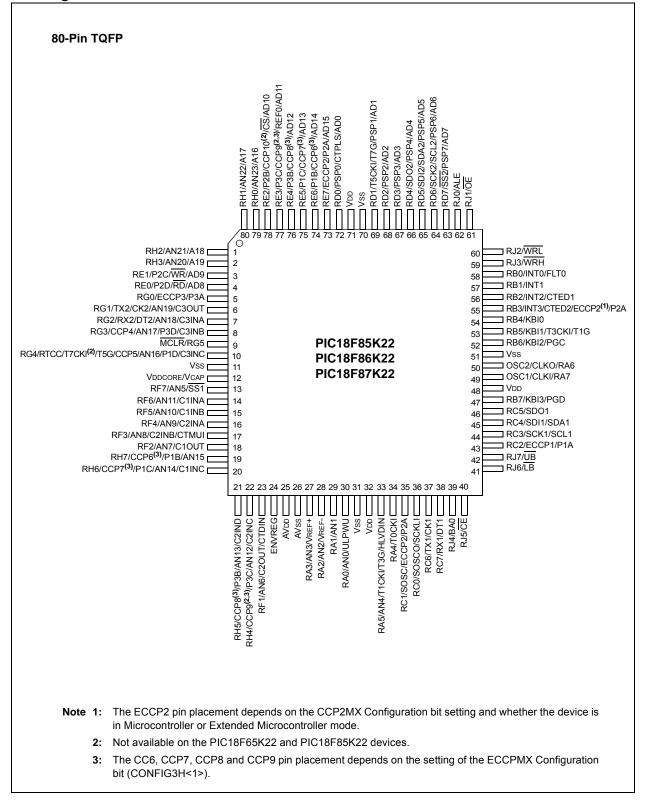


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – PIC18F8XK22

1.3 Details on Individual Family Members

Devices in the PIC18F87K22 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in these ways:

- Flash Program Memory:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – 32 Kbytes
 - PIC18FX6K22 (PIC18F66K22 and PIC18F86K22) 64 Kbytes
 - PIC18FX7K22 (PIC18F67K22 and PIC18F87K22) 128 Kbytes
- Data RAM:
 - All devices except PIC18FX5K22 4 Kbytes
 - PIC18FX5K22 2 Kbytes
- I/O Ports:
 - PIC18F6XK22 (64-pin devices) 7 bidirectional ports
 - PIC18F8XK22 (80-pin devices) 9 bidirectional ports

- CCP modules:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – 5 CCP modules
 - PIC18FX6K22 and PIC18FX7K22 (PIC18F66K22, PIC18F86K22, PIC18F67K22, and PIC18F87K22) – 7 CCP modules
- · Timer modules:
 - PIC18FX5K22 (PIC18F65K22 and PIC18F85K22) – Four 8-bit timer/counters and four 16-bit timer/counters
 - PIC18FX6K22 and PIC18FX7K22 (PIC18F66K22, PIC18F86K22, PIC18F67K22, and PIC18F87K22) – Six 8-bit timer/counters and five 16-bit timer/counters
- A/D Channels:
 - PIC18F6XK22 (64-pin devices) 24 channels
 - PIC18F8XK22 (80-pin devices) 16 channels

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for all devices are listed in Table 1-3 and Table 1-4.

Din Nama	Pin Number	Pin	Buffer	Description
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/SOSCO/SCLKI RC0 SOSCO SCLKI	30	I/O O I	ST — ST	Digital I/O. SOSC oscillator output. Digital SOSC input.
RC1/SOSCI/ECCP2/P2A RC1 SOSCI ECCP2 ⁽¹⁾ P2A	29	I/O I I/O O	ST CMOS ST	Digital I/O. SOSC oscillator input. Capture 2 input/Compare 2 output/PWM2 output. Enhanced PWM2 Output A.
RC2/ECCP1/P1A RC2 ECCP1 P1A	33	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced PWM1 Output A.
RC3/SCK1/SCL1 RC3 SCK1 SCL1 ⁽⁴⁾	34	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI1/SDA1 RC4 SDI1 SDA1 ⁽⁴⁾	35	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO1 RC5 SDO1	36	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1).
Legend: TTL = TTL con ST = Schmitt I = Input	npatible input Trigger input w	∕ith C№	10S levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output

TABLE 1-3: PIC18F6XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K22 and PIC18F85K22 devices.

