E. Renesas Electronics America Inc - IDT79RC32V333-133DHG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS-II
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79rc32v333-133dhg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Serial Peripheral Interface (SPI) master mode interface

UART Interface

- 16550 compatible UART
- Baud rate support up to 1.5 Mb/s

Memory & Peripheral Controller

- 6 banks, up to 8MB per bank
- Supports 8-,16-, and 32-bit interfaces
- Supports Flash ROM, SRAM, dual-port memory, and peripheral devices
- Supports external wait-state generation
- 8-bit boot PROM support
- Flexible I/O timing protocols

4 DMA Channels

- 4 general purpose DMA, each with endianess swappers and byte lane data alignment
- Supports scatter/gather, chaining via linked lists of records
- Supports memory-to-memory, memory-to-I/O, memory-to-PCI, PCI-to-PCI, and I/O-to-I/O transfers
- Supports unaligned transfers
- Supports burst transfers
- Programmable DMA bus transactions burst size (up to 16 bytes)

PCI Bus Interface

- 32-bit PCI, up to 50 MHz
- Revision 2.2 compatible
- Target or master
- Host or satellite
- Three slot PCI arbiter
- Serial EEPROM support, for loading configuration registers
- Off-the-shelf development tools
- JTAG Interface (IEEE Std. 1149.1 compatible)
- + 208 QFP Package

- 3.3V or 2.5V core supply with 3.3V I/O supply
- 3.3V core supply is 5V I/O tolerant
- EJTAG in-circuit emulator interface

CPU Execution Core

The RC32333 integrates the RISCore 32300, the same CPU core found in the award-winning RC32364 microprocessor. The RISCore 32300 implements the Enhanced MIPS-II ISA. Thus, it is upwardly compatible with applications written for a wide variety of MIPS architecture processors, and it is kernel compatible with the modern operating systems that support IDT's 64-bit RISController product family. The RISCore 32300 was explicitly defined and designed for integrated processor products such as the RC32333. Key attributes of the execution core found within this product include:

- High-speed, 5-stage scalar pipeline executes to 150MHz. This high performance enables the RC32333 to perform a variety of performance intensive tasks, such as routing, DSP algorithms, etc.
- 32-bit architecture with enhancements of key capabilities. Thus, the RC32333 can execute existing 32-bit programs, while enabling designers to take advantage of recent advances in CPU architecture.
- Count leading-zeroes/ones. These instructions are common to a wide variety of tasks, including modem emulation, voice over IP compression and decompression, etc.
- Cache PREFetch instruction support, including a specialized form intended to help memory coherency. System programmers can allocate and stage the use of memory bandwidth to achieve maximum performance.
- 8KB of 2-way set associative instruction cache

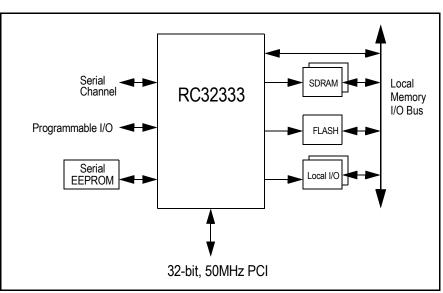


Figure 2 RC32333 Based System Diagram

- 2KB of 2-way set associative data cache, capable of write-back and write-through operation.
- Cache locking per line to speed real-time systems and critical system functions
- On-chip TLB to enable multi-tasking in modern operating systems
- EJTAG interface to enable sophisticated low-cost in-circuit emulation.

Synchronous-DRAM Interface

The RC32333 integrates a SDRAM controller which provides direct control of system SyncDRAM running at speeds to 75MHz.

Key capabilities of the SDRAM controller include:

- Direct control of 4 banks of SDRAM (up to 2 64-bit wide DIMMs)
- On-chip page comparators optimize access latency.
- Speeds to 75MHz
- Programmable address map.
- Supports 16, 64, 128, 256, or 512Mb SDRAM devices
- Automatic refresh generation driven by on-chip timer
- Support for discrete devices, SODIMM, or DIMM modules.

Thus, systems can take advantage of the full range of commodity memory that is available, enabling system optimization for cost, realestate, or other attributes.

Local Memory and I/O Controller

The local memory and I/O controller implements direct control of external memory devices, including the boot ROM as well as other memory areas, and also implements direct control of external peripherals.

The local memory controller is highly flexible, allowing a wide range of devices to be directly controlled by the RC32333 processor. For example, a system can be built using an 8-bit boot ROM, 16-bit FLASH cards (possibly on PCMCIA), a 32-bit SRAM or dual-port memory, and a variety of low-cost peripherals.

Key capabilities include:

- Direct control of EPROM, FLASH, RAM, and dual-port memories
- 6 chip-select outputs, supporting up to 8MB per memory space
- Supports mixture of 8-, 16-, and 32-bit wide memory regions
- Flexible timing protocols allow direct control of a wide variety of devices
- Programmable address map for 2 chip selects
- Automatic wait state generation.

PCI Bus Bridge

In order to leverage the wide availability of low-cost peripherals for the PC market as well as to simplify the design of add-in functions, the RC32333 integrates a full 32-bit PCI bus bridge. Key attributes of this bridge include:

- 50 MHz operation
- PCI revision 2.2 compliant
- Programmable address mappings between CPU/Local memory and PCI memory and I/O
- On-chip PCI arbiter
- Extensive buffering allows PCI to operate concurrently with local memory transfers
- Selectable byte-ordering swapper.

On-Chip DMA Controller

To minimize CPU exception handling and maximize the efficiency of system bandwidth, the RC32333 integrates a very sophisticated 4-channel DMA controller on chip.

