

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k22-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Maraa	Pin Number	Pin	Buffer	Description
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0/ULPWU RA0 AN0 ULPWU	24	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 0. Ultra Low-Power Wake-up input.
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog Input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.
RA4/T0CKI RA4 T0CKI	28	I/O I	ST ST	Digital I/O. Timer0 external clock input.
RA5/AN4/T1CKI/T3G/ HLVDIN RA5 AN4 T1CKI T3G HLVDIN	27	I/O 	TTL Analog ST ST Analog	Digital I/O. Analog Input 4. Timer1 clock input. Timer3 external clock gate input. High/Low-Voltage Detect input.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL com ST = Schmitt I = Input P = Power I^2C = I^2C^{TM}/S^{M}	npatible input Trigger input w MBus	vith CN	1OS levels	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

Din Marra	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTG is a bidirectional I/O port.
RG0/ECCP3/P3A RG0 ECCP3 P3A	5	I/O I/O O	ST ST	Digital I/O. Capture 3 input/Compare 3 output/PWM3 output. ECCP3 PWM Output A.
RG1/TX2/CK2/AN19/ C3OUT RG1 TX2 CK2 AN19 C3OUT	6	I/O O I/O I	ST — ST Analog	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX2/DT2). Analog Input 19.
RG2/RX2/DT2/AN18/ C3INA RG2 RX2 DT2 AN18 C3INA	7	1/0 1 1/0 1	ST ST ST Analog Analog	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX2/CK2). Analog Input 18. Comparator 3 Input A.
RG3/CCP4/AN17/P3D/ C3INB RG3 CCP4 AN17 P3D C3INB	8	I/O I/O I O I	ST ST Analog — Analog	Digital I/O. Capture 4 input/Compare 4 output/PWM4 output. Analog Input 17. ECCP3 PWM Output D. Comparator 3 Input B.
RG4/RTCC/T7CKI/T5G/ CCP5/AN16/P1D/C3INC RG4 RTCC T7CKI ⁽³⁾ T5G CCP5 AN16 P1D C3INC	10	I/O 0 1 1/O 1 0 1	ST — ST ST Analog — Analog	Digital I/O. RTCC output. Timer7 clock input. Timer5 external clock gate input. Capture 5 input/Compare 5 output/PWM5 output. Analog Input 16. ECCP1 PWM Output D. Comparator 3 Input C.
RG5	9 natible input			See the MCLR/RG5 pin.
ST = Schmitt T I = Input P = Power	rigger input wit	h CMC)S levels	Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power $I^{2}C = I^{2}C^{TM}/SMBus$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

- **3:** Not available on PIC18F65K22 and PIC18F85K22 devices.
- 4: PSP is available only in Microcontroller mode.

5: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

5.0 RESET

The PIC18F87K22 family of devices differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM) Reset
- f) Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.3.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 28.2 "Watchdog Timer (WDT)".

A simplified block diagram of the on-chip Reset circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event.

The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7** "**Reset State of Registers**".

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 11.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F87K22 FAMILY (CONTINUED)

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
F3Fh	TMR7H ⁽³⁾	F32h	TMR12 ⁽³⁾	F25h	ANCON0	F18h	PMD1
F3Eh	TMR7L ⁽³⁾	F31h	PR12 ⁽³⁾	F24h	ANCON1	F17h	PMD2
F3Dh	T7CON ⁽³⁾	F30h	T12CON ⁽³⁾	F23h	ANCON2	F16h	PMD3
F3Ch	T7GCON ⁽³⁾	F2Fh	CM2CON	F22h	RCSTA2		
F3Bh	TMR6	F2Eh	CM3CON	F21h	TXSTA2		
F3Ah	PR6	F2Dh	CCPTMRS0	F20h	BAUDCON2		
F39H	T6CON	F2Ch	CCPTMRS1	F1Fh	SPBRGH2		
F38h	TMR8	F2Bh	CCPTMRS2	F1Eh	SPBRG2		
F37h	PR8	F2Ah	REFOCON	F1Dh	RCREG2		
F36h	T8CON	F29H	ODCON1	F1Ch	TXREG2		
F35h	TMR10 ⁽³⁾	F28h	ODCON2	F1Bh	PSTR2CON		
F34h	PR10 ⁽³⁾	F27h	ODCON3	F1Ah	PSTR3CON		
F33h	T10CON ⁽³⁾	F26h	MEMCON ⁽³⁾	F19h	PMD0		

