

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	·
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc850dslczq50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bus Signal Timing

	a	50 MHz 66 MHz			80 I	MHz		Cap Load	11	
Num	Characteristic	Min	Max	Min	Max	Min	Мах	FFACT	(default 50 pF)	Unit
B9	CLKOUT to A[6–31] RD/WR, BURST, D[0–31], DP[0–3], TSIZ[0–1], REG, RSV, AT[0–3], PTR high-Z	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion	5.00	11.00	7.58	13.58	6.25	12.25	0.250	50.00	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion, (When driven by the memory controller or PCMCIA interface)	2.50	9.25	2.50	9.25	2.50	9.25	—	50.00	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B12a	CLKOUT to TA, BI negation (when driven by the memory controller or PCMCIA interface)	2.50	11.00	2.50	11.00	2.50	11.00	—	50.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} high-Z	5.00	19.00	7.58	21.58	6.25	20.25	0.250	50.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} high-Z, (when driven by the memory controller or PCMCIA interface)	2.50	15.00	2.50	15.00	2.50	15.00	—	50.00	ns
B14	CLKOUT to \overline{TEA} assertion	2.50	10.00	2.50	10.00	2.50	10.00	—	50.00	ns
B15	CLKOUT to TEA high-Z	2.50	15.00	2.50	15.00	2.50	15.00	—	50.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT(setup time) ⁵	9.75	—	9.75	—	9.75	—	—	50.00	ns
B16a	TEA, KR, RETRY, valid to CLKOUT (setup time) ⁵	10.00	—	10.00	—	10.00	—	—	50.00	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$ valid to CLKOUT (setup time) ⁶	8.50	_	8.50	—	8.50	—	_	50.00	ns
B17	$\frac{\text{CLKOUT to TA, TEA, BI, BB,}}{\text{BG, BR valid (Hold time).}^5}$	1.00		1.00	—	1.00	_	_	50.00	ns
B17a	CLKOUT to KR, RETRY, except TEA valid (hold time)	2.00	—	2.00	—	2.00	—	_	50.00	ns
B18	D[0–31], DP[0–3] valid to CLKOUT rising edge (setup time) ⁷	6.00	_	6.00		6.00		_	50.00	ns
B19	CLKOUT rising edge to D[0–31], DP[0–3] valid (hold time) ⁷	1.00	_	1.00		1.00		_	50.00	ns
B20	D[0–31], DP[0–3] valid to CLKOUT falling edge (setup time) ⁸	4.00		4.00		4.00	—	_	50.00	ns
B21	CLKOUT falling edge to D[0–31], DP[0–3] valid (hold time) ⁸	2.00	—	2.00		2.00	—	—	—	

Table 6.	Bus Operation Timing	¹ (continued)
----------	-----------------------------	--------------------------

Bus Signal Timing

[
Num	Characteristic	50 MHz 66 MHz			80	MHz	FFACT	Cap Load (default	Unit	
-		Min	Max	Min	Max	Min	Max	_	50 pF)	
B28c	CLKOUT falling edge to WE[0–3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	_	14.00	_	18.00	_	16.00	0.375	50.00	ns
B29	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access, CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29a	WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B29b	CS negated to D[0–31], DP[0–3], high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0	3.00		6.00		4.00		0.250	50.00	ns
B29c	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	8.00		13.00		11.00		0.500	50.00	ns
B29d	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	28.00		43.00		36.00		1.500	50.00	ns
B29e	CS negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00		43.00		36.00		1.500	50.00	ns
B29f	WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	5.00		9.00		7.00		0.375	50.00	ns
B29g	CS negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00		9.00		7.00		0.375	50.00	ns

Table 6.	Bus Operation	Timing ¹	(continued)
----------	----------------------	---------------------	-------------