The RC32333 DMA controller is capable of:

- Chaining and scatter/gather support through the use of a flexible, linked list of DMA transaction descriptors
- Capable of memory<->memory, memory<->I/O, and PCI<->memory DMA
- Unaligned transfer support
- Byte, halfword, word, quadword DMA support.

On-Chip Peripherals

The RC32333 also integrates peripherals that are common to a wide variety of embedded systems.

- Single 16550 compatible UART.
- SPI master mode interface for direct interface to EEPROM, A/D, etc.
- Interrupt Controller to speed interrupt decode and management
- Four 32-bit on-chip Timer/Counters
- Programmable I/O module

Debug Support

To facilitate rapid time to market, the RC32333 provides extensive support for system debug.

First and foremost, this product integrates an EJTAG in-circuit emulation module, allowing a low-cost emulator to interoperate with programs executing on the controller. By using an augmented JTAG interface, the RC32333 is able to reuse the same low-cost emulators developed around the RC32364 CPU.

Secondly, the RC32333 implements additional reporting signals intended to simplify the task of system debugging when using a logic analyzer. This product allows the logic analyzer to differentiate transactions initiated by DMA from those initiated by the CPU and further allows CPU transactions to be sorted into instruction fetches vs. data fetches.

Finally, the RC32333 implements a full boundary scan capability, allowing board manufacturing diagnostics and debug.

Packaging

The RC32333 is packaged using a 208 Quad Flat Pack (QFP) package.

Thermal Considerations

The RC32333 consumes less than 2.0 W peak power. The device is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices; -40° to +85° C for industrial temperature devices.

Revision History

March 5, 2003: Initial publication of 2.5V Revision X silicon.

September 2, 2003: Added 2.5V version of device. Changed tables to include 2.5V values where appropriate. Added a Power Consumption table, Temperature and Voltage table, and Power Curves for the 2.5V device. In the PCI category of Table 6, created separate sections for 3.3V and 2.5V devices and in 2.5V section changed time to 4 ns for pci_cbe_n[3:0], pci_frame_n, pci_trdy_n, and pci_irdy_n. In Table 8, added 3 new categories (Input Pads, PCI Input Pads, and All Pads) and added footnotes 2 and 3. In Table 13, pins 181 and 184 were changed from Vcc Core to Vcc I/O.

March 24, 2004: In Table 1, changed description in Satellite Mode for pci_rst_n. Specified "cold" reset on pages 12 and 13. Changed several values in Table 12, Absolute Maximum Ratings, and changed footnote 1 to that table.

May 4, 2004: Revised values in Table 11, Power Consumption — 2.5V Device.

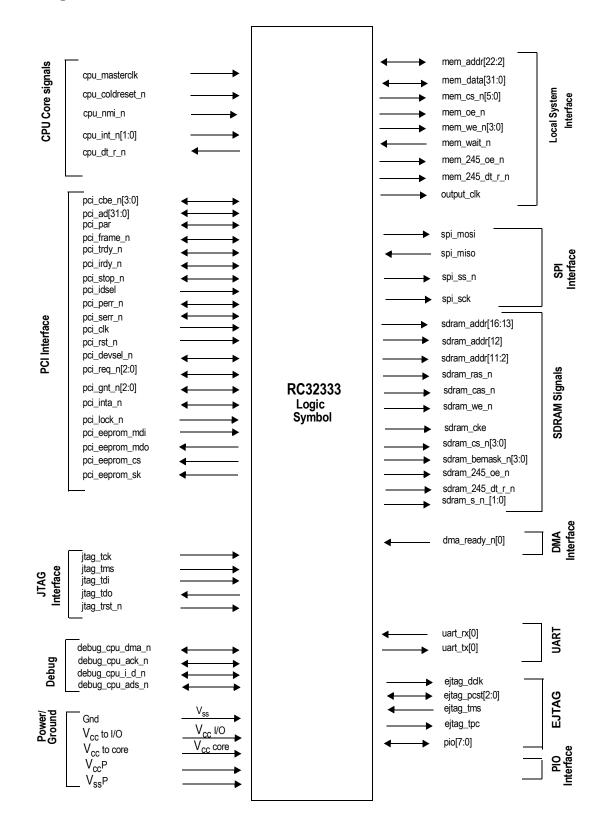

Name	Туре	Reset State Status	Drive Strength Capability	Description
mem_wait_n	Input		_	Memory Wait Negated Requires an external pull-up. SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sam- pled. DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction. Alternate function: sdram_wait_n.
mem_245_oe_n	Output	Н	Low	Memory FCT245 Output Enable Negated Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a memory or I/O bank.
mem_245_dt_r_n	Output	Z	High	Memory FCT245 Direction Xmit/Rcv Negated Recommend an external pull-up. Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk	Output	cpu_mas terclk	High	Output Clock Optional clock output.
PCI Interface				
pci_ad[31:0]	I/O	Z	PCI	PCI Multiplexed Address/Data Bus Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus Master during writes; or the Data is driven by the Bus Slave during reads.
pci_cbe_n[3:0]	I/O	Z	PCI	PCI Multiplexed Command/Byte Enable Bus Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable Negated Bus driven by the Bus Master during the data phase(s).
pci_par	I/O	Z	PCI	PCI Parity Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven by the Bus Slave during the Read Data phase.
pci_frame_n	I/O	Z	PCI	PCI Frame Negated Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates the last datum.
pci_trdy_n	I/O	Z	PCI	PCI Target Ready Negated Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n	I/O	Z	PCI	PCI Initiator Ready Negated Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n	I/O	Z	PCI	PCI Stop Negated Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n	Input		_	PCI Initialization Device Select Uses pci_req_n[2] pin. See the PCI subsection.
pci_perr_n	I/O	Z	PCI	PCI Parity Error Negated Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n	I/O Open- collec- tor	Z	PCI	System Error Requires an external pull-up. Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or any other system error.
pci_clk	Input		-	PCI Clock Clock for PCI Bus transactions. Uses the rising edge for all timing references.
pci_rst_n	Input	L	_	PCI Reset Negated Host mode: Resets all PCI related logic. Satellite mode: Resets all PCI related logic and also warm resets the 32333.
pci_devsel_n	I/O	Z	PCI	PCI Device Select Negated Driven by the target to indicate that the target has decoded the present address as a target address.

