E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc850dezq50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ _{JC}	8	°C/W

¹ For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

² Assumes natural convection and a single layer board (no thermal vias).

³ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

 $\begin{aligned} T_J &= T_A + (P_D \bullet \theta_{JA}) \\ P_D &= (V_{DD} \bullet I_{DD}) + P_{I/O} \\ \text{where:} \end{aligned}$

 $P_{I/O}$ is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions	40	TBD	590	mW
	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

² Maximum power dissipation is measured at 3.65 V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	V
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

Bus Signal Timing

Num	Characteristic	50 MHz		66 MHz		80 MHz		FFACT	Cap Load	Unit
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	FFACI	50 pF)	Unit
B31	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31b	CLKOUT rising edge to CS valid - as requested by control bit CST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	_	50.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid - as requested by control bit CST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31d	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32b	CLKOUT rising edge to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	_	50.00	ns
B32c	CLKOUT rising edge to BS valid - as requested by control bit BST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32d	CLKOUT falling edge to \overline{BS} valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B33	CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	—	50.00	ns

Figure 6 provides the timing for the synchronous input signals.

Figure 6. Synchronous Input Signals Timing

Figure 7 provides normal case timing for input data.

Figure 7. Input Data Timing in Normal Case

Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Figure 24 provides the PCMCIA access cycle timing for the external bus read.

Figure 24. PCMCIA Access Cycles Timing External Bus Read

Bus Signal Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

Figure 26. PCMCIA WAIT Signal Detection Timing

Figure 33. Reset Timing—Debug Port Configuration

7 IEEE 1149.1 Electrical Specifications

Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37.

Table 12. JTAG Timing

Num	Characteristic	50 MHz		66MHz		80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
J82	TCK cycle time	100.00		100.00	-	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00		40.00		40.00		ns
J84	TCK rise and fall times	0.00	10.00	0.00	10.00	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	5.00	_	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	25.00	_	25.00	_	ns
J87	TCK low to TDO data valid	_	27.00	—	27.00	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	0.00	_	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	—	20.00	_	20.00	ns
J90	TRST assert time	100.00		100.00		100.00	_	ns
J91	TRST setup time to TCK low	40.00		40.00		40.00		ns
J92	TCK falling edge to output valid	_	50.00	—	50.00	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	—	50.00	—	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	—	50.00	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	50.00	_	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00		50.00		50.00	—	ns

IEEE 1149.1 Electrical Specifications

Figure 34. JTAG Test Clock Input Timing

Figure 35. JTAG Test Access Port Timing Diagram

Figure 36. JTAG TRST Timing Diagram

Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num	Characteristic		All Frequencies		
Num	Characteristic	Min	Мах	Onit	
40	DREQ setup time to clock high	7.00	_	ns	
41	DREQ hold time from clock high	3.00	_	ns	
42	SDACK assertion delay from clock high	_	12.00	ns	
43	SDACK negation delay from clock low	_	12.00	ns	
44	SDACK negation delay from TA low	_	20.00	ns	
45	SDACK negation delay from clock high		15.00	ns	
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7.00	_	ns	

Table 14. IDMA Controller Timing

Figure 39. IDMA External Requests Timing Diagram

Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Мах	Unit
50	BRGO rise and fall time	_	10.00	ns
51	BRGO duty cycle	40.00	60.00	%
52	BRGO cycle	40.00	—	ns

Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Мах	Unit
61	TIN/TGATE rise and fall time	10.00	_	ns
62	TIN/TGATE low time	1.00	_	clk
63	TIN/TGATE high time	2.00	—	clk
64	TIN/TGATE cycle time	3.00	_	clk
65	CLKO high to TOUT valid	3.00	25.00	ns

Table 16. Timer Timing

Figure 44. CPM General-Purpose Timers Timing Diagram

8.5 Serial Interface AC Electrical Specifications

Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.