4: The CC6, CCP7, CCP8 and CCP9 pin placement depends on the setting of the ECCPMX Configuration bit (CONFIG3H<1>).

OD

= Open-Drain (no P diode to VDD)

3.0 OSCILLATOR CONFIGURATIONS

3.1 Oscillator Types

The PIC18F87K22 family of devices can be operated in the following oscillator modes:

- EC External clock, RA6 available
- ECIO External clock, clock out RA6 (Fosc/4 on RA6)
- HS High-Speed Crystal/Resonator
- XT Crystal/Resonator
- LP Low-Power Crystal
- RC External Resistor/Capacitor, RA6 available
- RCIO External Resistor/Capacitor, clock out RA6 (Fosc/4 on RA6)
- INTIO2 Internal Oscillator with I/O on RA6 and RA7
- INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7

There is also an option for running the 4xPLL on any of the clock sources in the input frequency range of 4 to 16 MHz.

The PLL is enabled by setting the PLLCFG bit (CONFIG1H<4>) or the PLLEN bit (OSCTUNE<6>).

For the EC and HS mode, the PLLEN (software) or PLLCFG (CONFIG) bit can be used to enable the PLL.

For the INTIOx modes (HF-INTOSC):

- Only the PLLEN can enable the PLL (PLLCFG is ignored).
- When the oscillator is configured for the internal oscillator (FOSC<3:0> = 100x), the PLL can be enabled only when the HF-INTOSC frequency is 8 or 16 MHz.

When the RA6 and RA7 pins are not used for an oscillator function or CLKOUT function, they are available as general purpose I/Os. To optimize power consumption when using EC/HS/ XT/LP/RC as the primary oscillator, the frequency input range can be configured to yield an optimized power bias:

- Low-Power Bias External frequency less than 160 kHz
- Medium Power Bias External frequency between 160 kHz and 16 MHz
- High-Power Bias External frequency greater than 16 MHz

All of these modes are selected by the user by programming the FOSC<3:0> Configuration bits (CONFIG1H<3:0>). In addition, PIC18F87K22 family devices can switch between different clock sources, either under software control or, under certain conditions, automatically. This allows for additional power savings by managing device clock speed in real time without resetting the application. The clock sources for the PIC18F87K22 family of devices are shown in Figure 3-1.

For the HS and EC mode, there are additional power modes of operation – depending on the frequency of operation.

HS1 is the Medium Power mode with a frequency range of 4 MHz to 16 MHz. HS2 is the High-Power mode, where the oscillator frequency can go from 16 MHz to 25 MHz. HS1 and HS2 are achieved by setting the CONFIG1H<3:0> correctly. (For details, see Register 28-2 on page 406.)

EC mode has these modes of operation:

- EC1 For low power with a frequency range up to 160 kHz
- EC2 Medium power with a frequency range of 160 kHz to 16 MHz
- EC3 High power with a frequency range of 16 MHz to 64 MHz

EC1, EC2 and EC3 are achieved by setting the CONFIG1H<3:0> correctly. (For details, see Register 28-2 on page 406.)

Table 3-1 shows the HS and EC modes' frequency range and FOSC<3:0> settings.

4.0 POWER-MANAGED MODES

The PIC18F87K22 family of devices offers a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (such as battery-powered devices).

There are three categories of power-managed mode:

- Run modes
- Idle modes
- · Sleep mode

There is an Ultra Low-Power Wake-up (ULPWU) for waking from the Sleep mode.

These categories define which portions of the device are clocked, and sometimes, at what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block). The Sleep mode does not use a clock source.

The ULPWU mode, on the RA0 pin, enables a slow falling voltage to generate a wake-up, even from Sleep, without excess current consumption. (See **Section 4.7 "Ultra Low-Power Wake-up"**.)