 Table 1
 Pin Descriptions
 (Part 2 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
spi_sck	I/O	L	Low	SPI Clock Serial mode: Output pin for Serial Clock. In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the RC323333 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[5]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_sk.
spi_ss_n	I/O	Н	Low	SPI Chip Select Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device. Alternate function: PIO[4]. Defaults to the output direction at reset time.
CPU Core Specific	Signals			
cpu_nmi_n	Input		_	CPU Non-Maskable Interrupt Requires an external pull-up. This interrupt input is active low to the CPU.
cpu_masterclk	Input		_	CPU Master System Clock Provides the basic system clock.
cpu_int_n[1:0]	Input		_	CPU Interrupt Requires an external pull-up. These interrupt inputs are active low to the CPU.
cpu_coldreset_n	Input	L	_	CPU Cold Reset This active-low signal is asserted to the RC32333 after V _{cc} becomes valid on the initial power-up. The Reset initialization vectors for the RC32333 are latched by cold reset.
cpu_dt_r_n	Output	Z	_	CPU Direction Transmit/Receive This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during read operations. 1st Alternate function: mem_245_dt_r_n. 2nd Alternate function: sdram_245_dt_r_n.
JTAG Interface Sig	nals			
jtag_tck	Input		_	JTAG Test Clock Requires an external pull-down. An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the system and the processor clock with nominal 50% duty cycle.
jtag_tdi, ejtag_dint_n	Input		_	JTAG Test Data In Requires an external pull-up. On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register, depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This pin is also used as the ejtag_dint_n signal in the EJTAG mode.
jtag_tdo, ejtag_tpc	Output	Z	High	JTAG Test Data Out The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non- sequential program counter at the processor clock or at a division of processor clock. This pin is also used as the ejtag_tpc signal in the EJTAG mode.
jtag_tms	Input		_	JTAG Test Mode Select Requires an external pull-up. The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation. jtag_tms is sampled on the rising edge of the jtag_tck.
jtag_trst_n	Input	L	_	JTAG Test Reset When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked.
ejtag_dclk	Output	Z	_	EJTAG Test Clock Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.

Table 1Pin Descriptions (Part 5 of 6)

Logic Diagram — RC32333

Mode Bit Settings to Configure Controller on Reset

The following table lists the mode bit settings to configure the controller on cold reset.

Pin	Mode Bit	Description	Value	Mode Setting
ejtag_pcst[2:0]	2:0 MSB (2)	Clock Multiplier	0	Multiply by 2
		MasterClock is multiplied internally to gener- ate PClock	1	Multiply by 3
			2	Multiply by 4
			3	Reserved
		Ĩ	4	Reserved
			5	Reserved
			6	Reserved
			7	Reserved
debug_cpu_i_d_n	3	EndBit	0	Little-endian ordering
			1	Big-endian ordering
debug_cpu_ack_n	4	Reserved	0	
debug_cpu_ads_n	5	Reserved	0	
debug_cpu_dma_n	6	TmrIntEn	0	Enables timer interrupt
		Enables/Disables the timer interrupt on Int*[5]	1	Disables timer interrupt
mem_addr[17]	7	Reserved for future use	1	
mem_addr[19:18]	9:8 MSB (9)	Boot-Prom Width specifies the memory port	00	8 bits
		width of the memory space which contains the	01	16 bits
		boot prom.	10	32 bits
			11	Reserved

reset_boot_mode Settings

By using the non-boot mode cold reset initialization mode the user can change the internal register addresses from base 1800_0000 to base 1900_0000, as required. The RC32333 cold reset-boot mode initialization setting values and mode descriptions are listed below.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[22:21]	1:0 MSB (1)	Tri-state memory bus and EEPROM bus during coldreset_n assertion	11	Tri-state_bus_mode
		Reserved	10	
		PCI-boot mode (pci_host_mode must be in satellite mode) RC32333 will reset either from a cold reset or from a PCI reset. Boot code is provided via PCI.	01	PCI_boot_mode
		Standard-boot mode Boot from the RC32333's memory controller (typical system).	00	standard_boot_mode

Table 3 RC32333 reset_boot_mode Initialization Settings

pci_host_mode Settings

During cold reset initialization, the RC32333's PCI interface can be set to the Satellite or Host mode settings. When set to the Host mode, the CPU must configure the RC32333's PCI configuration registers, including the read-only registers. If the RC32333's PCI is in the PCI-boot mode Satellite mode, read-only configuration registers are loaded by the serial EEPROM.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[20]	PCI host mode	PCI is in satellite mode	1	PCI_satellite
		PCI is in host mode (typical system)	0	PCI_host