Num	Characteristic	All Free	Unit	
Nulli	Characteristic	Min	Мах	Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2. 5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	—	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns
72	L1TXD, L1ST <i>n</i> , L1RQ, L1xCLKO rise/fall time	—	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1xCLK edge Edge (SYNC setup time)	20.00	_	ns
74	L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns
75	L1RSYNC, L1TSYNC rise/fall time	—	15.00	ns
76	L1RXD valid to L1xCLK edge (L1RXD setup time)	17.00	—	ns
77	L1xCLK edge to L1RXD invalid (L1RXD hold time)	13.00	—	ns
78	L1xCLK edge to L1ST <i>n</i> valid ⁴	10.00	45.00	ns
78A	L1SYNC valid to L1ST <i>n</i> valid	10.00	45.00	ns
79	L1xCLK edge to L1ST <i>n</i> invalid	10.00	45.00	ns
80	L1xCLK edge to L1TXD valid	10.00	55.00	ns
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns
81	L1xCLK edge to L1TXD high impedance	0.00	42.00	ns

Table 17. SI Timing

	Table 17. SI Timing (cont	inued)		
	Oh ann a thurin tha	All Fre	quencies	11
NUM	Characteristic	Min	Мах	Unit
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	—	ns
83A	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	—	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)		30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	—	L1TCLK
86	L1GR setup time ²	42.00	—	ns
87	L1GR hold time	42.00	—	ns
88	L1xCLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

- 2 These specs are valid for IDL mode only.
- ³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

CPM Electrical Characteristics

Figure 50 through Figure 52 show the NMSI timings.

Num	Charactoristic		All Frequencies	
	Characteristic	Min	Max	Unit
134	TENA inactive delay (from TCLKx rising edge)	10.00	50.00	ns
138	CLKOUT low to SDACK asserted ²	—	20.00	ns
139	CLKOUT low to SDACK negated ²	—	20.00	ns

Table 20. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory.

Figure 53. Ethernet Collision Timing Diagram

Figure 54. Ethernet Receive Timing Diagram

Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

Num	Characteristic	All Frequencies		Unit
	Characteristic	Min	Max	0.m
150	SMCLKx clock period ¹	100.00	—	ns
151	SMCLKx width low	50.00	—	ns
151a	SMCLKx width high	50.00	—	ns
152	SMCLKx rise/fall time	—	15.00	ns
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns
154	SMRXDx/SMSYNx setup time	20.00	—	ns
155	SMRXDx/SMSYNx hold time	5.00	—	ns

Table 21.	Serial	Management	Controller	Timing
-----------	--------	------------	------------	--------

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

8.10 SPI Slave AC Electrical Specifications

Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60.

Table 23. SPI Slave Timing

Num	Characteristic	All Frequencies		Unit	
Nulli	Characteristic	Min	Max	Onic	
170	Slave cycle time	2	_	t _{cyc}	
171	Slave enable lead time	15.00	—	ns	
172	Slave enable lag time		—	ns	
173	Slave clock (SPICLK) high or low time		—	t _{cyc}	
174	Slave sequential transfer delay (does not require deselect)		—	t _{cyc}	
175	Slave data setup time (inputs)		—	ns	
176	Slave data hold time (inputs)		—	ns	
177	Slave access time		50.00	ns	
178	Slave SPI MISO disable time		50.00	ns	
179	Slave data valid (after SPICLK edge)		50.00	ns	
180	Slave data hold time (outputs)		_	ns	
181	Rise time (input)		15.00	ns	
182	Fall time (input)		15.00	ns	

Num	Characteristic	All Frequ	Unit	
		Min	Мах	Onit
210	SDL/SCL fall time	—	300.00	ns
211	Stop condition setup time	4.70		μs

Table 24. I²C Timing (SCL < 100 KHz) (CONTINUED)

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 25 provides the I^2C (SCL > 100 KHz) timings.

Table 25. I^2C Timing (SCL > 100 KHz)

Num	Characteristic	Expression	All Freq	Unit	
			Min	Max	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	_	S
203	Low period of SCL		1/(2.2 * fSCL)	_	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	_	s
206	Start condition hold time		1/(2.2 * fSCL)	_	s
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		_	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	_	s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 61 shows the I^2C bus timing.

Figure 61. I²C Bus Timing Diagram

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK