# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | MPC8xx                                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 80MHz                                                                   |
| Co-Processors/DSP               | Communications; CPM                                                     |
| RAM Controllers                 | DRAM                                                                    |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | -                                                                       |
| Ethernet                        | 10Mbps (1)                                                              |
| SATA                            | -                                                                       |
| USB                             | USB 1.x (1)                                                             |
| Voltage - I/O                   | 3.3V                                                                    |
| Operating Temperature           | 0°C ~ 95°C (TA)                                                         |
| Security Features               | -                                                                       |
| Package / Case                  | 256-BBGA                                                                |
| Supplier Device Package         | 256-PBGA (23x23)                                                        |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc850srvr80bu |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Overview

The CPM of the MPC850 supports up to seven serial channels, as follows:

- One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation.
- One USB channel
- Two serial management controllers (SMCs)
- One I<sup>2</sup>C port
- One serial peripheral interface (SPI).

Table 1 shows the functionality supported by the members of the MPC850 family.

| Part      | Number of<br>SCCs<br>Supported | Ethernet<br>Support | ATM Support | USB Support | Multi-channel<br>HDLC<br>Support | Number of<br>PCMCIA Slots<br>Supported |
|-----------|--------------------------------|---------------------|-------------|-------------|----------------------------------|----------------------------------------|
| MPC850    | 1                              | Yes                 | -           | Yes         | -                                | 1                                      |
| MPC850DE  | 2                              | Yes                 | -           | Yes         | -                                | 1                                      |
| MPC850SR  | 2                              | Yes                 | Yes         | Yes         | Yes                              | 1                                      |
| MPC850DSL | 2                              | Yes                 | Yes         | Yes         | No                               | 1                                      |

Table 1. MPC850 Functionality Matrix

Additional documentation may be provided for parts listed in Table 1.



Features

- 2-Kbyte instruction cache and 1-Kbyte data cache (Harvard architecture)
  - Caches are two-way, set-associative
  - Physically addressed
  - Cache blocks can be updated with a 4-word line burst
  - Least-recently used (LRU) replacement algorithm
  - Lockable one-line granularity
- Memory management units (MMUs) with 8-entry translation lookaside buffers (TLBs) and fully-associative instruction and data TLBs
- MMUs support multiple page sizes of 4 Kbytes, 16 Kbytes, 256 Kbytes, 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and eight protection groups
- Advanced on-chip emulation debug mode
- Data bus dynamic bus sizing for 8, 16, and 32-bit buses
  - Supports traditional 68000 big-endian, traditional x86 little-endian and modified little-endian memory systems
  - Twenty-six external address lines
- Completely static design (0–80 MHz operation)
- System integration unit (SIU)
  - Hardware bus monitor
  - Spurious interrupt monitor
  - Software watchdog
  - Periodic interrupt timer
  - Low-power stop mode
  - Clock synthesizer
  - Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
  - Reset controller
  - IEEE 1149.1 test access port (JTAG)
- Memory controller (eight banks)
  - Glueless interface to DRAM single in-line memory modules (SIMMs), synchronous DRAM (SDRAM), static random-access memory (SRAM), electrically programmable read-only memory (EPROM), flash EPROM, etc.
  - Memory controller programmable to support most size and speed memory interfaces
  - Boot chip-select available at reset (options for 8, 16, or 32-bit memory)
  - Variable block sizes, 32 Kbytes to 256 Mbytes
  - Selectable write protection
  - On-chip bus arbiter supports one external bus master
  - Special features for burst mode support
- General-purpose timers
  - Four 16-bit timers or two 32-bit timers



| Characteristic                                                                                                                                                                                                                                                                                                                                                                                 | Symbol          | Min       | Мах     | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|---------|------|
| Input low voltage                                                                                                                                                                                                                                                                                                                                                                              | VIL             | GND       | 0.8     | V    |
| EXTAL, EXTCLK input high voltage                                                                                                                                                                                                                                                                                                                                                               | VIHC            | 0.7*(VCC) | VCC+0.3 | V    |
| Input leakage current, Vin = 5.5 V (Except TMS, $\overline{\text{TRST}}$ , DSCK and DSDI pins)                                                                                                                                                                                                                                                                                                 | l <sub>in</sub> | —         | 100     | μA   |
| Input leakage current, Vin = $3.6V$ (Except TMS, TRST, DSCK and DSDI pins)                                                                                                                                                                                                                                                                                                                     | l <sub>in</sub> | —         | 10      | μA   |
| Input leakage current, Vin = 0V (Except TMS, $\overline{\text{TRST}}$ , DSCK and DSDI pins)                                                                                                                                                                                                                                                                                                    | l <sub>in</sub> | —         | 10      | μA   |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                              | C <sub>in</sub> | —         | 20      | pF   |
| Output high voltage, IOH = -2.0 mA, VDDH = 3.0V<br>except XTAL, XFC, and open-drain pins                                                                                                                                                                                                                                                                                                       | VOH             | 2.4       | _       | V    |
| Output low voltage<br>CLKOUT <sup>3</sup><br>IOL = $3.2 \text{ mA}^{1}$<br>IOL = $5.3 \text{ mA}^{2}$<br>IOL = $7.0 \text{ mA} \text{ PA}[14]/\overline{\text{USBOE}}, \text{ PA}[12]/\text{TXD2}$<br>IOL = $8.9 \text{ mA} \overline{\text{TS}}, \overline{\text{TA}}, \overline{\text{TEA}}, \overline{\text{BI}}, \overline{\text{BB}}, \overline{\text{HRESET}}, \overline{\text{SRESET}}$ | VOL             | _         | 0.5     | V    |