		50 MHz 66 MHz			00.5	/LI-		Cap Load		
Num	Characteristic					80 MHz		FFACT	(default	Unit
		Min	Max	Min	Мах	Min	Мах		50 pF)	
B29h	WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cases} \mbox{ CSNT = 1, } \hline CS \mbox{ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$	8.00		13.00		11.00		0.500	50.00	ns
B30b	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 1, \\ CSNT = 1. \ensuremath{\overline{CS}}\xspace$ negated to $ A[6-31] \mbox{ Invalid GPCM write $ access TRLX = 1, CSNT = 1, $ ACS = 10 \mbox{ or } ACS = 11, $ EBDF = $ 0 $ $ 0 $ $ $ $ $ $ $ $ $ $ $ $ $ $$	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B30c	$\label{eq:WE[0-3]} \begin{array}{l} \mbox{megated to A[6-31]} \\ \mbox{invalid} \\ \mbox{GPCM write access, TRLX = 0,} \\ \mbox{CSNT = 1. } \hline CS \mbox{ negated to} \\ \mbox{A[6-31] invalid GPCM write} \\ \mbox{access, TRLX = 0, CSNT = 1,} \\ \mbox{ACS = 10 or ACS = 11, EBDF =} \\ \mbox{1} \end{array}$	5.00	_	8.00	_	6.00		0.375	50.00	ns
B30d	$\label{eq:WE[0-3]} \begin{array}{l} \hline WE[0-3] \mbox{ negated to } A[6-31] \\ \hline \mbox{ invalid GPCM write access} \\ \hline TRLX = 1, \mbox{ CSNT = 1}, \mbox{ CS} \\ \hline \mbox{ negated to } A[6-31] \mbox{ invalid} \\ \hline \mbox{ GPCM write access } TRLX = 1, \\ \hline \mbox{ CSNT = 1}, \mbox{ ACS = 10 or } ACS = \\ \hline \mbox{ 11, EBDF = 1} \end{array}$	25.00		39.00		31.00		1.375	50.00	ns

Num	Characteristic	50 MHz 6		66 I	MHz 80		MHz	FFACT	Cap Load (default	Unit
		Min	Max	Min	Max	Min	Мах	_	50 pF)	
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to CS valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to CS valid - as requested by CST2 in the corresponding word in UPM	13.00	—	21.00	—	17.00	—	0.750	50.00	ns
B35	A[6-31] to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	—	6.00	—	4.00	—	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to BS valid - as requested by BST1 in the corresponding word in the UPM	8.00	—	13.00	—	11.00	—	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	—	6.00	—	6.00	—	—	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	—	1.00	—	1.00	—	—	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	—	50.00	ns
B40	A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00		7.00		7.00		—	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	—	7.00	—	_	50.00	ns

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

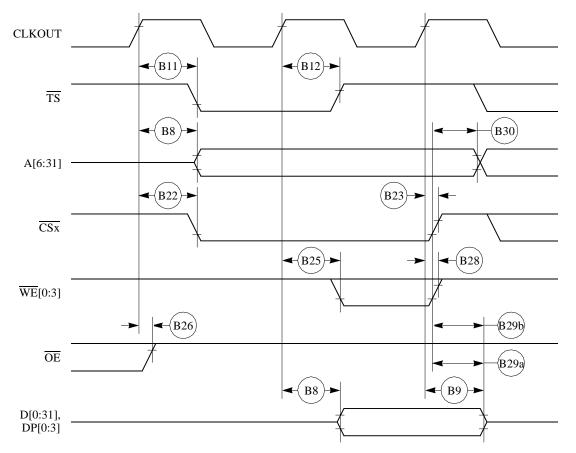
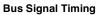



Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

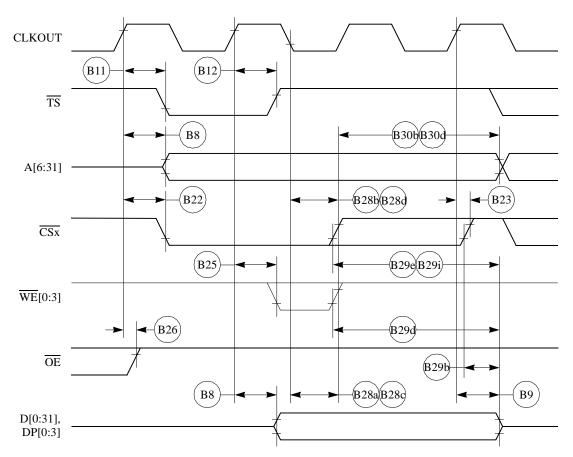


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Table 7 provides interrupt timing for the MPC850.

Num	Characteristic ¹	50 MHz		66N	lHz	80 N	Unit	
	Characteristic		Max	Min	Max	Min	Max	onit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		6.00	_	6.00		ns
140	IRQx hold time after CLKOUT.	2.00	_	2.00		2.00		ns
l41	IRQx pulse width low	3.00		3.00		3.00		ns
142	IRQx pulse width high	3.00	_	3.00		3.00	_	ns
143	IRQx edge-to-edge time	80.00	_	121.0	_	100.0	_	ns

 Table 7. Interrupt Timing

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support

Figure 22 provides the interrupt detection timing for the external level-sensitive lines.