Note 1: This is not a physical register.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

- 3: This register is not available on devices with a program memory of 32 Kbytes (PIC18FX5K22).
- 4: Addresses, F16h through F5Fh, are also used by SFRs, but are not part of the Access RAM. To access these registers, users must always load the proper BSR value.

Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	
FFFh	TOSU	_	—	-	Top-of-Stack U	pper Byte (TO	S<20:16>)			0 0000	
FFEh	TOSH	Top-of-Stack High Byte (TOS<15:8>)								0000 0000	
FFDh	TOSL	Top-of-Stack L	Top-of-Stack Low Byte (TOS<7:0>)								
FFCh	STKPTR	STKFUL	STKUNF	_	Return Stack P	ointer				uu-0 0000	
FFBh	PCLATU	—	—		Holding Regist	er for PC<20:1	6>			0 0000	
FFAh	PCLATH	Holding Regis	ter for PC<15:	8>						0000 0000	
FF9h	PCL	PC Low Byte	PC Low Byte (PC<7:0>)								
FF8h	TBLPTRU	_	_	bit 21	Program Memo	ory Table Point	ter Upper Byte	(TBLPTR<20:	16>)	00 0000	
FF7h	TBLPTRH	Program Merr	nory Table Poir	ter High Byte	(TBLPTR<15:8>	>)				0000 0000	
FF6h	TBLPTRL	Program Merr	nory Table Poir	iter Low Byte (TBLPTR<7:0>)					0000 0000	
FF5h	TABLAT	Program Merr	Program Memory Table Latch							0000 0000	
FF4h	PRODH	Product Regis	ter High Byte							XXXX XXXX	
FF3h	PRODL	Product Regis	ter Low Byte							XXXX XXXX	
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	
FF0h	INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	
FEFh	INDF0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 not cha	anged (not a pl	nysical register))		
FEEh	POSTINC0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 post-in	cremented (no	t a physical reg	jister)		
FEDh	POSTDEC0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 post-de	ecremented (no	ot a physical re	gister)		
FECh	PREINC0	Uses contents	of FSR0 to ac	ldress data me	emory – value o	f FSR0 pre-inc	remented (not	a physical regi	ster)		
FEBh	PLUSW0	Uses contents FSR0 offset by	s of FSR0 to ac y W	dress data me	mory – value of	FSR0 pre-incr	remented (not a	a physical regis	ster) – value of		
FEAh	FSR0H	_	_	_	_	Indirect Data	Memory Addre	ss Pointer 0 Hi	igh	0000	
FE9h	FSR0L	Indirect Data N	Memory Addre	ss Pointer 0 Lo	ow Byte					XXXX XXXX	
FE8h	WREG	Working Regis	ster							xxxx xxxx	
FE7h	INDF1	Uses contents	of FSR1 to ac	ldress data me	emory – value o	f FSR1 not cha	anged (not a pl	nysical register)		

TABLE 6-2: PIC18F87K22 FAMILY REGISTER FILE SUMMARY

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

3: Unimplemented on devices with a program memory of 32 Kbytes (PIC18FX5K22).

