PIC18F66K22, PIC18F86K22, PIC18F67K22, and PIC18F87K22) – Six 8-bit timer/counters and five 16-bit timer/counters
- A/D Channels:
 - PIC18F6XK22 (64-pin devices) 24 channels
 - PIC18F8XK22 (80-pin devices) 16 channels

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for all devices are listed in Table 1-3 and Table 1-4.

= Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nama	Pin Number	Pin	Buffer	Description					
	TQFP	Туре	Туре	Description					
RH7/CCP6/P1B/AN15 RH7 CCP6 ⁽⁵⁾ P1B AN15	19	I/O I/O O I	ST ST — Analog	Digital I/O. Capture 6 input/Compare 6 output/PWM6 output. ECCP1 PWM Output B. Analog Input 15.					
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with Cl			OS levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output					

= Power Ρ

 $I^2C = I^2C^{\text{TM}}/\text{SMBus}$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: PSP is available only in Microcontroller mode.

5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

OD

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TMR10MD ⁽¹⁾	TMR8MD	TMR7MD ⁽¹⁾	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP1MD		
bit 7		1					bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	TMR10MD : T	MR10MD Disa	ble bit ⁽¹⁾						
	1 = Peripher 0 = PMD is c	al Module Disal	ble (PMD) is e IR10MD is er	enabled and all nabled	TMR10MD clo	ck sources are	disabled		
bit 6	TMR8MD: TN	MR8MD Disable	e bit						
	1 = PMD is e	enabled and all	TMR8MD clo	ck sources are	disabled				
	0 = PMD is c	disabled and TM	IR8MD is ena	abled					
bit 5	TMR7MD: TN	MR7MD Disable	e bit ⁽¹⁾						
	1 = PMD is e 0 = PMD is c	enabled and all disabled and TM	TMR7MD clo IR7MD is ena	ck sources are abled	disabled				
bit 4	TMR6MD: TN	MR6MD Disable	e bit						
	1 = PMD is e 0 = PMD is c	enabled and all disabled and TM	TMR6MD clo IR6MD is ena	ck sources are abled	disabled				
bit 3	TMR5MD: TN	MR5MD Disable	e bit						
	1 = PMD is e 0 = PMD is c	enabled and all disabled and TM	TMR5MD clo IR5MD is ena	ck sources are abled	disabled				
bit 2	CMP3MD: PI	MD Comparato	3 Enable/Dis	able bit					
	1 = PMD is e 0 = PMD is c	enabled for Con disabled for Cor	nparator 3, dis nparator 3	sabling all of its	clock sources				
bit 1	CMP2MD: PI	MD Comparato	3 Enable/Dis	able bit					
	1 = PMD is e 0 = PMD is c	enabled for Con disabled for Cor	nparator 2, dis nparator 2	sabling all of its	clock sources				
bit 0	CMP1MD: PI	MD Comparato	3 Enable/Dis	able bit					
	 1 = PMD is enabled for Comparator 1, disabling all of its clock sources 0 = PMD is disabled for Comparator 1 								

REGISTER 4-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

Note 1: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

		1						/		
Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
FB6h	PIE4	CCP10IE ⁽³⁾	CCP9IE ⁽³⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE	0000 0000
FB5h	CVRCON	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000 0000
FB4h	CMSTAT	CMP3OUT	CMP2OUT	CMP1OUT	—	—	_	—	—	xxx
FB3h	TMR3H	Timer3 Regist	er High Byte							xxxx xxxx
FB2h	TMR3L	Timer3 Regist	er Low Byte							XXXX XXXX
FB1h	T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	SOSCEN	T3SYNC	RD16	TMR3ON	0000 0000
FB0h	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000 0x00
FAFh	SPBRG1	USART1 Bau	d Rate Genera	tor		•			•	0000 0000
FAEh	RCREG1	USART1 Rec	eive Register							0000 0000
FADh	TXREG1	USART1 Tran	smit Register							XXXX XXXX
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FAAh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00
FA9h	IPR6	_	_	_	EEIP	_	CMP3IP	CMP2IP	CMP1IP	1 -111
FA8h	HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000 0000
FA7h	PSPCON	IBF	OBF	IBOV	PSPMODE	_	_	_	_	0000
FA6h	PIR6	_	_	_	EEIF	_	CMP3IF	CMP2IF	CMP1IF	0 -000
FA5h	IPR3	TMR5GIP	_	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	1-11 1111
FA4h	PIR3	TMR5GiF		RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	0-00 0000
FA3h	PIE3	TMR5GIE		RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	0-00 0000
FA2h	IPR2	OSCFIP		SSP2IP	BCL2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP	1-11 1111
FA1h	PIR2	OSCEIE		SSP2IF	BCI 2IF	BCI 1IF	HIVDIE	TMR3IF	TMR3GIF	0-00 0000
FA0h	PIF2	OSCEIE		SSP2IF	BCI 2IF	BCI 1IF	HIVDIE	TMR3IF	TMR3GIF	0-00 0000
F9Fh	IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	1111 1111
F9Fh	PIR1	PSPIE	ADIE	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	0000 0000
F9Dh	PIF1	PSPIE	ADIE	RC1IF	TX1IE	SSP1IF	TMR1GIE	TMR2IF	TMR1IF	
F9Ch	PSTR1CON	CMPL1	CMPL 0	_	STRSYNC	STRD	STRC	STRB	STRA	00-0 0001
F9Bh	OSCTUNE	INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUNO	
F9Ah	TRIS.I(2)	TRIS.I7	TRIS.I6	TRIS.I5	TRIS.I4	TRIS.I3	TRIS.I2	TRIS.I1	TRIS.I0	1111 1111
F99h	TRISH(2)	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISHO	1111 1111
F98h	TRISG	_	_		TRISG4	TRISG3	TRISG2	TRISG1	TRISGO	1 1111
F97h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1		1111 111_
F96h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1		1111 111_
F95h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISDO	1111 1111
F94h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISCO	1111 1111
F93h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISBO	1111 1111
F02h	TRISA	TRISA7	TRISAG	TRISAS	TRISAA	TRISA3	TRISA2	TRISA1	TRISAO	1111 1111
F01h							1 AT 12			1111 1111 VVVV VVVV
FQOb	LATH(2)									~~~~
EQEN		LAITI	LATTIC	LAINS						
FREP						LATES			LAIGU	
FRCh										
F8Bh										XXXX XXXX
F8Ab										AAAA XXXX
F80h										AAAA XXXX
F88h				D IS						AAAA XXXX
E976										XXXX XXXX
1 0/11		KU1	KU0	RHO	KD4	кпо	REZ	KU1	RHU	XXXX XXXX

This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented. Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'. Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22). Note 1: 2: 3:

8.6.2 16-BIT WORD WRITE MODE

Figure 8-2 shows an example of 16-Bit Word Write mode for PIC18F87K22 family devices. This mode is used for word-wide memories, which includes some of the EPROM and Flash type memories. This mode allows opcode fetches and table reads from all forms of 16-bit memory, and table writes to any type of word-wide external memories. This method makes a distinction between TBLWT cycles to even or odd addresses.

During a TBLWT cycle to an even address (TBLPTR<0>= 0), the TABLAT data is transferred to a holding latch and the external address data bus is tri-stated for the data portion of the bus cycle. No write signals are activated.

During a TBLWT cycle to an odd address (TBLPTR<0> = 1), the TABLAT data is presented on the upper byte of the AD<15:0> bus. The contents of the holding latch are presented on the lower byte of the AD<15:0> bus.

The WRH signal is strobed for each write cycle; the WRL pin is unused. The signal on the BA0 pin indicates the LSb of the TBLPTR, but it is left unconnected. Instead, the UB and LB signals are active to select both bytes. The obvious limitation to this method is that the table write must be done in pairs on a specific word boundary to correctly write a word location.