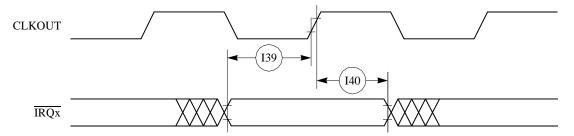


Figure 22. Interrupt Detection Timing for External Level Sensitive Lines

Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.

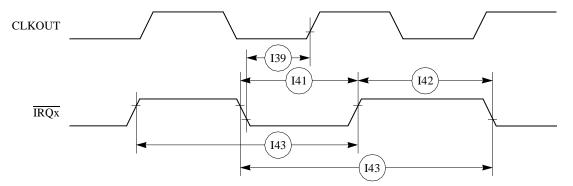


Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines

Bus Signal Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

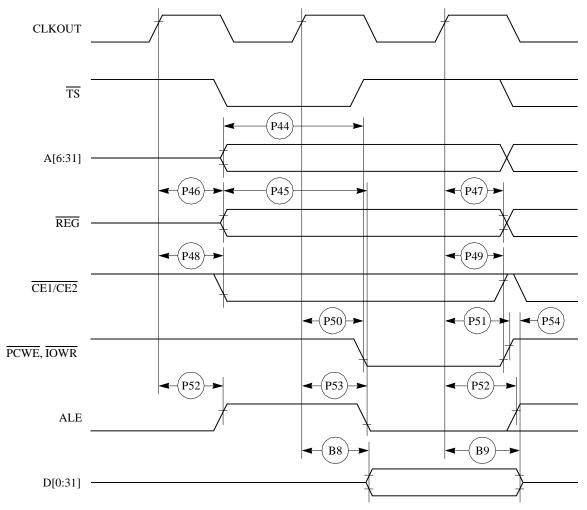


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

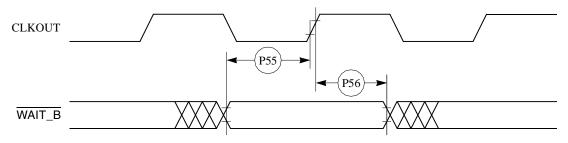


Figure 26. PCMCIA WAIT Signal Detection Timing

Bus Signal Timing

Figure 31 shows the reset timing for the data bus configuration.

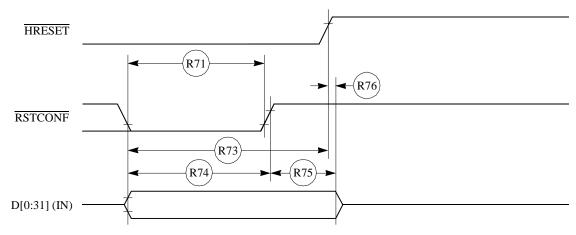


Figure 31. Reset Timing—Configuration from Data Bus

Figure 32 provides the reset timing for the data bus weak drive during configuration.

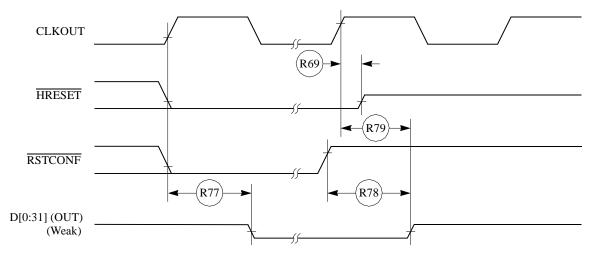


Figure 32. Reset Timing—Data Bus Weak Drive during Configuration

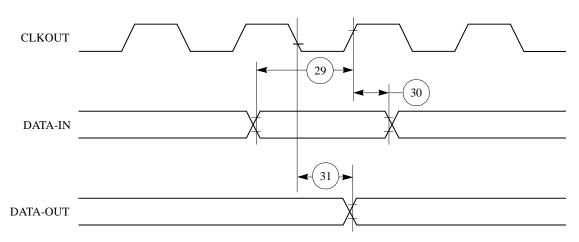


Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num	Characteristic	All Fred	Unit	
Num	Characteristic	Min	Max	Onic
40	DREQ setup time to clock high	7.00	_	ns
41	DREQ hold time from clock high	3.00	_	ns
42	SDACK assertion delay from clock high	_	12.00	ns
43	SDACK negation delay from clock low	_	12.00	ns
44	SDACK negation delay from TA low	_	20.00	ns
45	SDACK negation delay from clock high	_	15.00	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7.00		ns