REGISTER 11-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	2 External Interr	upt Priority bit				
	1 = High price	ority					
hit 6		nity External Interr	unt Driarity hit				
DILO	1 - High pric						
	0 = Low prio	brity					
bit 5	INT3IE: INT3	B External Interr	upt Enable bit				
	1 = Enables	the INT3 extern	nal interrupt				
	0 = Disables	the INT3 exter	nal interrupt				
bit 4	INT2IE: INT2	2 External Interr	upt Enable bit				
	1 = Enables	the INT2 extern	nal interrupt				
	0 = Disables	s the INT2 exter	nal interrupt				
bit 3	INT1IE: INT1	I External Interr	upt Enable bit				
	1 = Enables	the INT1 extern	nal interrupt				
h # 0			nai interrupt				
DIL Z	$\frac{1}{1} = \frac{1}{2} $	2 external interr	upt Flag bit	must be alasra	d in coffwore)		
	0 = The INT	3 external inter	upt occurred (upt did not oc	cur	u in soltware)		
bit 1	INT2IF: INT2	2 External Interr	upt Flag bit				
	1 = The INT	2 external interr	upt occurred (must be cleare	d in software)		
	0 = The INT	2 external interr	upt did not oc	cur	,		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT	1 external interr	upt occurred (must be cleare	d in software)		
	0 = The INT	1 external interr	upt did not oc	cur			
Note:	Interrupt flag bits	s are set when	an interrupt co	ondition occurs,	regardless of	the state of its	corresponding
	enable bit or the	Global Interrupt	Enable bit. Us	ser software sho	ould ensure the	e appropriate int	errupt flag bits
	are clear prior to	enabling an int	errupt. This fe	ature allows for	software pollir	ng.	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP100D ⁽¹⁾	CCP90D ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	CCP3OD
bit 7							bit 0
Legend:	L-11		1.11			1	
R = Readable	bit	W = Writable	bit		nented bit, read		
-n = value at F	'OR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unki	IOWN
bit 7	CCP10OD: C	CP10 Open-D	rain Output Fr	nable bit(1)			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	in capability is	disabled				
bit 6	CCP9OD: CC	P9 Open-Drai	n Output Enat	ole bit ⁽¹⁾			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	iin capability is	disabled				
bit 5	CCP8OD: CC	P8 Open-Drai	n Output Enat	ble bit			
	1 = Open-dra 0 = Open-dra	iin capability is iin capability is	enabled disabled				
bit 4	CCP70D: CC	P7 Open-Drai	n Output Enat	ole bit			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	in capability is	disabled				
bit 3	CCP6OD: CC	P6 Open-Drai	n Output Enat	ole bit			
	1 = Open-dra	in capability is	enabled				
1.11 O	0 = Open-dra	in capability is	disabled	. 1 . 1 . 1			
DIT 2		P5 Open-Drail	n Output Enat	DIE DIT			
	1 = Open-dra 0 = Open-dra	in capability is	disabled				
bit 1	CCP4OD: CC	P4 Open-Drai	n Output Enat	ole bit			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	in capability is	disabled				
bit 0	CCP3OD: EC	CP3 Open-Dra	ain Output Ena	able bit			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	iin capability is	disabled				

REGISTER 12-3: ODCON2: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 2

Note 1: Not implemented on devices with 32-byte program memory (PIC18FX5K22).

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RE7/ECCP2/	RE7	0	0	DIG	LATE<7> data output.
P2A/AD15		1	Ι	ST	PORTE<7> data input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare/PWM output; takes priority over port data.
		1	Ι	ST	ECCP2 capture input.
	P2A	0	0		ECCP2 PWM Output A. May be configured for tri-state during Enhanced PWM shutdown event.
	AD15 ⁽²⁾	х	0	DIG	External memory interface, Address/Data Bit 15 output.
		х	I	TTL	External memory interface, Data Bit 15 input.

TABLE 12-9: PORTE FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared and in Microcontroller mode.

2: This feature is only available on PIC18F8XKXX devices.

TABLE 12-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
PADCFG1	RDPU	REPU	RJPU ⁽²⁾	_	_	RTSECSEL1	RTSECSEL0	_
ODCON1	SSP10D	CCP2OD	CCP10D	_	_	—	—	SSP2OD
ODCON2	CCP100D ⁽¹⁾	CCP9OD ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP50D	CCP4OD	CCP3OD

Legend: Shaded cells are not used by PORTE.

Note 1: Unimplemented on PIC18FX5K22 devices, read as '0'.

2: Unimplemented on 64-pin devices (PIC18F6XK22), read as '0'.