FIGURE 8-2: 16-BIT WORD WRITE MODE EXAMPLE

11-0	11-0	11-0	R/W_0	11-0	R/\\/_0	R/\/_0	R/W_0
0-0	0-0	0-0		0-0			
	—	—	EEIE		CMP3IE	CMP2IE	CMP1IE
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5	Unimplemen	ted: Read as ')'				
bit 4	EEIE: Data E	EDATA/Flash V	Vrite Operatio	on Enable bit			
	1 = Interrupt	is enabled	·				
	0 = interrupt	is disabled					
bit 3	Unimplemen	ted: Read as ')'				
bit 2	CMP3IE: CM	P3 Enable bit					
	1 = Interrupt	is enabled					
	0 = interrupt	is disabled					
bit 1	CMP2E: CMF	P2 Enable bit					
	1 = Interrupt	is enabled					
	0 = interrupt	is disabled					
bit 0	CMP1IE: CM	P1 Enable bit					
	1 = Interrunt	is enabled					

REGISTER 11-15: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

Interrupt is enabled

0 = interrupt is disabled

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RE7/ECCP2/	RE7	0	0	DIG	LATE<7> data output.
P2A/AD15		1	Ι	ST	PORTE<7> data input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare/PWM output; takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0		ECCP2 PWM Output A. May be configured for tri-state during Enhanced PWM shutdown event.
	AD15 ⁽²⁾	х	0	DIG	External memory interface, Address/Data Bit 15 output.
		х	I	TTL	External memory interface, Data Bit 15 input.

TABLE 12-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Microcontroller mode.

2: This feature is only available on PIC18F8XKXX devices.

TABLE 12-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
PADCFG1	RDPU	REPU	RJPU ⁽²⁾	_	_	RTSECSEL1	RTSECSEL0	_
ODCON1	SSP10D	CCP2OD	CCP10D	_	_	—	—	SSP2OD
ODCON2	CCP100D ⁽¹⁾	CCP9OD ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP50D	CCP4OD	CCP3OD

Legend: Shaded cells are not used by PORTE.

Note 1: Unimplemented on PIC18FX5K22 devices, read as '0'.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

12.7 PORTF, LATF and TRISF Registers

PORTF is a 7-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISF and LATF. All pins on PORTF are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Pins, RF1 through RF6, may be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RF<7:1> as digital inputs, it is also necessary to turn off the comparators.

- **Note 1:** On device Resets, pins, RF<7:1>, are configured as analog inputs and are read as '0'.
 - To configure PORTF as a digital I/O, turn off the comparators and clear ANCON1 and ANCON2 to digital.

EXAMPLE 12-6: INITIALIZING PORTF

CLRF	PORTF	;	Initialize PORTF by
		;	clearing output
		;	data latches
CLRF	LATF	;	Alternate method
		;	to clear output
		;	data latches
BANKSEL	ANCON1	;	Select bank with ANCON1 register
MOVLW	1Fh	;	Make AN6, AN7 and AN5 digital
MOVWF	ANCON1	;	
MOVLW	0Fh	;	Make AN8, AN9, AN10 and AN11
			digital
MOVWF	ANCON	;	Set PORTF as digital I/O
BANKSEL	TRISF	;	Select bank with TRISF register
MOVLW	0CEh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISF	;	Set RF3:RF1 as inputs
		;	RF5:RF4 as outputs
		;	RF7:RF6 as inputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description			
RF1/AN6/C2OUT/	RF1	0	0	DIG	LATF<1> data output; not affected by analog input.			
CTDIN		1	Ι	ST	PORTF<1> data input; disabled when analog input is enabled.			
	AN6	1	Ι	ANA	A/D Input Channel 6. Default configuration on POR.			
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.			
	CTDIN	1	Ι	ST	CTMU pulse delay input.			
RF2/AN7/C1OUT	RF2	0	0	DIG	LATF<2> data output; not affected by analog input.			
		1	Ι	ST	PORTF<2> data input; disabled when analog input is enabled.			
	AN7	1	Ι	ANA	A/D Input Channel 7. Default configuration on POR.			
	C10UT	0	0	DIG	Comparator 1 output; takes priority over port data.			
RF3/AN8/C2INB/	RF3	0	0	DIG	LATF<3> data output; not affected by analog input.			
CTMUI		1	Ι	ST	PORTF<3> data input; disabled when analog input is enabled.			
	AN8	1	I	ANA	A/D Input Channel 8 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.			
	C2INB	1	Ι	ANA	Comparator 2 Input B.			
	CTMUI	х	0		CTMU pulse generator charger for the C2INB comparator input.			
RF4/AN9/C2INA	RF4	0	0	DIG	LATF<4> data output; not affected by analog input.			
		1	Ι	ST	PORTF<4> data input; disabled when analog input is enabled.			
	AN9	1	Ι	ANA	A/D Input Channel 9 and Comparator C2- input. Default input configuration on POR; does not affect digital output.			
	C2INA	1	-	ANA	Comparator 2 Input A.			
RF5/AN10/CVREF/ C1INB	RF5	0	0	DIG	LATF<5> data output; not affected by analog input. Disabled when CVREF output is enabled.			
		1	I	ST	PORTF<5> data input; disabled when analog input is enabled. Disabled when CVREF output is enabled.			
	AN10	1	I	ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.			
	CVREF	х	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.			
	C1INB	1	Ι	ANA	Comparator 1 Input B.			