Table 4 RC32333 pci_host_mode Initialization Settings

Clock Parameters — RC32333

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V±5%; V_{cc} I/O = +3.3V±5%

<u>2.5V version</u>: V_{cc} Core = +2.5V±5%; V_{cc} I/O = +3.3V±5%

Parameter	Symbol	Test Conditions	RC32333 100MHz		RC32333 133MHz		RC32333 150MHz		Units
			Min	Min Max		Max	Min	Max	
cpu_masterclock HIGH	t _{MCHIGH}	Transition \leq 2ns	8	—	6.75	—	6	_	ns
cpu_masterclock LOW	t _{MCLOW}	Transition ≤ 2 ns	8	_	6.75	—	6	—	ns
cpu_masterclock period ¹ - 3.3V ver.	t _{MCP}	—	20	66.6	15	66.6	13.33	66.6	ns
cpu_masterclock period ¹ - 2.5V ver.	t _{MCP}	—	20	40.0	15	40.0	13.33	40.0	ns
cpu_masterclock Rise & Fall Time ²	$t_{\text{MCRise}}, t_{\text{MCFall}}$	—		3	—	3	—	3	ns
cpu_masterclock Jitter	t _{JITTER}	—		<u>+</u> 250	—	<u>+</u> 250	—	<u>+</u> 200	ps
pci_clk Rise & Fall Time	t _{PCRise} , t _{PCFall}	PCI 2.2		1.6	—	1.6	—	1.6	ns
pci_clk Period ¹	t _{PCP}		20	_	20	—	20	—	ns
jtag_tck Rise & Fall Time	t _{JCRise} , t _{JCFall}	—		5	—	5	—	5	ns
ejtag_dck period	t _{DCK} , t ₁₁		10	—	10	—	10	_	ns
jtag_tck clock period	t _{TCK,} t ₃		100	—	100	—	100	_	ns
ejtag_dclk High, Low Time	t _{DCK High} , t ₉ t _{DCK Low} , t ₁₀		4	-	4	_	4	_	ns
ejtag_dclk Rise, Fall Time	t _{DCK Rise} , t ₉ t _{DCK Fall} , t ₁₀		_	1	_	1	_	1	ns
output_clk ³	t _{DO} 21		N/A	N/A	N/A	N/A	N/A	N/A	-
cpu_coldreset_n Asserted during power-up		power-on sequence	120	_	120	_	120	_	ms
cpu_coldreset_n Rise Time	t _{CRRise}		_	5	—	5	—	5	ns

Table 5 Clock Parameters - RC32333

^{1.} cpu_masterclock frequency should never be below pci_clk frequency if PCI interface is used.

 $^{\rm 2.}$ Rise and Fall times are measured between 10% and 90%.

3. Output_clk should not be used in a system. Only the cpu_masterclock or its derivative must be used to drive all the subsystems with designs based on the RC3233x systems. Refer to the RC3233x Device Errata for more information.

AC Timing Characteristics — RC32333

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

<u>2.5V version</u>: V_{cc} Core = +2.5V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

Signal	Symbol	Reference		2333 ¹ MHz		2333 ¹ MHz	RC32 150	2333 ¹ MHz	Units	User Manual Timing
	-	Edge	Min	Мах	Min	Max	Min	Max		Diagram Reference
Local System Interface			•			•		•	•	·
mem_data[31:0] (data phase)	Tsu2	cpu_masterclk rising	6	—	5	_	4.8	-	ns	Chapter 9, Figures
mem_data[31:0] (data phase)	ThId2	cpu_masterclk rising	1.5	—	1.5	—	1.5	-	ns	9.2 and 9.3
cpu_dt_r_n	Tdo3	cpu_masterclk rising	-	15	—	12	_	10	ns	
mem_data[31:0]	Tdo4	cpu_masterclk rising	-	12	-	10	—	9.3	ns	
mem_data[31:0] output hold time	Tdoh1	cpu_masterclk rising	1	_	1	_	1	_	ns	
mem_data[31:0] (tristate disable time)	Tdz	cpu_masterclk rising	-	12 ²	-	10 ²	—	9.3 ²	ns	Chapter 10,
mem_data[31:0] (tristate to data time)	Tzd	cpu_masterclk rising	-	12 ²	-	10 ²	_	9.3 ²	ns	Figures 10.6 through 10.8
mem_wait_n	Tsu6	cpu_masterclk rising	9	—	7	—	6	-	ns	
mem_wait_n	ThId8	cpu_masterclk rising	1	—	1	-	1	-	ns	
mem_addr[22:2]	Tdo5	cpu_masterclk rising	-	12	—	9	_	8	ns	
mem_cs_n[5:0]	Tdo6	cpu_masterclk rising	-	12	—	9	_	8	ns	
mem_oe_n, mem_245_oe_n	Tdo7	cpu_masterclk rising	-	12	-	9	—	8	ns	
mem_we_n[3:0]	Tdo7a	cpu_masterclk rising	_	15	_	12	—	10	ns	
mem_245_dt_r_n	Tdo8	cpu_masterclk rising	_	15	_	12	—	10	ns	
mem_addr[25:2] mem_cs_n[5:0] mem_oe_n, mem_we_n[3:0], mem_245_dt_r_n, mem_245_oe_n	Tdoh3	cpu_masterclk rising	1.5	_	1.5	_	1.5	_	ns	
PCI for 3.3V Device ³			•							
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n	Tsu	pci_clk rising	3	-	3	_	3	_	ns	
pci_idsel, pci_req_n[2], pci_req_n[1], pci_req_n[0], pci_gnt_n[0], pci_inta_n	Tsu	pci_clk rising	5	_	5	-	5	_	ns	
pci_gnt_n[0]	Tsu	pci_clk rising	5	—	5	—	5	—	ns	
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n ⁴	Thld	pci_clk rising	0	_	0	—	0	—	ns	