TABLE 12-15: PORTH FUNCTIONS (CONTINUED)

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RH4/CCP9/	RH4	0	0	DIG	LATH<4> data output.		
P3C/AN12/		1	Ι	ST	PORTH<4> data input.		
CZINC	CCP9	0	0	DIG	CCP9 compare/PWM output; takes priority over port data.		
		1	Ι	ST	CCP9 capture input.		
	P3C	0	0		ECCP3 PWM Output C. May be configured for tri-state during Enhanced PWM.		
	AN12	1	I	ANA	A/D Input Channel 12. Default input configuration on POR; does not affect digital input.		
	C2INC	x	I ANA Comparator 2 Input C.				
RH5/CCP8/	RH5	0	0	DIG	LATH<5> data output.		
P3B/AN13/		1	Ι	ST	PORTH<5> data input.		
CZIND	CCP8	0	0	DIG	CCP8 compare/PWM output; takes priority over port data.		
		1	I	ST	CCP8 capture input.		
	P3B	0	0		ECCP3 PWM Output B. May be configured for tri-state during Enhanced PWM.		
	AN13	1	I	ANA	A/D Input Channel 13. Default input configuration on POR; does not affect digital input.		
	C2IND	x	I	ANA	Comparator 2 Input D.		
RH6/CCP7/	RH6	0	0	DIG	LATH<6> data output.		
P1C/AN14/		1	I	ST	PORTH<6> data input.		
CHINC	CCP7	0	0	DIG	CCP7 compare/PWM output; takes priority over port data.		
		1	I	ST	CCP7 capture input.		
	P1C	0	0		ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM.		
	AN14	1	I	ANA	A/D Input Channel 14. Default input configuration on POR; does not affect digital input.		
	C1INC	x	Ι	ANA	Comparator 1 Input C.		
RH7/CCP6/	RH7	0	0	DIG	LATH<7> data output.		
P1B/AN15		1	Ι	ST	PORTH<7> data input.		
	CCP6	0	0	DIG	CCP6 compare/PWM output; takes priority over port data.		
		1	Ι	ST	CCP6 capture input.		
	P1B	0	0	_	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM.		
	AN15	1	I	ANA	A/D Input Channel 15. Default input configuration on POR; does not affect digital input.		

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

REGISTER 12-5: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IBF	OBF	IBOV	PSPMODE	_	—	_	
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7	IBF: Input Buf	fer Full Status	bit				
	1 = A word ha	is been receive	ed and is waiti	ng to be read l	by the CPU		
	0 = No word h	as been recei	ved				
bit 6	OBF: Output I	Buffer Full Stat	tus bit				
	1 = The output	It buffer still ho	lds a previous	ly written word	1		
		it builer has be	en read				
bit 5	IBOV: Input B	uffer Overflow	Detect bit		,		
	1 = A write oc	curred when a	previously inp	out word had n	ot been read (m	nust be cleared	in software)
hit 4		arallal Slava F	Port Mode Sole	act bit			
DIL 4		aralier Slave F					
	1 = Farallel Si 0 = General P	Purpose I/O mo	e ode				
bit 3-0	Unimplement	ted: Read as '	0'				
			-				
FIGURE 12-4:	PARAL	LEL SLAVE		TE WAVEFO	RMS		

0.0	(Single Output)	PxA Modulated			
	(PxA Modulated			
10	(Half-Bridge)	PxB Modulated	Delay		¦
		PxA Active	_ ;		
(Full-Bridge, 01 Forward)	PxB Inactive			, , , ,	
	PxC Inactive	_ :		<u> </u>	
		PxD Modulated			i
		PxA Inactive		- 	
11	(Full-Bridge,	PxB Modulated		İ	1 1 1
	Reverse)	PxC Active			
		PxD Inactive	'		; ;
Relati	onships: • Period = 4 * Tosc • Pulse Width = Tosc • Delay = 4 * Tosc • Delay = 4 * Tosc	* (PR2 + 1) * (TMR2 Pres sc * (CCPRxL<7:0>:CCPx * (ECCPxDEL<6:0>) delay is programmed usin	scale Value) :CON<5:4>) * (TMR2 Pres	cale Value)	mable Dead-Band

FIGURE 20-5: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

21.4.6.1 I²C[™] Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted, 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received, 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator, used for the SPI mode operation, is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 21.4.7 "Baud Rate"** for more details.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