Table 14. IDMA Controller Timing

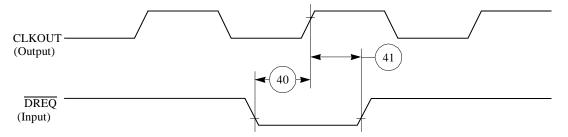


Figure 39. IDMA External Requests Timing Diagram

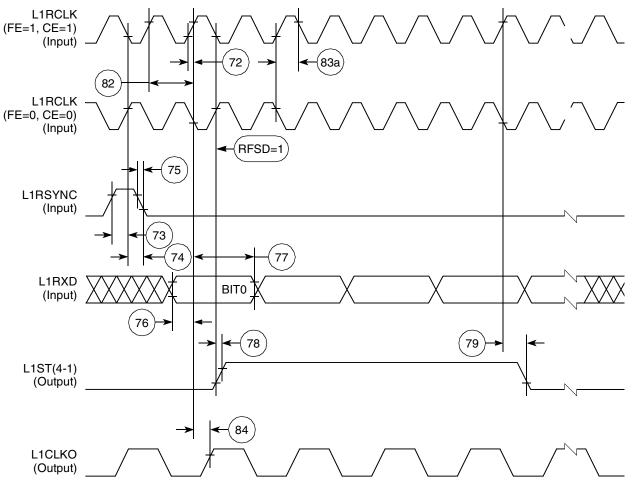


Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)

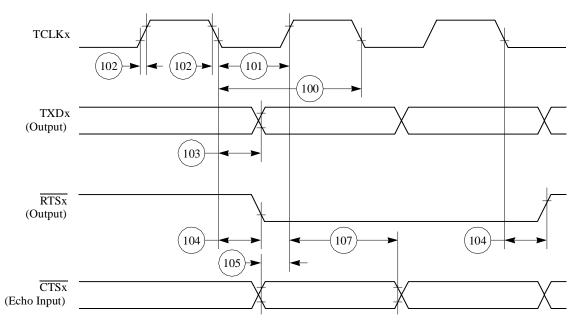


Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Num	Characteristic		All Frequencies	
Num			Max	Unit
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	_	15.00	ns
122	RCLKx width low	40.00		ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00		ns
125	RXDx hold time	5.00		ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	—	15.00	ns
129	TCLKx width low	40.00		ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)		50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

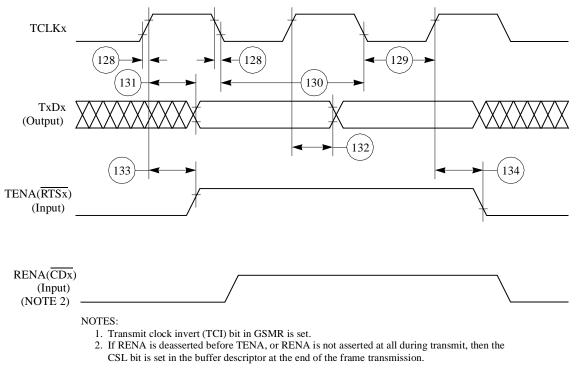
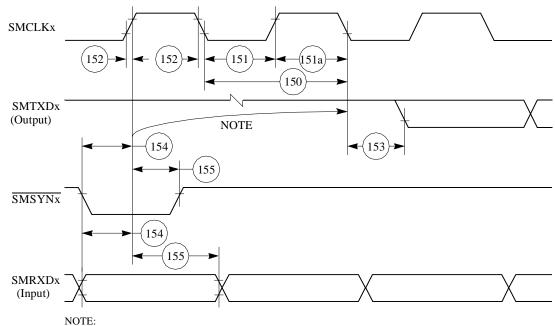


Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications


Figure 21 provides the SMC transparent timings as shown in Figure 56.