Table 6 AC Timing Characteristics - RC32333 (Part 1 of 4)

Signal	Symbol	Reference		2333 ¹ MHz	RC32333 ¹ 133MHz		RC32 150	2333 ¹ MHz	Units	User Manual Timing
		Edge	Min	Max	Min	Max	Min	Max		Diagram Reference
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
pci_req_n[0], pci_gnt_[2], pci_gnt_n[1], pci_gnt_n[0], pci_inta_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
SDRAM Controller					•	•	•			
sdram_245_dt_r_n	Tdo8	cpu_masterclk rising	—	15	—	12	—	10	ns	Chapter 11,
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0], sdram_cke	Tdo9	cpu_masterclk rising	-	12	_	9	_	8	ns	Figures 11.4 and 11.5
sdram_addr_12	Tdo10	cpu_masterclk rising	—	12	_	9		8	ns	
sdram_245_oe_n	Tdo11	cpu_masterclk rising	—	12	—	9	—	8	ns	
sdram_245_dt_r_n	Tdoh4	cpu_masterclk rising	1	—	1	—	1	—	ns	
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0] sdram_cke, sdram_addr_12, sdram_245_oe_n	Tdoh4	cpu_masterclk rising	2.5	_	2.5	_	2.5	_	ns	
DMA					•	•				
dma_ready_n[0], dma_done_n[0]	Tsu7	cpu_masterclk rising	9	_	7	_	6	_	ns	
dma_ready_n[0], dma_done_n[0]	Thld9	cpu_masterclk rising	1	-	1	—	1	-	ns	Chapter 13, Figure 13.4
Interrupt Handling										
cpu_int_n[1:0], cpu_nmi_n	Tsu9	cpu_masterclk rising	9	—	7	—	6	—	ns	Chapter 14,
cpu_int_n[1:0], cpu_nmi_n	Thld13	cpu_masterclk rising	1	_	1	—	1	—	ns	Figure 14.12
PIO	•		•							
PIO[7:0]	Tsu7	cpu_masterclk rising	9	—	7	—	6	—	ns	Chapter 15,
PIO[7:0]	Thld9	cpu_masterclk rising	1	_	1	_	1	—	ns	Figures 15.9 and 15.10
PIO[7:6], PIO[4:0]	Tdo16	cpu_masterclk rising	-	15	—	12	_	10	ns	10.10
PIO[5]	Tdo19	cpu_masterclk rising	—	15	—	12	—	10	ns	
PIO[7:6], PIO[4:0]	Tdoh7	cpu_masterclk rising	1	—	1	—	1	—	ns	
PIO[5]	Tdoh7	cpu_masterclk rising	1	_	1	_	1	—	ns	
UARTs		•								
uart_rx[0], uart_tx[0]	Tsu7	cpu_masterclk rising	15	-	12	-	10	-	ns	
uart_rx[0], uart_tx[0]	Thld9	cpu_masterclk rising	15	—	12	-	10	—	ns	Chapter 17, Figure 17.16
uart_rx[0], uart_tx[0]	Tdo16	cpu_masterclk rising	_	15	_	12	_	10	ns	
uart_rx[0], uart_tx[0]	Tdoh8	cpu_masterclk rising	1	-	1	-	1	-	ns	

Table 6 AC Timing Characteristics - RC32333 (Part 3 of 4)

Standard EJTAG Timing — RC32333

Figure 4 represents the timing diagram for the EJTAG interface signals.

The standard JTAG connector is a 10-pin connector providing 5 signals and 5 ground pins. For Standard EJTAG, a 24-pin connector has been chosen providing 12 signals and 12 ground pins. This guarantees elimination of noise problems by incorporating signal-ground type arrangement. Refer to the RC3233x User Reference Manual for connector pinout and mechanical specifications.

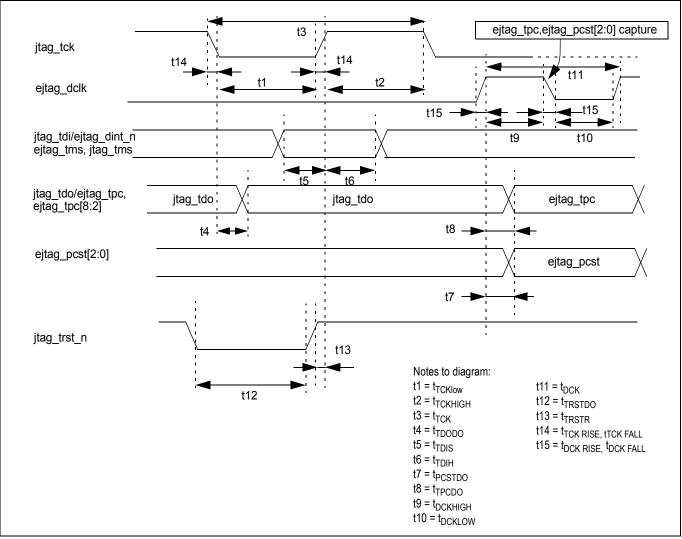
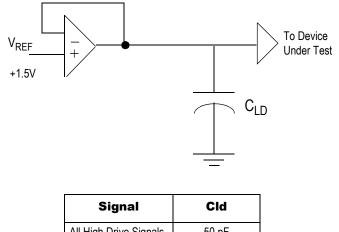



Figure 4 Standard EJTAG Timing

Output Loading for AC Testing

 All High Drive Signals
 50 pF

 All Low Drive Signals
 25 pF

Figure 5 Output Loading for AC Testing

Note: PCI pins have been correlated to PCI 2.2.