TABLE 12-11: PORTF FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

21.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

21.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP bit being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 21-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

21.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching, on the basis of the state of the BF bit, only occurs during a data sequence, not an address sequence.

21.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 21-10).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

21.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 21-13).

21.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPxADD register (Figure 21-19). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by \overline{ACK}), the internal clock will automatically stop counting and the SCLx pin will remain in its last state.

Table 21-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD. The SSPxADD BRG value of $0 \ge 00$ is not supported.

21.4.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I^2C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 21-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 21-3: I²C[™] CLOCK RATE w/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz
4 MHz	1 MHz	2 MHz	09h	100 kHz
16 MHz	4 MHz	8 MHz	03h	1 MHz ⁽¹⁾

Note 1: A minimum of 16 MHz Fosc is required to get 1 MHz I^2C .

FIGURE 22-3: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 22-5: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

24.2 Comparator Operation

A single comparator is shown in Figure 24-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input, VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input, VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator, in Figure 24-2, represent the uncertainty due to input offsets and response time.

FIGURE 24-2: SINGLE COMPARATOR

24.3 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response to a comparator input change; otherwise, the maximum delay of the comparators should be used (see **Section 31.0 "Electrical Characteristics"**).

24.4 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 24-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSs. The analog input, therefore, must be between VSs and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 24-3: COMPARATOR ANALOG INPUT MODEL

24.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake up the device from Sleep mode, when enabled. Each operational comparator will consume additional current. To minimize power consumption while in Sleep mode, turn off the comparators (CON = 0) before entering Sleep. If the device wakes up from Sleep, the contents of the CMxCON register are not affected.

24.8 Effects of a Reset

A device Reset forces the CMxCON registers to their Reset state. This forces both comparators and the voltage reference to the OFF state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR6		_	_	EEIF		CMP3IF	CMP2IF	CMP1IF
PIE6	_	_	_	EEIE		CMP3IE	CMP2IE	CMP1IE
IPR6	—	—	—	EEIP	_	CMP3IP	CMP2IP	CMP1IP
CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CVRCON	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
CMSTAT	CMP3OUT	CMP2OUT	CMP10UT					_
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	—
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	—
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	—
PORTG	—	—	RG5 ⁽¹⁾	RG4	RG3	RG2	RG1	RG0
LATG	—	—	—	LATG4	LATG3	LATG2	LATG1	LATG0
TRISG	_	—	—	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0
PORTH	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0
LATH	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0
TRISH	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0
ANCON0	ANSEL7	ANSEL6	ANSEL5	ANSEL4	ANSEL3	ANSEL2	ANSEL1	ANSEL0
ANCON1	ANSEL15	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8
ANCON2	ANSEL23	ANSEL22	ANSEL21	ANSEL20	ANSEL19	ANSEL18	ANSEL17	ANSEL16
PMD0	CCP3MD	CCP2MD	CCP1MD	UART2MD	UART1MD	SSP2MD	SSP1MD	ADCMD

TABLE 24-3:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0'.