23.2 A/D Registers

23.2.1 A/D CONTROL REGISTERS

REGISTER 23-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7				-			bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkn	own	

bit 7 Unimplemented: Read as '0'

bit 6-2	CHS<4:0>: Analog Channel Select bit	5
	00000 = Channel 00 (ANO) 10	000 = Channel 16 (AN16)
	00001 = Channel 01 (AN1) 10	001 = Channel 17 (AN17)
	00010 = Channel 02 (AN2) 10	010 = Channel 18 (AN18)
	00011 = Channel 03 (AN3) 10	011 = Channel 19 (AN19)
	00100 = Channel 04 (AN4) 10	100 = Channel 20 (AN20) ^(1,2)
	00101 = Channel 05 (AN5) 10	101 = Channel 21 (AN21) ^(1,2)
	00110 = Channel 06 (AN6) 10	110 = Channel 22 (AN22) ^(1,2)
	00111 = Channel 07 (AN7) 10	111 = Channel 23 (AN23) ^(1,2)
	01000 = Channel 08 (AN8) 11	$000 = (\text{Reserved})^{(2)}$
	01001 = Channel 09 (AN9) 11	$001 = (\text{Reserved})^{(2)}$
	01010 = Channel 10 (AN10 11	$010 = (\text{Reserved})^{(2)}$
	01011 = Channel 11 (AN11) 11	$011 = (Reserved)^{(2)}$
	01100 = Channel 12 (AN12) ^(1,2) 11	100 = Channel 28 (Reserved CTMU)
	01101 = Channel 13 (AN13)(1,20) 11	101 = Channel 29 (Internal temperature diode)
	01110 = Channel 14 (AN14) ^(1,2) 11	110 = Channel 30 (VDDCORE)
	01111 = Channel 15 (AN15) ^(1,2) 11	111 = Channel 31 (v1.024V band gap)
bit 1	GO/DONE: A/D Conversion Status bit	
	 1 = A/D (or calibration) cycle in prog cleared automatically by hardwar 0 = A/D conversion has completed or 	ress. Setting this bit starts an A/D conversion cycle. The bit is when the A/D conversion is completed. is not in progress
bit 0	ADON: A/D On bit	
	1 = A/D Converter is operating	
	0 = A/D conversion module is shut off	and consuming no operating current
Note 1:	These channels are not implemented on 6	4-pin devices.

2: Performing a conversion on unimplemented channels will return random values.

23.8 Use of the Special Event Triggers

A/D conversion can be started by the Special Event Trigger of any of these modules:

- ECCP2 Requires CCP2M<3:0> bits (CCP2CON<3:0>) set at '1011'
- CTMU Requires the setting of the CTTRIG bit (CTMUCONH<0>)
- Timer1
- RTCC

To start an A/D conversion:

- The A/D module must be enabled (ADON = 1)
- The appropriate analog input channel is selected
- The minimum acquisition period is set one of these ways:
 - Timing provided by the user
 - Selection made of an appropriate TACQ time

With these conditions met, the trigger sets the GO/DONE bit and the A/D acquisition starts.

If the A/D module is not enabled (ADON = 0), the module ignores the Special Event Trigger.

Note: With an ECCP2 trigger, Timer1 or Timer 3 is cleared. The timers reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). If the A/D module is not enabled, the Special Event Trigger is ignored by the module, but the timer's counter resets.

23.9 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined, in part, by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the power-managed mode clock that will be used.

After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding power-managed Idle mode during the conversion.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires that the A/D RC clock be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry into Sleep mode. The IDLEN and SCS<1:0> bits in the OSCCON register must have already been cleared prior to starting the conversion.