The power-managed modes include several powersaving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices. This feature allows the controller to use the SOSC oscillator instead of the primary one. Another power-saving feature is Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions:

- · Will the CPU be clocked or not
- · What will be the clock source

The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits select one of three clock sources for power-managed modes. Those sources are:

- The primary clock as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the SOSC oscillator)
- The internal oscillator block (for LF-INTOSC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These considerations are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entering the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

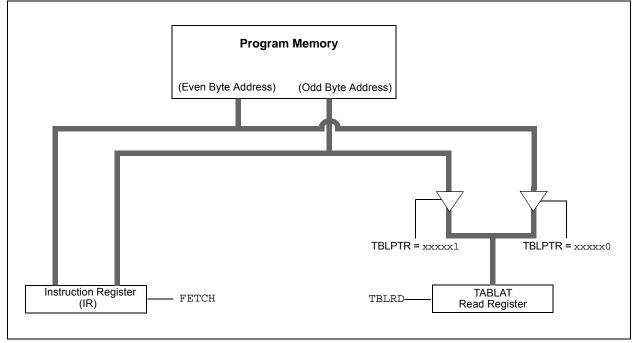
Depending on the current and impending mode, a change to a power-managed mode does not always require setting all of the previously discussed bits. Many transitions can be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured as desired, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mode	oscco	ON Bits	Module	Clocking	Available Clock and Oscillator Source
Mode	IDLEN<7> ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off	Off	None – All clocks are disabled
PRI_RUN	N/A	00	Clocked	Clocked	Primary – XT, LP, HS, EC, RC and PLL modes. This is the normal, Full-Power Execution mode.
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – SOSC Oscillator
RC_RUN	N/A	1x	Clocked	Clocked	Internal oscillator block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, RC, EC
SEC_IDLE	1	01	Off	Clocked	Secondary – SOSC oscillator
RC_IDLE	1	lx	Off	Clocked	Internal oscillator block ⁽²⁾

TABLE 4-1:POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

^{2:} Includes INTOSC (HF-INTOSC and MG-INTOSC) and INTOSC postscaler, as well as the LF-INTOSC source.

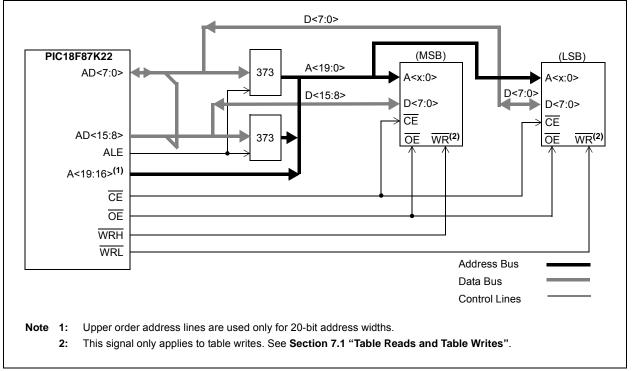

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed, one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, the TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY


EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	BCF	EECON1, CFGS	; point to Flash program memory
	BSF	EECON1, EEPGD	; access Flash program memory
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the word
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_WORD			
	TBLRD*-	÷	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD_EVEN	
	TBLRD*-	÷	; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVF	WORD_ODD	

8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F87K22 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RC3/SCK1/	RC3	0	0	DIG	LATC<3> data output.
SCL1		1	Ι	ST	PORTC<3> data input.
	SCK1	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.
		1	Ι	ST	SPI clock input (MSSP module).
	SCL1	0	0	DIG	I ² C clock output (MSSP module); takes priority over port data.
		1	Ι	l ² C	I ² C clock input (MSSP module); input type depends on module setting.
RC4/SDI1/	RC4	0	0	DIG	LATC<4> data output.
SDA1		1	Ι	ST	PORTC<4> data input.
	SDI1		Ι	ST	SPI data input (MSSP module).
	SDA1	1	0	DIG	I ² C data output (MSSP module); takes priority over port data.
		1	Ι	l ² C	I ² C data input (MSSP module); input type depends on module setting.
RC5/SDO1	RC5	0	0	DIG	LATC<5> data output.
		1	Ι	ST	PORTC<5> data input.
	SDO1	0	0	DIG	SPI data output (MSSP module).
RC6/TX1/CK1	RC6	0	0	DIG	LATC<6> data output.
		1	-	ST	PORTC<6> data input.
	TX1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	CK1	1	0	DIG	Synchronous serial data input (EUSART module); user must configure as an input.
		1	Ι	ST	Synchronous serial clock input (EUSART module).
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.
		1	Ι	ST	PORTC<7> data input.
	RX1	1	Ι	ST	Asynchronous serial receive data input (EUSART module).
	DT1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART module); user must configure as an input.