Note 1: Bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN1	WDTEN0
bit 7							bit 0
Dit i							
Legend:		P = Programn	nable bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-2	WDTPS<4:0>	-: Watchdog Ti	mer Postscale	e Select bits			
	10101-1111	1 = Reserved					
	10100 = 1:1,0	048,576 (4,194	.304s)				
	10011 = 1:52	24,288 (2,097.1	52s)				
	10010 = 1:26	62,144 (1,048.5	76s)				
	10001 = 1:13	31,072 (524.28	Bs)				
	10000 = 1.65	0,536 (262.1449 268 (131.072)	5)				
	01111 = 1.32	384 (65 536s)	5)				
	01101 = 1:8	192 (32.768s)					
	01100 = 1 : 4 ,0	096 (16.384s)					
	01011 = 1:2,0	048 (8.192s)					
	01010 = 1:1,0	024 (4.096s)					
	01001 = 1:51	2 (2.048s)					
	01000 = 1:25	6 (1.024s)					
	00111 = 1:12	28 (512 ms)					
	00110 = 1:64	(256 ms)					
	00101 = 1.32	(120 IIIS)					
	000100 = 1.10	(32 ms)					
	00010 = 1 :4	(16 ms)					
	00001 = 1:2	(8 ms)					
	00000 = 1:1	(4 ms)					
bit 1-0	WDTEN<1:0	-: Watchdog Ti	mer Enable bi	its			
	11 = WDT is	enabled in ha	rdware; SWD ⁻	TEN bit is disa	bled		
	10 = WDT is	controlled by	the SWDTEN	bit setting			
	01 = WDT is	enabled only	while the dev	vice is active a	nd disabled in S	Sleep mode; S	WDTEN bit is
	disable	d					
	00 = WDT is	s disabled in ha	rdware; SWD	IEN bit is disa	ibled		

REGISTER 28-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

DAW	Decimal Adjust W Register	DECF	Decrement f
Syntax:	DAW	Syntax:	DECF f {,d {,a}}
Operands:	None	Operands:	$0 \leq f \leq 255$
Operation:	If [W<3:0> > 9] or [DC = 1], then (W<3:0>) + $6 \rightarrow$ W<3:0>;		d ∈ [0,1] a ∈ [0,1]
	else	Operation:	(f) – 1 \rightarrow dest
	$(W<3:0>) \rightarrow W<3:0>$	Status Affected:	C, DC, N, OV, Z
	If [W<7:4> > 9] or [C = 1], then	Encoding:	0000 01da ffff ffff
	$(W<7:4>)+6 \rightarrow W<7:4>;$ C = 1; else $(W<7:4>) \rightarrow W<7:4>;$	Description:	Decrement register, 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.
	$(VV < 7:4>) \rightarrow VV < 7:4>$		If 'a' is '0', the Access Bank is selected.
Status Affected: Encoding:			If 'a' is '1', the BSR is used to select the GPR bank.
Description:	DAW adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result.		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed
Words:	1		Literal Offset Mode" for details.
Cycles:	1	Words:	1
Q Cycle Activity:	02 02 04	Cycles:	1
QI	Q2 Q3 Q4	Q Cycle Activity:	
Decode	register W Data W	Q1	Q2 Q3 Q4
Example 1:	DAW	Decode	ReadProcessWrite toregister 'f'Datadestination
Before Instruct	ion		
W	= A5h	Example:	DECF CNT, 1, 0
C DC	= 0 = 0	Before Instruct	tion
After Instructio	n	CNT Z	= 01h = 0
W	= 05h	After Instructio	'n
DC	= 1 = 0	CNT 7	= 00h
Example 2:		2	- 1
Before Instruct	ion		
W	= CEh		
DC	= 0 = 0		
After Instructio	n		
W	= 34h		
ĎC	= 0		