Recommended Operation Temperature and Supply Voltage

3.3V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%

Table 7 Temperature and Voltage — 3.3V Device

2.5V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%

Table 8 Temperature and Voltage — 2.5V Device

DC Electrical Characteristics — RC32333

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V±5%; V_{cc} I/O = +3.3V±5%

<u>2.5V version</u>: V_{cc} Core = +2.5V±5%; V_{cc} I/O = +3.3V±5%

	Parameter	RC32333 ¹		Pin Numbers	Conditions	
	raraneter	Minimum	Maximum		Conditions	
Input Pads	V _{IL}	_	0.8V	52, 64, 95, 161, 162, 165, 167-170, 191	_	
	V _{IH}	2.0V	_			
LOW Drive Output- Pads	V _{OL}	_	0.4V	41-45, 48, 171, 172, 175, 176, 177-180, 185-190, 195-200, 207,	I _{OUT} = 6mA	
	V _{OH}	V _{cc} - 0.4V	_	208	I _{OUT} = 8mA	
	V _{IL}	_	0.8V		_	
	V _{IH}	2.0V	_		_	
HIGH Drive Out- put Pads	V _{OL}	_	0.4V	1- 5, 8, 13-15, 18-25, 28-35, 38-40, 49-51, 53- 57, 60, 61, 63, 65-	I _{OUT} = 7mA	
	V _{OH}	V _{cc} - 0.4V	_	67,70-76, 79, 80, 83-87, 90-94, 153, 154, 156, 159, 166, 194, 201, 204, 205, 206	I _{OUT} = 16mA	
	V _{IL}	_	0.8V		_	
	V _{IH}	2.0V	_			
PCI Drive	V _{IL}	_	_	123, 155, 157, 158, 160	Per PCI 2.2	
Input Pads	V _{IH}	_	_			
PCI Drive	V _{OL}	_	_	96, 97, 100-109, 112-119, 122, 124-129, 132-139, 142-149, 152	Per PCI 2.2	
Output pads	V _{OH}	_	_			
	V _{IL}	_	_			
	V _{IH}	_	_			
All Pads	C _{IN}	—	10pF	All input pads except 155 and 156	_	
	C_{IN}^{2}	5pf	12pF	155	Per PCI 2.2	
	C _{IN} ³		8pF	156	Per PCI 2.2	
	C _{OUT}	_	10pF	All output pads	_	
	I/O _{LEAK}	_	10µA	All non-internal pull-up pins	Input/Output Leakag	
	I/O _{LEAK}	_	50µA	All internal pull-up pins	Input/Output Leakag	

Table 9 DC Electrical Characteristics - RC32333

^{1.} At all pipeline frequencies.

^{2.} Applies only to pad 155.

^{3.} Applies only to pad 156.

Capacitive Load Deration — RC32333

Refer to the IDT document 79RC32333 IBIS Model which can be found on the company's web site at www.idt.com.

Power Consumption

3.3V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Parameter		100MHz		133MHz		150MHz		Unit	Conditions	
		Typical	Max.	Typical	Max.	Typical	Max.			
I _{CC}	Normal mode	360	480	480	630	550	700	mA	$C_L = (See Figure 5, Output Loading)$	
	Standby mode ¹	250	370	330	480	390	540	mA	for AC Testing) T _a = 25ºC	
Power Dissipation	Normal mode	1.2	1.7	1.5	2.2	1.7	2.4	W	V_{cc} Core = 3.46V (for max. values)	
	Standby mode ¹	0.83	1.3	1.1	1.7	1.3	1.9	W	V_{cc} I/O = 3.46V (for max. values) V_{cc} Core = 3.3V (for typical values) V_{cc} I/O = 3.3V (for typical values)	

Table 10 Power Consumption — 3.3V Device

¹. RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

2.5V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Parameter		100	100MHz		133MHz		150MHz		Conditions	
		Typical	Typical Max.		Typical Max.		Typical Max.			
I _{CC} I/O	Normal mode	24	81	32	93	35	104	mA	C _L = (See Figure 5, Output Loading	
	Standby mode ¹	2	81	2	93	2	104	mA	for AC Testing) T _a = 25ºC	
I _{CC} core	Normal mode	232	301	298	392	333	438	mA	V_{cc} Core = 2.625V (for max. values)	
	Standby mode ¹	120	269	151	319	168	345	mA	V _{cc} I/O = 3.46V (for max. values) V _{cc} Core = 2.5V (for typical values)	
Power Dissipation	Normal mode	0.66	1.07	0.85	1.35	0.95	1.51	W	V_{cc} I/O = 3.3V (for typical values)	
	Standby mode ¹	0.31	0.94	0.38	1.10	0.43	1.21	W		

Table 11 Power Consumption — 2.5V Device

¹ RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

Power Ramp-up

3.3V Device

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

2.5V Device

The 2.5V core supply (and 2.5V $V_{cc}P$ supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

Power Curves

The following four graphs contain the simulated power curves that show power consumption at various bus frequencies. Figures 6 and 7 apply to the 3.3V device, while Figures 8 and 9 apply to the 2.5V device.