TABLE 12-5: PORTC FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I^2C = I^2C^{TM}$ /SMBus Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATBC6	LATC5	LATCB4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ODCON1	SSP10D	CCP2OD	CCP10D	_	_		_	SSP2OD
ODCON3	U2OD	U10D	_	_	_	_	_	CTMUDS

Legend: Shaded cells are not used by PORTC.

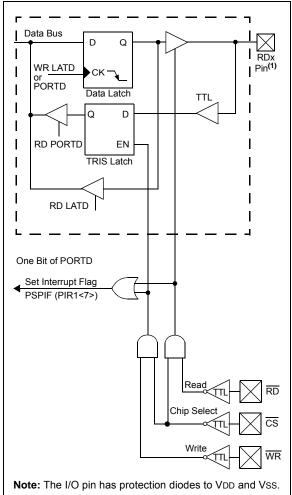
12.11 Parallel Slave Port

PORTD can function as an 8-bit-wide Parallel Slave Port (PSP), or microprocessor port, when control bit, PSPMODE (PSPCON<4>), is set. The port is asynchronously readable and writable by the external world through the RD control input pin (RE0/P2D/RD/AD8) and WR control input pin (RE1/P2C/WR/AD9).

Note:	The Parallel Slave Port is available only in
	Microcontroller mode.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an eight-bit latch.

Setting bit, PSPMODE, enables port pin, RE0/P2D/RD/AD8, to be the RD input, RE1/P2C/WR/AD9 to be the WR input and RE2/P2B/CCP10/CS/AD10 to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (= 111).

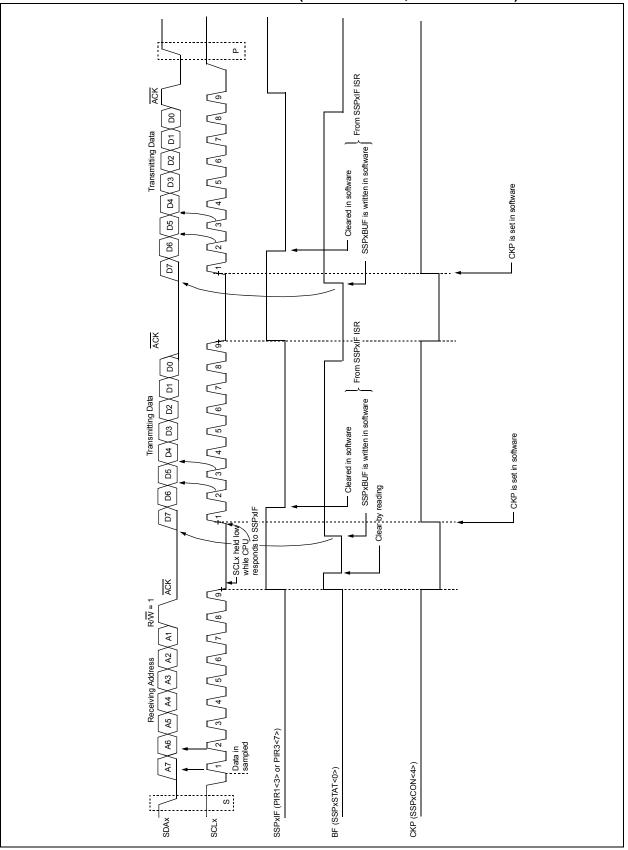

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits (PIR1<7> and PSPCON<7>, respectively) are set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit (PSPCON<6>) is set. If the user writes new data to PORTD to set OBF, the data is immediately read out, but the OBF bit is not set.

When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 12-4 and Figure 12-5, respectively.

