

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k22-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F87K22 FAMILY

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL ⁽¹⁾	RODIV3	RODIV2	RODIV1	RODIV0
bit 7							bit 0
Legend:	. 1. 11		1.11			1	
R = Readable			DIT		nented bit, read		
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unki	nown
bit 7	ROON: Refer	ence Oscillator	Output Enabl	le bit			
	1 = Reference 0 = Reference	e oscillator outp e oscillator outp	out is available out is disabled	e on REFO pin			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
	1 = Reference 0 = Reference	e oscillator con e oscillator is di	tinues to run ir isabled in Slee	n Sleep ep			
bit 4	ROSEL: Refe	erence Oscillato	or Source Sele	ect bit ⁽¹⁾			
	1 = Primary o 0 = System cl	scillator (EC or lock is used as	HS) is used a the base cloc	as the base clo k; base clock r	ck eflects any cloo	ck switching of	the device
bit 3-0	RODIV<3:0>:	Reference Os	cillator Divisor	Select bits			
	1111 = Base 1110 = Base 1101 = Base 1100 = Base 1011 = Base 1010 = Base 1001 = Base 1000 = Base	clock value div clock value div	ided by 32,76 ided by 16,38 ided by 8,192 ided by 4,096 ided by 2,048 ided by 1,024 ided by 512 ided by 256 ided by 128	8 4			

REGISTER 3-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: For ROSEL (REVOCON<4>), the primary oscillator is available only when configured as the default via the FOSC settings. This is regardless of whether the device is in Sleep mode.

4.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing-sensitive applications, this allows for the fastest resumption of device operation with its more accurate, primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 4-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval, TCSD (Parameter 39, Table 31-13), is required between the wake event and the start of code execution. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 4-8).

4.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the SOSC oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the SOSC oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the SOSC oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The IDLEN and SCS bits are not affected by the wakeup and the SOSC oscillator continues to run (see Figure 4-8).

FIGURE 4-7: TRANSITION TIMING FOR ENTRY TO IDLE MODE

FIGURE 4-8: TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE

8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F87K22 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

8.7 8-Bit Data Width Mode

In 8-Bit Data Width mode, the External Memory Bus operates only in Multiplexed mode; that is, data shares the 8 Least Significant bits of the address bus.

Figure 8-6 shows an example of 8-Bit Multiplexed mode for PIC18F8XK22 devices. This mode is used for a single, 8-bit memory connected for 16-bit operation. The instructions will be fetched as two 8-bit bytes on a shared data/address bus. The two bytes are sequentially fetched within one instruction cycle (TcY). Therefore, the designer must choose external memory devices according to timing calculations based on 1/2 TcY (2 times the instruction rate). For proper memory speed selection, glue logic propagation delay times must be considered, along with setup and hold times.

The Address Latch Enable (ALE) pin indicates that the Address bits, AD<15:0>, are available on the External Memory Bus interface. The Output Enable (OE) signal

will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The Least Significant bit of the address, BA0, must be connected to the memory devices in this mode. The Chip Enable (CE) signal is active at any time that the microcontroller accesses external memory, whether reading or writing. It is inactive (asserted high) whenever the device is in Sleep mode.

This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories.

During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate level of the BA0 control line is strobed on the LSb of the TBLPTR.

FIGURE 8-6: 8-BIT MULTIPLEXED MODE EXAMPLE

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RB3/INT3/CTED2/	RB3	0	0	DIG	LATB<3> data output.
ECCP2/P2A		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared.
	INT3	1	I	ST	External Interrupt 3 input.
	CTED2	x	I	ST	CTMU Edge 2 input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.
		1	I	TTL	PORTB<4> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI0	1	I	TTL	Interrupt-on-pin change.
RB5/KBI1/T3CKI/	RB5	0	0	DIG	LATB<5> data output.
T1G		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	Ι	TTL	Interrupt-on-pin change.
	T3CKI	x	Ι	ST	Timer3 clock input.
	T1G	x	I	ST	Timer1 external clock gate input.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	I	TTL	PORTB<6> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-pin change.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operations.
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	I	TTL	PORTB<7> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.
	KBI3	1	Ι	TTL	Interrupt-on-pin change.
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operations.
		x	I	ST	Serial execution data input for ICSP and ICD operations.