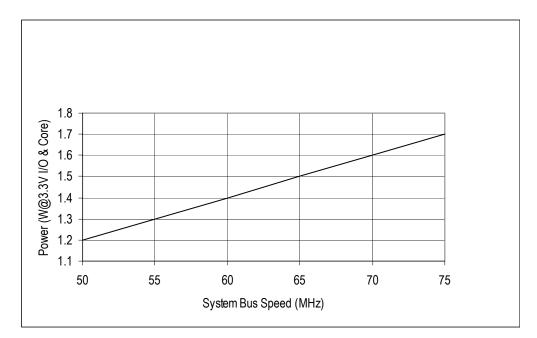


Figure 6 Typical Power Usage — RC32V333 Device

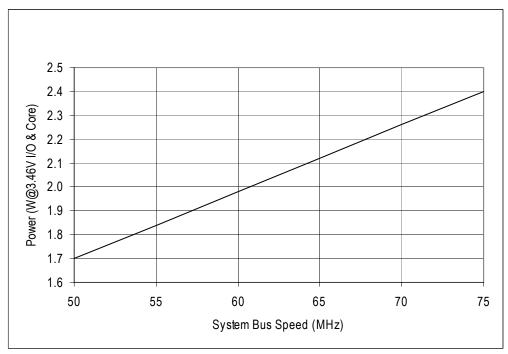


Figure 7 Maximum Power Usage — RC32V333 Device

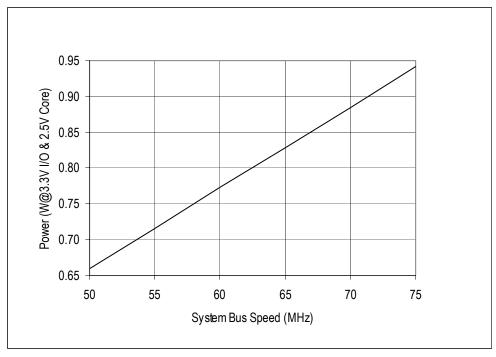


Figure 8 Typical Power Usage — RC32T333 Device

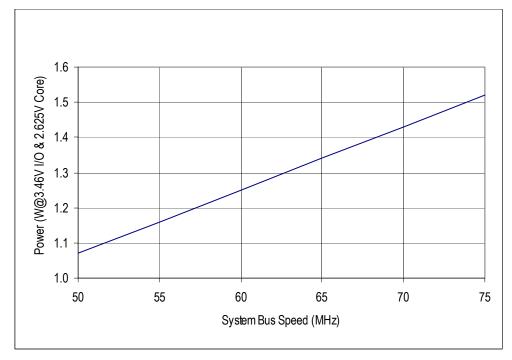
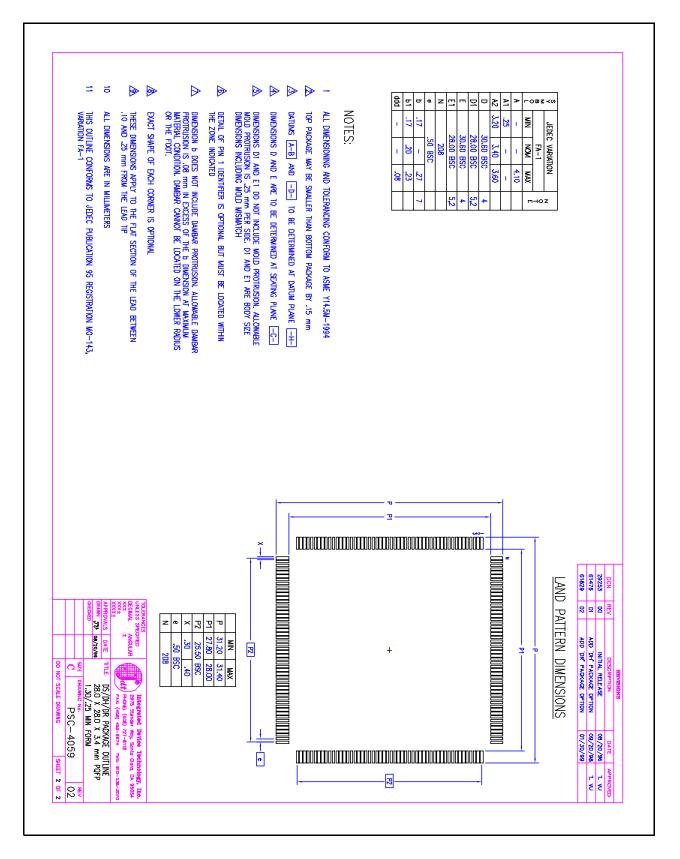