FIGURE 12-3: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)



NOTES:

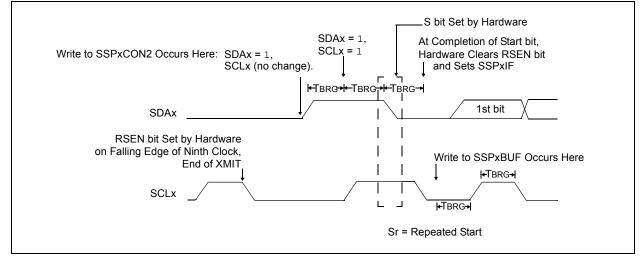
			-	ł	- Period	
00	(Single Output)	PxA Modulated				
		PxA Modulated		► elay ⁽¹⁾	Delay ⁽¹⁾	
10	(Half-Bridge)	PxB Modulated	; ;	siay"		
		PxA Active				
01	(Full-Bridge, Forward)	PxB Inactive			<u> </u>	<i>i</i> I I
01	Forward)	PxC Inactive	_ :			I
		PxD Modulated	= —Ĺ			
		PxA Inactive			1	1 1 1
11	(Full-Bridge,	PxB Modulated	= – <u> </u> _			1
	Reverse)	PxC Active			1 	
		PxD Inactive	'			i i i
	 Pulse Width = Tos Delay = 4 * Tosc 	* (PR2 + 1) * (TMR2 Pre sc * (CCPRxL<7:0>:CCP * (ECCPxDEL<6:0>) delay is programmed usir log")	xCON<5:4>)	·	,	ammable Dead-Banc

FIGURE 20-5: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

21.4.9 I²C[™] MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

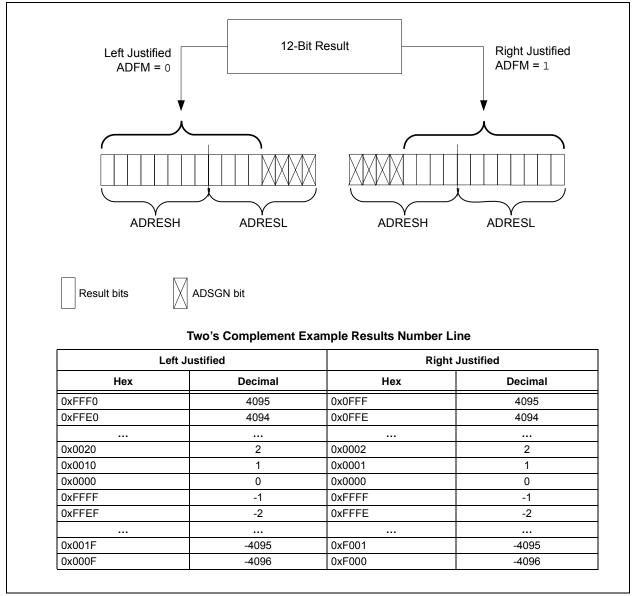

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

21.4.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 21-22: REPEATED START CONDITION WAVEFORM


R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unki	nown
bit 7		to-Baud Acquis		Status bit uto-Baud Rate I	Detect mode (I	must be cleare	d in software)
	0 = No BRG	rollover has oc	curred				
bit 6		ive Operation I					
		peration is Idle					
bit 5	RXDTP: Data	/Receive Polar	ity Select bit				
		<u>s mode:</u> lata (RXx) is in lata (RXx) is no					
		mode: <) is inverted (a <) is not inverte					
bit 4	TXCKP: Sync	hronous Clock	Polarity Selec	t bit			
	Asynchronous 1 = Idle state		(x) is a low lev	el			
		<u>mode:</u> for clock (CKx) for clock (CKx)					
bit 3	BRG16: 16-B	it Baud Rate R	egister Enable	bit			
				Hx and SPBRGA		RGHx value ig	nored
bit 2	Unimplemen	ted: Read as ')'				
bit 1	WUE: Wake-u	up Enable bit					
	hardware		sing edge	RXx pin – interru letected	ipt generated	on falling edge	; bit cleared i
	Synchronous Unused in this						
bit 0		-Baud Detect I	- nable bit				
	Asynchronous 1 = Enable b cleared ir	<u>s mode:</u> aud rate meas ı hardware upo	urement on the	e next character has completed	r. Requires re	ception of a Sy	ync field (55h
	Synchronous Unused in this						

23.2.2 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is where the 12-bit A/D result and extended sign bits (ADSGN) are loaded at the completion of a conversion. This register pair is 16 bits wide. The A/D module gives the flexibility of left or right justifying the 12-bit result in the 16-Bit Result register. The A/D Format Select bit (ADFM) controls this justification. Figure 23-3 shows the operation of the A/D result justification and location of the extended sign bits (ADSGN). The extended sign bits allow for easier 16-bit math to be performed on the result. The results are represented as a two's compliment binary value. This means that when sign bits and magnitude bits are considered together in right justification, the ADRESH and ADRESL registers can be read as a single signed integer value.