TABLE 12-3: PORTB FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Extended Microcontroller mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ODCON1	SSP10D	CCP2OD	CCP10D	_				SSP2OD

Legend: Shaded cells are not used by PORTB.

REGISTER 18-17: ALRMHR: ALARM HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 18-18: ALRMMIN: ALARM MINUTES VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Dil / Unimplementeu. Reau as (

- bit 6-4 **MINTEN<2:0>:** Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
- bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 18-19: ALRMSEC: ALARM SECONDS VALUE REGISTER

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimplem	ented: Read as '0'		
bit 6-4	SECTEN<2	2:0>: Binary Coded Decim	al Value of Second's Tens Dig	it bits
Contains a value from 0 to 5.				

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

REGISTER 19-4: CCPRxL: CCPx PERIOD LOW BYTE REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxL7 | CCPRxL6 | CCPRxL5 | CCPRxL4 | CCPRxL3 | CCPRxL2 | CCPRxL1 | CCPRxL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxL<7:0>: CCPx Period Register Low Byte bits Capture Mode: Capture Register Low Byte Compare Mode: Compare Register Low Byte PWM Mode: Duty Cycle Register

REGISTER 19-5: CCPRxH: CCPx PERIOD HIGH BYTE REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxH7 | CCPRxH6 | CCPRxH5 | CCPRxH4 | CCPRxH3 | CCPRxH2 | CCPRxH1 | CCPRxH0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxH<7:0>: CCPx Period Register High Byte bits Capture Mode: Capture Register High Byte Compare Mode: Compare Register High Byte PWM Mode: Duty Cycle Buffer Register

20.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 20-14. The lower seven bits of the associated ECCPxDEL register (Register 20-4) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 20-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT Period Period Pulse Width PxA^{(2) |} td td I PxB(2) (1) (1) . (1) td = Dead-Band Delay Note 1: At this time, the TMR2 register is equal to the PR2 register. 2: Output signals are shown as active-high.

FIGURE 20-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

FIGURE 20-16: SIMPLIFIED STEERING BLOCK DIAGRAM

20.4.7.1 Steering Synchronization

The STRSYNC bit of the PSTRxCON register gives the user two choices for when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 20-17 and 20-18 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 20-17: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 20-18: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)

21.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx. The master determines when the slave (Processor 1, Figure 21-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPxCON1<4>). This, then, would give waveforms for SPI communication, as

shown in Figure 21-3, Figure 21-5 and Figure 21-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 21-3 shows the waveforms for Master mode. When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

21.4.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPxCON1<5>).

The SSPxCON1 register allows control of the I^2C operation. Four mode selection bits (SSPxCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCLx and SDAx pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISC or TRISD bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCLx and SDAx pins.

21.4.3 SLAVE MODE

In Slave mode, the SCLx and SDAx pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I^2C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPxBUF register with the received value currently in the SSPxSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPxSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPxCON1<6>), was set before the transfer was received.

In this case, the SSPxSR register value is not loaded into the SSPxBUF, but bit, SSPxIF, is set. The BF bit is cleared by reading the SSPxBUF register, while bit, SSPOV, is cleared through software.

The SCLx clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing Parameter 100 and Parameter 101.

21.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPxSR register. All incoming bits are sampled with the rising edge of the clock (SCLx) line. The value of register, SSPxSR<7:1>, is compared to the value of the SSPxADD register. The address is compared on the falling edge of the eighth clock (SCLx) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPxSR register value is loaded into the SSPxBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSP Interrupt Flag bit, SSPxIF, is set (and an interrupt is generated, if enabled) on the falling edge of the ninth SCLx pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/\overline{W} (SSPxSTAT<2>) bit must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with Steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPxIF, BF and UA, are set on address match).
- 2. Update the SSPxADD register with second (low) byte of address (clears bit, UA, and releases the SCLx line).
- 3. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 4. Receive second (low) byte of address (bits, SSPxIF, BF and UA, are set).
- 5. Update the SSPxADD register with the first (high) byte of address. If match releases SCLx line, this will clear bit, UA.
- 6. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPxIF and BF, are set).
- 9. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.

21.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPxCON2<7> set). Following a Start bit detect, eight bits are shifted into the SSPxSR and the address is compared against the SSPxADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPxSR is transferred to the SSPxBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPxIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPxBUF. The value can be used to determine if the address was device-specific or a general call address.