Figure 9 Maximum Power Usage — RC32T333 Device

Pin	Function	Alt									
19	mem_addr[6]	1	71	mem_data[29]		123	pci_lock_n		175	ejtag_pcst[2]	1
20	mem_addr[7]	1	72	mem_data[2]		124	pci_stop_n		176	ejtag_dclk	
21	mem_addr[8]	1	73	mem_data[28]		125	pci_devsel_n		177	debug_cpu_i_d_n	1
22	mem_addr[9]	1	74	mem_data[3]		126	pci_trdy_n		178	debug_cpu_ads_n	1
23	mem_addr[10]	1	75	mem_data[27]		127	pci_irdy_n		179	debug_cpu_ack_n	1
24	mem_addr[11]	1	76	mem_data[4]		128	pci_frame_n		180	debug_cpu_dma_n	1
25	output_clk		77	V _{cc} p		129	pci_cbe_n[2]		181	V _{cc} I/O	
26	V _{ss}		78	V _{ss} p		130	V _{ss}		182	V _{ss}	
27	V _{cc} core		79	mem_data[26]		131	V _{cc} core		183	V _{cc} core	
28	mem_addr_12		80	mem_data[5]		132	pci_ad[16]		184	V _{cc} I/O	
29	sdram_addr_12		81	V _{ss}		133	pci_ad[17]		185	spi_ss_n	1
30	sdram_cke		82	V _{cc} core		134	pci_ad[18]		186	spi_sck	2
31	sdram_cs_n[2]		83	cpu_dt_r_n	2	135	pci_ad[19]		187	spi_miso	2
32	sdram_cs_n[3]		84	mem_data[25]		136	pci_ad[20]		188	spi_mosi	2
33	sdram_bemask_n[2]		85	mem_data[6]		137	pci_ad[21]		189	dma_ready_n[0]	2
34	sdram_bemask_n[3]		86	mem_data[24]		138	pci_ad[22]		190	mem_245_oe_n	
35	mem_addr[13]		87	mem_data[7]		139	pci_ad[23]		191	mem_wait_n	2
36	V _{ss}		88	V _{ss}		140	V _{ss}		192	V _{ss}	
37	V _{cc} I/O		89	V _{cc} I/O		141	V _{cc} I/O		193	V _{cc} I/O	
38	mem_addr[14]		90	mem_data[23]		142	pci_cbe_n[3]		194	mem_oe_n	
39	mem_addr[15]	1	91	mem_data[8]		143	pci_ad[24]		195	mem_cs_n[0]	
40	mem_addr[16]	1	92	mem_data[22]		144	pci_ad[25]		196	mem_cs_n[1]	
41	mem_addr[17]	1	93	mem_data[9]		145	pci_ad[26]		197	mem_cs_n[2]	
42	mem_addr[18]	1	94	mem_data[21]		146	pci_ad[27]		198	mem_cs_n[3]	
43	mem_addr[19]	1	95	cpu_nmi_n		147	pci_ad[28]		199	mem_cs_n[4]	
44	mem_addr[20]	1	96	pci_ad[0]		148	pci_ad[29]		200	mem_cs_n[5]	
45	mem_addr[21]	1	97	pci_ad[1]		149	pci_ad[30]		201	mem_we_n[0]	1
46	V _{ss}		98	V _{ss}		150	V _{ss}		202	V _{ss}	
47	V _{cc} I/O		99	V _{cc} I/O		151	V _{cc} I/O		203	V _{cc} I/O	
48	mem_addr[22]	1	100	pci_ad[2]		152	pci_ad[31]		204	mem_we_n[1]	1
49	mem_data[10]	1	101	pci_ad[3]		153	pci_req_n[0]		205	mem_we_n[2]	1
50	mem_data[11]		102	pci_ad[4]		154	pci_gnt_n[0]		206	mem_we_n[3]	1
51	mem_data[20]		103	pci_ad[5]		155	pci_clk		207	uart_tx[0]	1
52	cpu_coldreset_n	1	104	pci_ad[6]		156	pci_gnt_n[1]	2	208	uart_rx[0]	1


Table 13 RC32333 208-pin QFP Package Pin-Out (Part 2 of 2)

RC32333 Alternate Signal Functions

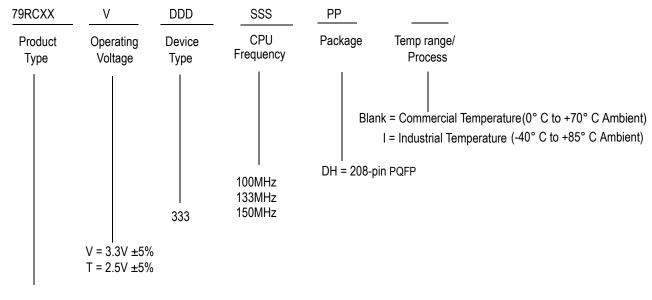

Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2
13	sdram_addr[2]		40	sdram_addr[16]		175	modebit[2]	
14	sdram_addr[3]		41	modebit[7]		177	modebit[3]	
15	sdram_addr[4]		42	modebit[8]		178	modebit[5]	
18	sdram_addr[5]		43	modebit[9]		179	modebit[4]	
19	sdram_addr[6]		44	reset_pci_host_mode		180	modebit[6]	
20	sdram_addr[7]		45	reset_boot_mode[0]		185	PIO[4]	
21	sdram_addr[8]		48	reset_boot_mode[1]		186	PIO[5]	pci_eeprom_sk
22	sdram_addr[9]		83	mem_245_dt_r_n	sdram_245_dt_r_n	187	PIO[3]	pci_eeprom_mdi
23	sdram_addr[10]		156	pci_eeprom_cs (satellite)	PIO[7]	188	PIO[6]	pci_eeprom_mdo
24	sdram_addr[11]		158	pci_idsel (satellite)		189	PIO[0]	dma_done_n[0]
35	sdram_addr[13]		159	pci_inta_n (satellite)		191	sdram_wait_n	mem_wait_n
38	sdram_addr[14]		171	modebit[0]		207	PIO[1]	
39	sdram_addr[15]		172	modebit[1]		208	PIO[2]	

Table 14 RC32333 Alternate Signal Functions

RC32333 Package Drawing — Page Two

Ordering Information

79RC32 = 32-bit family product

Valid Combinations

3.3V Device

79RC32V333 - 100DH, 133DH, 150DH	Commercial
79RC32V333 - 100DHI, 133DHI, 150DHI	Industrial
2.5V Device	
79RC32T333 - 100DH, 133DH, 150DH	Commercial
79RC32T333 - 100DHI, 133DHI, 150DHI	Industrial

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: email: rischelp@idt.com phone: 408-284-8208