DEC	FSZ	Decrement	f, Skip if 0		DCFS	SNZ	Decremen	t f, Skip if Not	0
Syn	ax:	DECFSZ f	{,d {,a}}		Synta	IX:	DCFSNZ	f {,d {,a}}	
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Оре	ration:	(f) – 1 \rightarrow de skip if resul	est, t = 0		Opera	ation:	(f) – $1 \rightarrow d$ skip if resu	est, It ≠ 0	
Stat	us Affected:	None			Status	s Affected:	None		
Enc	oding:	0010	11da ff:	ff ffff	Enco	ding:	0100	11da fff	f ffff
Description: The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.		Desci	ription:	The conter decrement placed in V placed bac	nts of register 'f ed. If 'd' is '0', f V. If 'd' is '1', th k in register 'f'.	" are the result is e result is			
		If the result which is alr and a NOP i it a two-cyc	is '0', the nex eady fetched s executed in le instruction.	t instruction is discarded stead, making			If the result instruction discarded a instead, ma instruction.	t is not '0', the which is alread and a NOP is e aking it a two-c	next ly fetched is kecuted ycle
		If 'a' is '1', th GPR bank.	ne BSR is use	d to select the			If 'a' is '0', t If 'a' is '1', t GPR bank.	the Access Bar the BSR is used	nk is selected. d to select the
		set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	Literal Offset λ ever f \leq 95 (5 .2.3 "Byte-Or d Instruction set Mode" for	ction operates Addressing Fh). See iented and is in Indexed details.			If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente	and the extende led, this instruct Literal Offset A never f ≤ 95 (51 0.2.3 "Byte-Ori ed Instruction	ed instruction otion operates addressing =h). See iented and s in Indexed
Wor	ds:	1					Literal Off	set Mode" for	details.
Cyc	es:	1(2) Note: 3 cy by a	rcles if skip an 2-word instru	d followed iction.	Word: Cycle	s: s:	1 1(2) Note: 3 c	cycles if skip ar	nd followed
QC	Cycle Activity:				0.0		by	a 2-word instri	uction.
	Q1	Q2	Q3	Q4	ູ ບູບ _ູ		02	03	04
	Decode	register 'f'	Data	destination	ſ	Decode	Read	Process	Write to
lf sl	kip:	- 0					register 'f'	Data	destination
	Q1	Q2	Q3	Q4	If ski	p:			
	No	No	No	No	Г	Q1	Q2	Q3	Q4
lf o	operation	operation	operation	operation		N0 operation	N0 operation	NO	N0 operation
11 51				04	L If ski	p and followe	d by 2-word in	struction:	oporation
	No	No	No	No	1	Q1	, Q2	Q3	Q4
	operation	operation	operation	operation		No	No	No	No
	No	No	No	No		operation	operation	operation	operation
	operation	operation	operation	operation		No operation	No operation	No operation	No operation
<u>Exa</u>	<u>mple:</u>	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exam	iple:	HERE ZERO	DCFSNZ TEM	IP, 1, 0
	Before Instruc	ction			-	- <i></i>	NZERO	:	
	PC After Instructio	= Address	G (HERE)		1	Before Instruc TEMP After Instructio	tion =	?	
	If CNT	= 0;	I		,	TEMP	=	TEMP – 1,	
		= Address	(CONTINUE])		If TEMP	=	0; Address (r	
	PC	= Address	6 (HERE + 2	2)		If TEMP PC	_ ≠ =	0; Address (1	NZERO)

GOTO Unconditional Branch										
Synta	vntax: GOTO k									
Oper	ands:	8575								
Oper										
Statu	s Affected:	None								
Enco 1st w 2nd v	ding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ ki kkk	kk :k	kkkk ₀ kkkk ₈				
Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.										
Word	ls:	2	2							
Cycle	es:	2	2							
QC	ycle Activity:									
	Q1	Q2	Q3			Q4				
	Decode	Read literal 'k'<7:0>,	No operat	No F operation V		ad literal <19:8>, te to PC				
	No operation	No operation	No No No operation operation							
Example: GOTO THERE After Instruction PC = Address (THERE)										

INCF	Increment	Increment f							
Syntax:	INCF f{,c	d {,a}}							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(f) + 1 \rightarrow de	(f) + 1 \rightarrow dest							
Status Affected:	C, DC, N,	OV, Z							
Encoding:	0010	10da	ffff	ffff					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.								
	If 'a' is '0', t If 'a' is '1', t GPR bank.	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.							
	If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Data	ss a de	Write to estination					
Example:	INCF	CNT,	1, 0						
Before Instruct CNT Z DC After Instructio CNT Z C DC	tion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1								

SUBI	LW		Subtract W from Literal						
Synta	ax:		SUBLW k						
Opera	ands:		$0 \le k \le 255$						
Opera	ation:		$k-(W)\toW$						
Statu	s Affected:		N, OV, 0	С,	DC, Z				
Encoding:			0000		1000	kkł	k	kkkk	
Description:			W is sub literal 'k'	otr T	acted from	m the t is pla	eigl acec	ht-bit 1 in W.	
Word	s:		1						
Cycle	es:		1						
QC	cle Activity:								
	Q1		Q2		Q3			Q4	
	Decode	li	Read iteral 'k'		Proces Data	SS I	V	Vrite to W	
Exam	nple 1:		SUBLW	()2h				
	Before Instruc	tion	ı						
	W C	=	01h ?						
4	After Instructio	n	0.41						
	W C	=	01n 1 ; result is positive						
	Z	=	0						
Exam	<u>ple 2:</u>		SUBLW	()2h				
I	Before Instruc	tion	ı						
	W	=	02h						
	After Instructio	n –	:						
	W C Z	= = =	00h 1 1	;	result is z	zero			
Exam	nole 3.	-	SUBLW	C	12h				
	Refore Instruc	tion	1						
	W	=	03h						
	C Aftor Instructio	=	?						
4	W	, in =	FFh	:	(2's com	oleme	ent)		
	C Z N	= = =	0 0 1	;	result is r	negati	ve		