When the A/D Converter is disabled, these 8-bit registers can be used as two general purpose registers.

FIGURE 23-3: A/D RESULT JUSTIFICATION

BRA		Unconditio	onal Brai	nch	
Synta	ax:	BRA n			
Oper	ands:	-1024 ≤ n ≤	≤ 1023		
Oper	ation:	(PC) + 2 +	$2n \rightarrow PC$;	
Statu	s Affected:	None			
Enco	ding:	1101	0nnn	nnnr	n nnnn
Desc	ription:	Add the 2's the PC. Sir incremente instruction, PC + 2 + 2 two-cycle in	nce the P ed to fetch the new n. This in	C will h the ne addres structio	ext s will be
Word	ls:	1			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Proce Data		Write to PC
	No operation	No operation	No operat	ion	No operation
	n <u>ple:</u> Before Instruc PC After Instructio PC	= ac	Idress (1	Jump HERE) Jump)	

BSF	Bit Set f			
Syntax:	BSF f, b {	[,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			
Operation:	$1 \rightarrow \text{f}$			
Status Affected:	None			
Encoding:	1000	bbba	ffff	ffff
Description:	Bit 'b' in reg	gister 'f' i	s set.	•
	If 'a' is '0', t If 'a' is '1', t GPR bank.			
	If 'a' is '0' a set is enabl in Indexed	ed, this i	nstruction	operates
	mode wher Section 29 Bit-Oriente Literal Offs	neverf≤ .2.3 "By ed Instru	95 (5Fh). te-Oriente ctions in	See ed and Indexed
Words:	mode wher Section 29 Bit-Oriente	neverf≤ .2.3 "By ed Instru	95 (5Fh). te-Oriente ctions in	See ed and Indexed
	mode wher Section 29 Bit-Oriente Literal Offe	neverf≤ .2.3 "By ed Instru	95 (5Fh). te-Oriente ctions in	See ed and Indexed
Cycles:	mode wher Section 29 Bit-Oriente Literal Offs 1	neverf≤ .2.3 "By ed Instru	95 (5Fh). te-Oriente ctions in	See ed and Indexed
	mode wher Section 29 Bit-Oriente Literal Offs 1	neverf≤ .2.3 "By ed Instru	95 (5Fh). te-Oriente ctions in e" for deta	See ed and Indexed
Cycles: Q Cycle Activity:	mode wher Section 29 Bit-Oriente Literal Offe 1	never f ≤ .2.3 "By ed Instru set Mode	95 (5Fh). te-Orient ctions in or deta	See ed and Indexed ails.
Cycles: Q Cycle Activity: Q1	mode wher Section 29 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f'	ever f ≤ .2.3 "By ed Instru set Mode Q3 Proce Data	95 (5Fh). te-Orient ctions in or deta	See ed and Indexed ails. Q4 Write

SUBLW	Subtract W from Literal							
Syntax:	S	SUBLW k						
Operands:	0	$0 \leq k \leq 255$						
Operation:	k	$k - (W) \rightarrow W$						
Status Affected:	Ν	I, OV, (С,	DC, Z				
Encoding:	Γ	0000		1000	kkł	ck	kkkk	
Description:				acted from				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1		Q2		Q3			Q4	
Decode	-	Read eral 'k'		Proce: Data		V	Vrite to W	
Example 1:	S	UBLW	()2h				
Before Instruc	tion							
W C	=	01h ?						
After Instruction	n							
W C	=	UIII						
Ž	=	0	,	result is p	505111			
N Furmula O	=	0						
Example 2:		UBLW	()2h				
Before Instruc W	tion =	02h						
Ċ	=	?						
After Instructio W	on _	00h						
C	=	1	;	result is z	zero			
Z N	=	1 0						
Example 3:	S	UBLW	()2h				
Before Instruc	tion							
W C	=	03h ?						
After Instruction	n	•						
W C	=	FFh 0		(2's com result is r				
Z	=	0	,	result is I	icyal	ve		
Ν	N = 1							