In 10-Bit Addressing mode, the SSPxADD is required to be updated for the second half of the address to match and the UA bit is set (SSPxSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 21-17).

24.5 Comparator Control and Configuration

Each comparator has up to eight possible combinations of inputs: up to four external analog inputs and one of two Internal Reference Voltages.

All of the comparators allow a selection of the signal from pin, CXINA, or the voltage from the comparator reference (CVREF) on the non-inverting channel. This is compared to either CXINB, CXINC, C2INB/C2IND or the microcontroller's fixed Internal Reference Voltage (VBG, 1.024V nominal) on the inverting channel. The comparator inputs and outputs are tied to fixed I/O pins, defined in Table 24-1. The available comparator configurations and their corresponding bit settings are shown in Figure 24-4.

TABLE 24-1:	COMPARATOR INPUTS AND
	OUTPUTS

Comparator	Input or Output	I/O Pin
	C1INA (VIN+)	RF6
	C1INB (VIN-)	RF5
1	C1INC ⁽¹⁾ (VIN-)	RH6
	C2INB (VIN-)	RF3
	C1OUT	RF2
	C2INA (VIN+)	RF4
	C2INB (VIN-)	RF3
2	C2INC ⁽¹⁾ (VIN-)	RH4
	C2IND ⁽¹⁾ (VIN-)	RH5
	C2OUT	RF1
	C3INA (VIN+)	RG2
	C3INB (VIN-)	RG3
3	C3INC (VIN-)	RG4
	C2INB (VIN-)	RF3
	C3OUT	RG1

Note 1: C1INC, C2INC and C2IND are all unavailable for 64-pin devices (PIC18F6XK22).

24.5.1 COMPARATOR ENABLE AND INPUT SELECTION

Setting the CON bit of the CMxCON register (CMxCON<7>) enables the comparator for operation. Clearing the CON bit disables the comparator, resulting in minimum current consumption.

The CCH<1:0> bits in the CMxCON register (CMxCON<1:0>) direct either one of three analog input pins, or the Internal Reference Voltage (VBG), to the comparator, VIN-. Depending on the Comparator

operating mode, either an external or Internal Reference Voltage may be used. For external analog pins that are unavailable in 64-pin devices (C1INC, C2INC and C2IND), the corresponding configurations that use them as inputs are unavailable.

The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly.

The external reference is used when CREF = 0 (CMxCON<2>) and VIN+ is connected to the CxINA pin. When external reference voltages are used, the comparator module can be configured to have the reference sources externally. The reference signal must be between Vss and VDD, and can be applied to either pin of the comparator.

The comparator module also allows the selection of an internally generated reference voltage from the Comparator Voltage Reference (CVREF) module. This module is described in more detail in **Section 25.0 "Comparator Voltage Reference Module"**. The reference from the comparator reference voltage module is only available when CREF = 1. In this mode, the Internal Reference Voltage is applied to the comparator's VIN+ pin.

Note:	The comparator input pin, selected by				
	CCH<1:0>, must be configured as an input				
	by setting both the corresponding TRISF,				
	TRISG or TRISH bit and the corresponding				
	ANSELx bit in the ANCONx register.				

24.5.2 COMPARATOR ENABLE AND OUTPUT SELECTION

The comparator outputs are read through the CMSTAT register. The CMSTAT<5> bit reads the Comparator 1 output, CMSTAT<6> reads Comparator 2 output and CMSTAT<7> reads Comparator 3 output. These bits are read-only.

The comparator outputs may also be directly output to the RF2, RF1 and RG1 I/O pins by setting the COE bit (CMxCON<6>). When enabled, multiplexers in the output path of the pins switch to the output of the comparator. While in this mode, the TRISF<2:1> and TRISG<1> bits still function as the digital output enable bits for the RF2, RF1 and RG1 pins.

By default, the comparator's output is at logic high whenever the voltage on VIN+ is greater than on VIN-. The polarity of the comparator outputs can be inverted using the CPOL bit (CMxCON<5>).

The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications, as discussed in **Section 24.2 "Comparator Operation"**.