EXAMPLE 27-4: ROUTINE FOR CAPACITIVE TOUCH SWITCH

```
#include "pl8cxxx.h"
#define COUNT 500
                                         //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define OPENSW 1000
                                         //Un-pressed switch value
#define TRIP 300
                                         //Difference between pressed
                                         //and un-pressed switch
#define HYST 65
                                         //amount to change
                                         //from pressed to un-pressed
#define PRESSED 1
#define UNPRESSED 0
int main(void)
ł
   unsigned int Vread;
                                         //storage for reading
   unsigned int switchState;
   int i;
    //assume CTMU and A/D have been setup correctly
    //see Example 25-1 for CTMU & A/D setup
   setup();
   CTMUCONHbits.CTMUEN = 1;
                                         //Enable the CTMU
   CTMUCONHbits.IDISSEN = 1;
                                         //drain charge on the circuit
                                         //wait 125us
   DELAY;
   CTMUCONHbits.IDISSEN = 0;
                                         //end drain of circuit
   CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                         //using CTMU current source
                                         //wait for 125us
   DELAY;
   CTMUCONLbits.EDG1STAT = 0;
                                         //Stop charging circuit
   PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
                                         //and begin A/D conv.
   ADCON0bits.GO=1;
   while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
   Vread = ADRES;
                                         //Get the value from the A/D
    if(Vread < OPENSW - TRIP)
    {
       switchState = PRESSED;
   else if(Vread > OPENSW - TRIP + HYST)
    {
       switchState = UNPRESSED;
    }
```

REGISTER 28-11: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

		D 1	11.0	11.0	11.0	11.0	11.0
R/C-1	R/U-1	K-1	0-0	0-0	0-0	0-0	0-0
WRTD	WRTB	WRTC ⁽¹⁾	—	—	—	—	—
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown

bit 7	WRTD: Data FEPROM Write Protection bit
	1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected
bit 6	WRTB: Boot Block Write Protection bit
	 1 = Boot block is not write-protected⁽²⁾ 0 = Boot block is write-protected⁽²⁾
bit 5	WRTC: Configuration Register Write Protection bit ⁽¹⁾
	 1 = Configuration registers are not write-protected⁽²⁾ 0 = Configuration registers are write-protected⁽²⁾
bit 4-0	Unimplemented: Read as '0'

Note 1: This bit is read-only in normal Execution mode; it can be written only in Program mode.

2: For the memory size of the blocks, see Figure 28-6.

BNO	v	Branch if N	Branch if Not Overflow						
Synta	ax:	BNOV n	BNOV n						
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$						
Oper	ation:	if Overflow (PC) + 2 + 2	if Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC						
Statu	s Affected:	None	None						
Enco	oding:	1110	0101 nnr	n	nnnn				
Desc	cription:	If the Overfl program wil	If the Overflow bit is '0', then the program will branch.						
		The 2's con added to the incremented instruction, PC + 2 + 2r two-cycle in	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q C If Ju	ycle Activity: imp:				~ /				
	Q1	Q2	Q3		Q4				
	Decode	Read literal	Process Data	VVI	PC				
	No	No	No		No				
	operation	operation	operation	ope	eration				
If NO	o Jump:	00	01		04				
	Q1	Q2 Read literal	Q3 Drococo		Q4				
	Decode	'n'	Data	ope	eration				
Example: HERE BNOV Jump									
	Before Instruc	tion							
	PC After Instruction	= ad	dress (HERE)					
	Aller instruction								
	PC	= ad	dress (Jump)					
	It Overflo PC	ow = 1; = ade	dress (HERE	+ 2)				