SUBWF	Sub	otract W	from f				
Syntax:	SUBWF f {,d {,a}}						
Operands:	$0 \le f \le 255$						
	d ∈ [0,1]						
		a ∈ [0,1]					
Operation:	(f) –	$-$ (W) \rightarrow	dest				
Status Affected:	Ν, Ο	DV, C, D	C, Z				
Encoding:	0	101	11da fff	f ffff			
Description:	com resu	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					
	If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank.						
	set in Ir moo Sec Bit-	is enable ndexed L de when ation 29. Oriente	nd the extended ed, this instructi Literal Offset Ad ever f ≤ 95 (5Fh 2.3 "Byte-Orie d Instructions et Mode" for d	on operates dressing n). See nted and in Indexed			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1		Q2	Q3	Q4			
Decode	F	Read	Process	Write to			
	reg	ister 'f'	Data	destination			
Example 1:	S	UBWF	REG, 1, 0				
Before Instruc	tion						
REG W	=	3 2 ?					
C	=	?					
After Instruction	on						
REG W	=	1 2					
C	=		result is positiv	е			
ZN	=	0 0					
Example 2:	_	UBWF	REG, 0, 0				
Before Instruc		ODWI	REG, 0, 0				
REG	=	2					
W C	=	2 2 ?					
After Instructio	- on	:					
REG	=	2					
W	=	0	rogult in Table				
C Z	=	1 ; 1	result is zero				
N	=	0					
Example 3:	S	UBWF	REG, 1, 0				
Before Instruc							
REG W	=	1 2					
v v	=	?					
С							
After Instruction	on						
After Instructio REG	=		(2's complemer	nt)			
After Instruction		2	(2's complemer result is negative	,			

30.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

30.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

30.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

30.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

31.3 DC Characteristics: PIC18F87K22 Family (Industrial/Extended) (Continued)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	Vol	Output Low Voltage				
D080		I/O Ports:				
		PORTA, PORTB, PORTC	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	—	0.6	V	IOL = 3.5 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKO (EC modes)	—	0.6	V	IOL = 1.6 mA. VDD = 5.5V, -40°C to +125°C
	Vон	Output High Voltage ⁽¹⁾				
D090		I/O Ports:			V	
		PORTA, PORTB, PORTC	Vdd - 0.7	—	V	IOH = -3 mA, VDD = 4.5V, -40°С to +125°С
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	VDD - 0.7	—	V	IOH = -2 mA, VDD = 4.5V, -40°C to +125°C
D092		OSC2/CLKO (INTOSC, EC modes)	Vdd - 0.7	—	V	IOH = -1 mA, VDD = 5.5V, -40°C to +125°C
		Capacitive Loading Specs on Output Pins				
D100	COSC2	OSC2 Pin	_	20	pF	In HS mode when external clock is used to drive OSC1
D101	Сю	All I/O Pins and OSC2	—	50	pF	To meet the AC Timing Specifications
D102	Св	SCLx, SDAx	_	400	pF	I ² C [™] Specification

Note 1: Negative current is defined as current sourced by the pin.

31.4 DC Characteristics: CTMU Current Source Specifications

DC CHARACTERISTICS			$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	IOUT1	CTMU Current Source, Base Range	_	550	_	nA	CTMUICON<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	—	5.5	—	μA	CTMUICON<1:0> = 10	
	Ιουτ3	CTMU Current Source, 100x Range	—	55		μA	CTMUICON<1:0> = 11	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