FIGURE 29-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	15 10 9 8 7 0 OPCODE d a f (FILE #) d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank	ADDWF MYREG, W, B
	f = 8-bit file register address	
	15 12 11 0	
	OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
	15 12 11 0	
	1111 f (Destination FILE #)	
	f = 12-bit file register address	
	Bit-oriented file register operations	
	<u>15 12 11 9 8 7 0</u>	
	OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
	 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
	Literal operations	
	15 8 7 0	
	OPCODE k (literal)	MOVLW 7Fh
	k = 8-bit immediate value	
	Control operations	
	CALL, GOTO and Branch operations	
	15 8 7 0	
	OPCODE n<7:0> (literal)	GOTO Label
	15 12 11 0	
	1111 n<19:8> (literal)	
	n = 20-bit immediate value	
	15 8 7 0	
	OPCODE S n<7:0> (literal)	CALL MYFUNC
	15 12 11 0	
	1111 n<19:8> (literal)	
	S = Fast bit	
	<u>15 11 10 0</u>	
	OPCODE n<10:0> (literal)	BRA MYFUNC
	15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC

PIC18F87K22 FAMILY

Increment f, Skip if Not 0

INFSNZ f {,d {,a}}

INCFSZ		Increment	f, Skip if 0		INFSNZ
Syntax:		INCFSZ f	{,d {,a}}		Syntax:
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			Operands:
Operation:		(f) + 1 \rightarrow de skip if result	est, t = 0		Operation:
Status Affect	ed:	None			Status Affected:
Encoding:		0011	11da ff	ff ffff	Encoding:
Description:		The conten incrementer placed in W placed back	ts of register '' d. If 'd' is '0', t /. If 'd' is '1', th < in register 'f'	l' are he result is he result is	Description:
		If the result which is alro and a NOP i it a two-cyc	is '0', the nex eady fetched in s executed ins le instruction.	t instruction s discarded stead, making	
		lf 'a' is '0', ti lf 'a' is '1', ti GPR bank.	he Access Ba he BSR is use	nk is selected. d to select the	
		If 'a' is '0' a set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	nd the extend ed, this instruc- Literal Offset A rever $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	ed instruction ction operates Addressing Fh). See iented and s in Indexed details.	
Words:		1			Words:
Cycles:		1(2) Note: 3 c	voles if skin a	nd followed	Cycles:
		by	a 2-word insti	ruction.	
Q Cycle Act	ivity:				Q Cycle Activity
Q	1	Q2	Q3	Q4	Q1
Decc	ode	Read	Process	Write to	Decode
lf akin:		register 'f'	Data	destination	lf alvia
п экір. О	1	02	03	Q4	II SKIP.
No)	No	No	No	No
opera	tion	operation	operation	operation	operation
If skip and for	ollowed	d by 2-word in	struction:		If skip and follo
Q	1	Q2	Q3	Q4	Q1
No) tion	No	No	No	No
Opera No		No	No	No	operation
opera	tion	operation	operation	operation	operation
<u>Example:</u>		HERE NZERO ZERO	INCFSZ CN :	VT, 1, 0	Example:
Before I	Instruc	tion	(Before Inst
PC After Ins	structio	– Address	• (HERE)		After Instru
CN	NT	= CNT + 7	1		REG
lf (PC	JNT C	= 0; = Address	(ZERO)		If REC PC
lf (ÇNT	≠ 0;			If REC
PC	,	= Address	6 (NZERO)		FC

berands: $\begin{split} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{split}$								
ber	ation:	(f) + 1 \rightarrow de skip if result	(f) + 1 \rightarrow dest, skip if result $\neq 0$					
atu	s Affected:	None	., .					
ico	ding:	0100	10da ff:	ff ffff				
escription:		The content incremented placed in W placed back	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.					
		If the result instruction v discarded a instead, ma instruction.	If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.					
		lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Bai ne BSR is use	nk is selected. d to select the				
		If 'a' is '0' a set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for dotails					
ord	ls:	1						
cle	s.	1(2)						
		Note: 3 cy by a	rcles if skip an a 2-word instru	d followed				
C	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
sk	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
skip and followed				01				
	No	No.	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
an								
	<u>nple:</u>	HERE I ZERO NZERO	INFSNZ REG	B, 1, 0				
	n <u>ple:</u> Before Instruc PC	HERE I ZERO NZERO tion = Address	INFSNZ REG G (HERE)	8, 1, 0				
	Before Instruc PC After Instructio	HERE J ZERO NZERO = Address on = REG + 1	INFSNZ REG G (HERE)	3, 1, 0				
	nple: Before Instruc PC After Instructio REG If REG PC	HERE D ZERO NZERO tion = Address on = REG + $\frac{1}{2}$ \neq 0; = Address	INFSNZ REG G (HERE) 1 G (NZERO)	3, 1, 0				
	nple: PC After Instructio REG If REG PC If REG PC	HERE 1 ZERO NZERO tion = Address on = REG + ⁻ ≠ 0; = Address = 0; = Address	INFSNZ REC 6 (HERE) 1 6 (NZERO) 6 (ZERO)	3, 1, 0				