Syntax:BNZnOperands:-128 \leq n \leq 127Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding:11100001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNoNoNoNoNoNoIf No Jump:Q1Q2Q1Q2Q3Q4DecodeRead literalProcessNooperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNo operationStructureNo operationIf No Jump:DataQ1Q2Q3Q3Q4DecodeRead literal No operationProcessNo operationStructureNo operationStructureNo DataDecodeRead literal No No OperationStructureNo DataDecodeRead literal No No No OperationDecodeRead lit	BNZ		Branch if N	Branch if Not Zero						
Operands: $-128 \le n \le 127$ Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding: 1110 0001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4DecodeNoNoNoNoNoNooperationoperationIf No Jump:Q1Q2Q1Q2Q3Q1Q2Q3Q4DecodeRead literalProcessNooperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNoinDataoperationoperation	Synta	ax:	BNZ n	BNZ n						
Operation:if Zero bit is '0', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding:11100001nnnnDescription:If the Zero bit is '0', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4PCNoNoNooperationoperationIf No Jump:Q1Q2Q1Q2Q3Q1Q2Q3Q4DecodeRead literalProcessNoNoNoNoNoperationoperationoperationIf No Jump:Q1Q1Q2Q3Q4DecodeRead literalProcessNooperationIf No Jump:A1Q1Q2Q3Q4DecodeRead literalProcessNoNoin'Dataoperation	Oper	ands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$						
Status Affected: None Encoding: 1110 0001 nnnn nnnn Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No	Oper	ation:	if Zero bit is (PC) + 2 + 2	if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC						
Encoding: 1110 0001 nnnn nnnn Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation operation If No No No No No Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No Y Data operation If No Jump: Data operation Q1 Q2 Q3 Q4 Decode Read literal Process	Statu	s Affected:	None	None						
Description: If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation Before Instruction BNZ Jump	Enco	ding:	1110	0001	nnnn	nnnn				
The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No State No No No No No If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No No If No Jump: Decode Read literal Process No No No Jump Decode Read literal Process No Before Instruction Decode Read literal Proce	Desc	ription:	If the Zero I will branch.	If the Zero bit is '0', then the program will branch.						
Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to in' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No in' Data operation Example: HERE BNZ Jump	The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.									
Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No Cycle Construction Example: HERE BNZ Jump Before Instruction	Word	ls:	1	1						
Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation Example: HERE BNZ Jump Before Instruction	Cycle	es:	1(2)	1(2)						
Q1 Q2 Q3 Q4 Decode Read literal Process Write to Data PC No No No operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 0 0 Operation Operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation	Q C If Ju	ycle Activity:								
Decode Read literal 'n' Process Data Write to PC No No No No operation operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No Operation in' Data operation		Q1	Q2	Q3		Q4				
No No No No operation operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No Example: HERE BNZ Jump		Decode	Read literal 'n'	Process Data	v	Vrite to PC				
operation operation operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal 'n' Process No operation Example: HERE BNZ Jump		No	No	No		No				
If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation Example: HERE BNZ Jump Before Instruction		operation	operation	operation	n op	eration				
Q1 Q2 Q3 Q4 Decode Read literal 'n' Process Data No operation Example: HERE BNZ Jump	lf No	o Jump:								
Decode Read literal 'n' Process Data No operation Example: HERE BNZ Jump		Q1	Q2	Q3		Q4				
<u>'n'</u> Data operation		Decode	Read literal	Process		No				
Example: HERE BNZ Jump			'n'	Data	ор	eration				
	<u>Exan</u>	nple: Refore Instruc	HERE	BNZ Ju	mp					

PC	=	address (HERE)
After Instruction		
If Zero	=	0;
PC	=	address (Jump)
If Zero	=	1;
PC	=	address (HERE + 2)

DAW	Decimal Adjust W Register	DECF	Decrement f
Syntax:	DAW	Syntax:	DECF f {,d {,a}}
Operands:	None	Operands:	$0 \leq f \leq 255$
Operation:	If [W<3:0> > 9] or [DC = 1], then (W<3:0>) + $6 \rightarrow$ W<3:0>;		d ∈ [0,1] a ∈ [0,1]
	else	Operation:	(f) – 1 \rightarrow dest
	$(W<3:0>) \rightarrow W<3:0>$	Status Affected:	C, DC, N, OV, Z
	If [W<7:4> > 9] or [C = 1], then	Encoding:	0000 01da ffff ffff
	$(W<7:4>)+6 \rightarrow W<7:4>;$ C = 1; else $(W<7:4>) \rightarrow W<7:4>;$	Description:	Decrement register, 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.
	$(VV < 7:4>) \rightarrow VV < 7:4>$		If 'a' is '0', the Access Bank is selected.
Status Affected: Encoding:			If 'a' is '1', the BSR is used to select the GPR bank.
Description:	DAW adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result.		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed
Words:	1		Literal Offset Mode" for details.
Cycles:	1	Words:	1
Q Cycle Activity:	02 02 04	Cycles:	1
QI	Q2 Q3 Q4	Q Cycle Activity:	
Decode	register W Data W	Q1	Q2 Q3 Q4
Example 1:	DAW	Decode	ReadProcessWrite toregister 'f'Datadestination
Before Instruct	ion		
W	= A5h	Example:	DECF CNT, 1, 0
C DC	= 0 = 0	Before Instruct	tion
After Instructio	n	CNT Z	= 01h = 0
W	= 05h	After Instructio	'n
DC	= 1 = 0	CNT 7	= 00h
Example 2:		2	- 1
Before Instruct	ion		
W	= CEh		
DC	= 0 = 0		
After Instructio	n		
W	= 34h		
ĎC	= 0		