Num	Characteristic	All Frequencies		Unit
	Characteristic	Min	Мах	Unit
150	SMCLKx clock period ¹	100.00	_	ns
151	SMCLKx width low	50.00	_	ns
151a	SMCLKx width high	50.00	_	ns
152	SMCLKx rise/fall time	_	15.00	ns
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns
154	SMRXDx/SMSYNx setup time	20.00	_	ns
155	SMRXDx/SMSYNx hold time	5.00	_	ns

Table 21.	Serial	Management	Controller	Timing
-----------	--------	------------	------------	--------

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

1. This delay is equal to an integer number of character-length clocks.

Figure 56. SMC Transparent Timing Diagram

8.9 SPI Master AC Electrical Specifications

Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58.

Num	Characteristic	All Frequencies		Unit
Nulli	Characteristic	Min	Max	onit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50.00	_	ns
163	Master data hold time (inputs)	0.00	_	ns
164	Master data valid (after SCK edge)	—	20.00	ns
165	Master data hold time (outputs)	0.00	_	ns
166	Rise time output	—	15.00	ns
167	Fall time output	—	15.00	ns

Table 22. SPI Master Timing

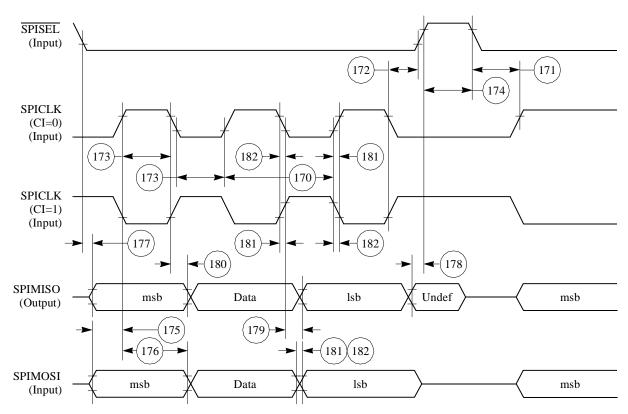


Figure 59. SPI Slave (CP = 0) Timing Diagram

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26.	MPC850	Family	/ Derivatives
-----------	---------------	--------	---------------

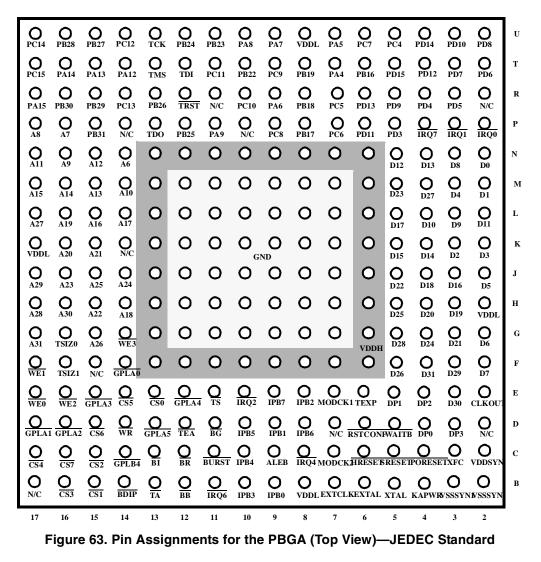
Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

¹ Serial Communication Controller (SCC)

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability


Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

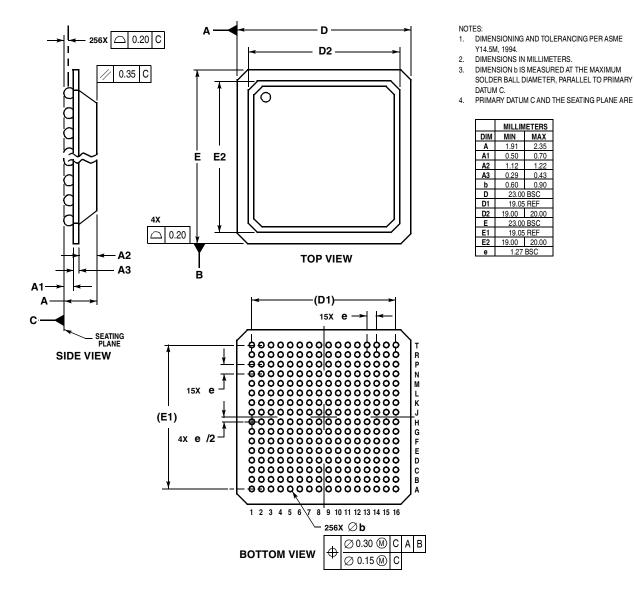


Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)-non-JEDEC Standard

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC850EC Rev. 2 07/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2005.