PIC18F87K22 FAMILY

ADDV	WF	ADD W to Indexed (Indexed Literal Offset mode)								
Synta	X:	ADDWF [k] {,d}								
Opera	ands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \ \in \ [0,1] \end{array}$								
Opera	ation:	(W) + ((FSR2) + k) \rightarrow dest								
Status	s Affected:	N, OV, C, DC, Z								
Enco	ding:	0010	kkł	kkk kkkk						
Description:		The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'.								
		If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.								
Words	s:	1								
Cycle	s:	1								
Q Cy	cle Activity:									
F	Q1	Q2	Q3	Q3		Q4				
	Decode	Read 'k'	Proce Data	Process Data		/rite to stination				
Exam	ple:	ADDWF	[OFST]	,0						
Ē	Before Instruction W OFST FSR2 Contents of 0A2Ch After Instruction W Contents of 0A2Ch	on = = = = =	17h 2Ch 0A00r 20h 37h 20h	ı						

	Bit Set Indexed (Indexed Literal Offset mode)								
Syntax:	BSF [k], b								
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$1 \rightarrow ((FSR2) + k) < b >$								
Status Affected:	None								
Encoding:	1000 bbb0 kkkk kkkk								
Description:	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write to destination						
Example:	BSF [FLAG_OFST]	, 7						
Before Instruction FLAG_OF ESR2	on ST = =	0Ah 0A00h							
Contents	_	55b							
After Instruction	. –	5511							
Contents of 0A0Ah	=	D5h							
SETF	Set Indexe (Indexed L	d iteral Offset r	node)						
SETF Syntax:	Set Indexe (Indexed L SETF [k]	d iteral Offset r	node)						
SETF Syntax: Operands:	Set Indexed L (Indexed L SETF $[k]$ $0 \le k \le 95$	d iteral Offset r	node)						
SETF Syntax: Operands: Operation:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	d iteral Offset r GR2) + k)	node)						
SETF Syntax: Operands: Operation: Status Affected:	Set Indexed (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None	d iteral Offset r GR2) + k)	node)						
SETF Syntax: Operands: Operation: Status Affected: Encoding:	Set Indexed (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110	d iteral Offset r GR2) + k)	node) <pre>kkkkk</pre>						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset	d iteral Offset r GR2) + k) 1000 kki ts of the registe et by 'k', are se	node)						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1	d iteral Offset r SR2) + k) 1000 kki ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh.						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh.						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh.						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 2	d iteral Offset r SR2) + k) 1000 kki ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh. Q4						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k'	d iteral Offset r GR2) + k) 1000 kkl ts of the registe tby 'k', are se Q3 Process	Rode)						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k'	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data	Rode)						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [k]	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data OFST]	node) kk kkkk er indicated by et to FFh. Q4 Write register						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruction	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [ON = 020 Content =	d iteral Offset r SR2) + k) 1000 kkl ts of the registe ts of ts	kk kkkk er indicated by et to FFh. Q4 Write register						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instructio OFST FSR2	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [on = 2C = 0A	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data OFST] th 00h	node) kk kkkk er indicated by et to FFh. Q4 Write register						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruction OFST FSR2 Contents of 0A2Ch	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [on = 2C = 0A = 00	d iteral Offset r SR2) + k) 1000 kkl ts of the registe ts of the registe Q3 Process Data OFST] th 00h h	node) kk kkkk er indicated by et to FFh. Q4 Write register						
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruction OFST FSR2 Contents of 0A2Ch After Instruction	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [0 = 2C = 0A = 00	d iteral Offset r SR2) + k) 1000 kkl ts of the registr et by 'k', are se Q3 Process Data OFST] th 00h h	Rode)						