CONFIG3H (Configuration 3 High)	410
CONFIG3L (Configuration 3 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	412
CONFIG6H (Configuration 6 High)	415
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	
CTMUCONH (CTMU Control High)	386
CTMUCONL (CTMU Control Low)	387
CTMUICON (CTMU Current Control)	200
	300
CVRCON (Comparator Voltage	
Reference Control)	375
DAY (Day Value)	233
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	
ECCPxAS (ECCPx Auto-Shutdown Control)	273
ECCPxDEL (Enhanced PWM Control)	276
EECON1 (Data EEPROM Control 1)	
EECON1 (EEPROM Control 1)	113
HLVDCON (High/Low-Voltage Detect Control)	379
HOUR (Hour Value)	234
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	
IPR1 (Peripheral Interrupt Priority 1)	157
IPR2 (Peripheral Interrupt Priority 2)	
IPR3 (Peripheral Interrupt Priority 3)	
IDD4 (Device leased late must Drive it. 4)	155
IPR4 (Peripheral Interrupt Priority 4)	
IPR5 (Peripheral Interrupt Priority 5)	160
IPR6 (Peripheral Interrupt Priority 6)	161
MEMCON (External Memory Bus Control)	
MINUTE (Minute Value)	
MONTH (Month Value)	233
ODCON1 (Peripheral Open-Drain Control 1)	167
ODCON2 (Peripheral Open-Drain Control 2)	
ODCON3 (Peripheral Open-Drain Control 3)	
OSCCON (Oscillator Control)	
OSCCON2 (Oscillator Control 2) 46,	214
OSCCON2 (Oscillator Control 2) 46,	214
OSCCON2 (Oscillator Control 2)	214 47
OSCCON2 (Oscillator Control 2)	214 47 230
OSCCON2 (Oscillator Control 2)	214 47 230 152
OSCCON2 (Oscillator Control 2)	214 47 230 152 153
OSCCON2 (Oscillator Control 2)	214 47 230 152 153
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147 148
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147 148 149 150
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147 148 149 150 151
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147 148 149 150 151
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 154 155 156 146 147 148 149 150 151 68
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 168 67 66
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67 66 65
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67 66 190
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67 66 190
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67 66 65 190 277
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 155 156 146 147 151 68 67 66 65 190 277 162
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 68 67 66 65 190 277 162 329
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 155 156 146 147 151 68 67 66 65 190 277 162 329 54
OSCCON2 (Oscillator Control 2)	214 47 230 152 153 154 155 156 146 147 148 149 150 151 150 150 151 190 277 162 329 54 232

RTCCFG (RTCC Configuration)	229
SECOND (Second Value)	234
SSPxCON1 (MSSPx Control 1, I ² C Mode)	293
SSPxCON1 (MSSPx Control 1, SPI Mode)	283
SSPxCON2 (MSSPx Control 2,	
SSFXCONZ (INSSFX CONTION Z,	
I ² C Master Mode)	294
SSPxCON2 (MSSPx Control 2,	
I ² C Slave Mode)	205
	295
SSPxMSK (I ² C Slave Address Mask,	
7-Bit Masking Mode)	295
SSPxSTAT (MSSPx Status, I ² C Mode)	202
SSPxSTAT (MSSPx Status, SPI Mode)	
STATUS	104
STKPTR (Stack Pointer)	90
	400
T0CON (Timer0 Control)	
T1CON (Timer1 Control)	197
T1GCON (Timer1 Gate Control)	
T2CON (Timer2 Control)	
TxCON (Timerx Control, Timer3/5/7)	212
TxCON (Timerx Control, Timer4/6/8/10/12)	224
TxGCON (Timerx Gate Control)	
TXSTAx (Transmit Status and Control)	328
WDTCON (Watchdog Timer Control)	420
WEEKDAY (Weekday Value)	
YEAR (Year Value)	
RESET	461
Reset	
Brown-out Reset (BOR)	
Configuration Mismatch (CM)	73
MCLR, During Power-Managed Modes	
MCLR, Normal Operation	
Power-on Reset (POR)	73
RESET Instruction	73
Stack Full	
Stack Underflow	73
Watchdog Timer (WDT)	73
Resets	
Brown-out Reset (BOR)	
Oscillator Start-up Timer (OST)	403
Power-on Reset (POR)	
Power-up Timer (PWRT)	
RETFIE	462
RETLW	462
RETURN	
Return Address Stack	
Return Stack Pointer (STKPTR)	90
Revision History	
-	
RLCF	463
RLNCF	464
RRCF	464
RRNCF	405
RTCC	
Alarm	240
Configuring	
Interrupt	
Mask Settings	241
Alarm Value Registers	
	00-
(ALRMVALL, ALRMVALH)	
Associated Alarm Value Registers	243
Associated Control Registers	
Associated Value Registers	
Control Registers	229