SUBWF	Su	btract	W from f						
Syntax:	SU	BWF	f {,d {,a}}						
Operands:	0 ≤ d ∈ a ∈	f ≤ 255 [0,1] [0,1]	5						
Operation:	(f) -	– (W) –	→ dest						
Status Affected:	Ν,	OV, C,	DC, Z						
Encoding:	(0101	11da	fff	f ffff				
Description:	Sul cor res is s	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.							
	lf 'a If 'a GP	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.							
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1		Q2	Q	3	Q4				
Decode	reg	Read gister 'f	Proc Da	ess ta	Write to destination				
Example 1:		SUBWF	REG,	1, 0					
Before Instru	ction								
REG W	=	3							
C	=	?							
After Instruct	ion _	1							
W	=	2							
C Z	=	1	; result is	result is positive					
Ň	=	ŏ							
Example 2:	S	SUBWF	REG,	0, 0					
Before Instru	ction								
REG W C	= = =	2 2 ?							
After Instruct	ion								
REG	=	2							
C	=	1	; result is	zero					
Z	=	1							
Example 3	_	SUBWE	REG	1 0					
Before Instru	ction	002.11	1120,	-, .					
REG W	=	1 2							
After Instruct	= ion	ſ							
REG	=	FFh	;(2's com	plemer	nt)				
W C	=	2 0	: result is	negativ	/e				
Ž	=	0	,						

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		Standard (Operating								
Param No.	Device	Тур	Max	Units		Conditions				
	Supply Current (IDD) Cont	(2,3)								
	All devices	2.1	5.5	μA	-40°C					
		2.1	5.7	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
		2.2	6.0	μA	+85°C	Regulator Disabled				
		10	20	μA	+125°C					
	All devices	3.7	7.5	μA	-40°C					
		3.9	7.8	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 31 kHz			
		3.9	8.5	μA	+85°C	Regulator Disabled				
		12	24	μA	+125°C					
	All devices	70	180	μA	-40°C					
		80	190	μA	+25°C	VDD = 5V ⁽⁵⁾				
		80	200	μA	+85°C	Regulator Enabled				
		200	420	μA	+125°C					
	All devices	330	650	μA	-40°C					
		330	640	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
		330	630	μA	+85°C	Regulator Disabled				
		500	850	μA	+125°C		Fosc = 1 MHz (RC_IDLE mode, HF-INTOSC)			
	All devices	520	850	μA	-40°C					
		520	900	μA	+25°C	VDD = 3.3V ⁽⁴⁾				
		520	850	μA	+85°C	Regulator Disabled				
		800	1200	μA	+125°C					
	All devices	590	940	μA	-40°C					
		600	960	μA	+25°C	VDD = 5V ⁽⁵⁾				
		620	990	μA	+85°C	Regulator Enabled				
		1000	1400	μA	+125°C					
	All devices	470	770	μA	-40°C					
		470	770	μA	+25°C	VDD = 1.8V ⁽⁴⁾				
		460	760	μA	+85°C	Regulator Disabled				
		700	1000	μA	+125°C					
	All devices	800	1400	μA	-40°C					
		800	1350	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(RC IDI F mode			
		790	1300	μA	+85°C	Regulator Disabled	internal HF-INTOSC)			
		1100	1400	μA	+125°C		,			
	All devices	880	1600	μA	-40°C					
		890	1700	μA	+25°C	VDD = 5V ⁽⁵⁾				
		910	1800	μA	+85°C	Regulator Enabled				
		1200	2200	uА	+125°C					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: 48 MHz, maximum frequency at +125°C.