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	130	390	μA	-40°C				
		130	390	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		130	390	μA	+85°C	Regulator Disabled			
		250	500	μA	+125°C				
	All devices	270	790	μA	-40°C				
		270	790	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(PRI RUN mode		
		270	790	μA	+85°C	Regulator Disabled	EC oscillator)		
		400	900	μA	+125°C				
	All devices	430	990	μA	-40°C				
		450	980	μA	+25°C	Vdd = 5V ⁽⁵⁾			
		460	980	μA	+85°C	Regulator Enabled			
		600	1300	μA	+125°C				
	All devices	430	860	μA	-40°C		Fosc = 4 MHz (PRI_RUN mode, EC oscillator) Fosc = 64 MHz (PRI_RUN mode,		
		530	900	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		490	880	μA	+85°C	Regulator Disabled			
		750	1600	μA	+125°C				
	All devices	850	1750	μA	-40°C	_			
		850	1700	μA	+25°C	$VDD = 3.3V^{(4)}$			
		850	1800	μA	+85°C	Regulator Disabled			
		1150	2400	μA	+125°C				
	All devices	1.1	2.7	mA	-40°C				
		1.1	2.6	mA	+25°C	VDD = 5V ⁽⁵⁾			
		1.1	2.6	mA	+85°C	Regulator Enabled			
		2.0	4.0	mA	+125°C				
	All devices	12	19	mA	-40°C				
		12	19	mA	+25°C	VDD = 3.3V ⁽⁴⁾			
		12	19	mA	+85°C	Regulator Disabled			
		13	22	mA	+125°C(°)				
	All devices	13	20	mA	-40°C		EC oscillator)		
		13	20	mA	+25°C	VDD = 5V ⁽⁴⁾			
			20	mA	+85°C	Regulator Enabled			
		14	23	mA	+125°C ⁽⁶⁾				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units	Conditions				
D025	Real-Time Clock/Calendar with SOSC Oscillator								
$(\Delta IRTCC)$	All devices	0.7	2.7	μA	-40°C		32.768 kHz, SOSCRUN = 1		
		0.7	2.8	μA	+25°C	V _{DD} = 1.8V ⁽⁴⁾ Regulator Disabled			
		1.1	2.8	μA	+60°C				
		1.1	2.9	μA	+85°C				
		2.2	4.4	μA	+125°C				
	All devices	1.2	2.9	μA	-40°C				
		1.1	2.8	μA	+25°C	$V_{DD} = 3.3V^{(4)}$ Regulator Disabled			
		2	4.6	μA	+60°C				
		2	4.8	μA	+85°C				
		4	6.5	μA	+125°C				
	All devices	1.5	4.4	μA	-40°C	$V_{DD} = 5V^{(5)}$			
		1.5	4.4	μA	+25°C				
		1.7	4.7	μA	+60°C				
		1.7	4.7	μA	+85°C				
		3.5	6.9	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	Vpp	Voltage on MCLR/VPP/RE5 pin	VDD + 1.5	—	10	V	(Note 3, Note 4)
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory					(Note 2)
D120	ED	Byte Endurance	100K	—	—	E/W	-40°C to +125°C
D121	Vdrw	VDD for Read/Write	1.8	_	5.5	V	Using EECON to read/ write, ENVREG tied to VDD
			1.8	—	3.6	V	Using EECON to read/ write, ENVREG tied to Vss
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +125°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	1.8	—	5.5	V	ENVREG tied to VDD
			1.8	—	3.6	V	ENVREG tied to Vss
D132B	Vpew	Voltage for Self-Timed Erase or Write Operations					
		VDD	1.8	—	5.5	V	ENVREG tied to VDD
D133A	Tiw	Self-Timed Write Cycle Time	_	2	_	ms	
D134	TRETD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	-	_	10	mA	
D140	TWE	Writes per Erase Cycle	—	—	1		For each physical address

TABLE 31-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 9.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if Single-Supply Programming is disabled.

4: The MPLAB[®] ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and the target system when programming or debugging with the MPLAB ICD 2.