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F8 (Indu	7K22 Family strial/Extended)							
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ^(2,3)							
	All devices	5.3	10	μA	-40°C			
		5.5	10	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		5.5	10	μA	+85°C	Regulator Disabled		
		12	24	μA	+125°C			
	All devices	10	15	μA	-40°C			
		10	16	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 31 kHz	
		11	17	μA	+85°C	Regulator Disabled		
		15	35	μA	+125°C			
	All devices	70	180	μA	-40°C			
		80	185	μA	+25°C	VDD = 5√ ⁽⁵⁾		
		90	190	μA	+85°C	Regulator Enabled		
		200	500	μA	+125°C			
	All devices	410	850	μA	-40°C			
		410	800	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		410	830	μA	+85°C	Regulator Disabled		
		700	1500	μA	+125°C			
	All devices	680	990	μA	-40°C		Fosc = 1 MHz (RC_RUN mode, HE-INTOSC)	
		680	960	μA	+25°C	VDD = 3.3V ⁽⁴⁾		
		670	950	μA	+85°C	Regulator Disabled		
		800	1700	μA	+125°C		111 1110000)	
	All devices	760	1400	μA	-40°C			
		780	1400	μA	+25°C	VDD = 5V ⁽⁵⁾		
		800	1500	μA	+85°C	Regulator Enabled		
		1200	2400	μA	+125°C			
	All devices	760	1300	μA	-40°C			
		760	1400	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		770	1500	μA	+85°C	Regulator Disabled		
		800	1700	μA	+125°C			
	All devices	1.4	2.5	mA	-40°C			
		1.4	2.5	mA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 4 MHZ	
		1.4	2.5	mA	+85°C	Regulator Disabled	HF-INTOSC)	
		1.5	3.0	mA	+125°C			
	All devices	1.5	2.7	mA	-40°C			
		1.5	2.7	mA	+25°C	VDD = 5V ⁽⁵⁾		
		1.5	2.7	mA	+85°C	Regulator Enabled		
		1.6	3.3	mA	+125°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: 48 MHz, maximum frequency at +125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial/Extended) (Continued)

PIC18F87K22 Family (Industrial/Extended)		Standard C Operating t							
Param No.	Device	Тур	Max	Units	Conditions				
D025	Real-Time Clock/Calendar with SOSC Oscillator								
$(\Delta IRTCC)$	All devices	0.7	2.7	μA	-40°C				
		0.7	2.8	μA	+25°C	1/100 = 1.01/(4)			
		1.1	2.8	μA	+60°C	Regulator Disabled			
		1.1	2.9	μA	+85°C	Regulator Disabled			
		2.2	4.4	μA	+125°C				
	All devices	1.2	2.9	μA	-40°C				
		1.1	2.8	μA	+25°C	1/100 - 3.31/(4)	30 768 VHz		
		2	4.6	μA	+60°C	Regulator Disabled	SOSCRUN = 1		
		2	4.8	μA	+85°C				
		4	6.5	μA	+125°C				
	All devices	1.5	4.4	μA	-40°C				
		1.5	4.4	μA	+25°C	$\sqrt{DD} = 5\sqrt{5}$			
		1.7	4.7	μA	+60°C	Regulator Enabled			
		1.7	4.7	μA	+85°C				
		3.5	6.9	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = External square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: 48 MHz, maximum frequency at +125°C.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A