### Table 5. DC Electrical Specifications (continued)

 A[6:31], TSIZ0/REG, TSIZ1, D[0:31], DP[0:3]/IRQ[3:6], RD/WR, BURST, RSV/IRQ2, IP\_B[0:1]/IWP[0:1]/VFLS[0:1], IP\_B2/IOIS16\_B/AT2, IP\_B3/IWP2/VF2, IP\_B4/LWP0/VF0, IP\_B5/LWP1/VF1, IP\_B6/DSDI/AT0, IP\_B7/PTR/AT3, PA[15]/USBRXD, PA[13]/RXD2, PA[9]/L1TXDA/SMRXD2, PA[8]/L1RXDA/SMTXD2, PA[7]/CLK1/TIN1/L1RCLKA/BRGO1, PA[6]/CLK2/TOUT1/TIN3, PA[5]/CLK3/TIN2/L1TCLKA/BRGO2, PA[4]/CLK4/TOUT2/TIN4, PB[31]/SPISEL, PB[30]/SPICLK/TXD3, PB[29]/SPIMOSI /RXD3, PB[28]/SPIMISO/BRGO3, PB[27]/I2CSDA/BRGO1, PB[26]/I2CSCL/BRGO2, PB[25]/SMTXD1/TXD3, PB[24]/SMRXD1/RXD3, PB[23]/SMSYN1/SDACK1, PB[22]/SMSYN2/SDACK2, PB[19]/L1ST1, PB[18]/RTS2/L1ST2, PB[17]/L1ST3, PB[16]/L1RQa/L1ST4, PC[15]/DREQ0/L1ST5, PC[14]/DREQ1/RTS2/L1ST6, PC[13]/L1ST7/RTS3, PC[12]/L1RQa/L1ST8, PC[11]/USBRXP, PC[10]/TGATE1/USBRXN, PC[9]/CTS2, PC[8]/CD2/TGATE1, PC[7]/USBTXP, PC[6]/USBTXN, PC[5]/CTS3/L1TSYNCA/SDACK1, PC[4]/CD3/L1RSYNCA, PD[15], PD[14], PD[13], PD[12], PD[11], PD[10], PD[9], PD[8], PD[7], PD[6], PD[5], PD[4], PD[3]

- <sup>2</sup> BDIP/GPL\_B5, BR, BG, FRZ/IRQ6, CS[0:5], CS6/CE1\_B, CS7/CE2\_B, WE0/BS\_AB0/IORD, WE1/BS\_AB1/IOWR, WE2/BS\_AB2/PCOE, WE3/BS\_AB3/PCWE, GPL\_A0/GPL\_B0, OE/GPL\_A1/GPL\_B1, GPL\_A[2:3]/GPL\_B[2:3]/CS[2:3], UPWAITA/GPL\_A4/AS, UPWAITB/GPL\_B4, GPL\_A5, ALE\_B/DSCK/AT1, OP2/MODCK1/STS, OP3/MODCK2/DSDO
- 3 The MPC850 IBIS model must be used to accurately model the behavior of the Clkout output driver for the full and half drive setting. Due to the nature of the Clkout output buffer, IOH and IOL for Clkout should be extracted from the IBIS model at any output voltage level.

# 5 **Power Considerations**

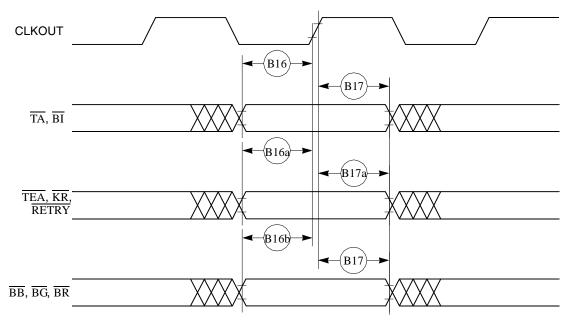
The average chip-junction temperature, T<sub>J</sub>, in °C can be obtained from the equation:

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA})(1)$$

where

 $T_{A} =$  Ambient temperature, °C




**Bus Signal Timing** 

| [    |                                                                                                                                             |       |       |       |       |        |       | Combood | [                    |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|-------|---------|----------------------|------|
| Num  | Characteristic                                                                                                                              | 50 I  | MHz   | 66 I  | ИНz   | 80 MHz |       | FFACT   | Cap Load<br>(default | Unit |
| -    |                                                                                                                                             | Min   | Max   | Min   | Max   | Min    | Max   | _       | 50 pF)               |      |
| B28c | CLKOUT falling edge to<br>WE[0–3] negated GPCM write<br>access TRLX = 0,1 CSNT = 1<br>write access TRLX = 0, CSNT =<br>1, EBDF = 1          | 7.00  | 14.00 | 11.00 | 18.00 | 9.00   | 16.00 | 0.375   | 50.00                | ns   |
| B28d | CLKOUT falling edge to $\overline{CS}$<br>negated GPCM write access<br>TRLX = 0,1 CSNT = 1, ACS =<br>10 or ACS = 11, EBDF = 1               | _     | 14.00 | _     | 18.00 | _      | 16.00 | 0.375   | 50.00                | ns   |
| B29  | $\overline{WE[0-3]}$ negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, CSNT = 0                                                   | 3.00  | _     | 6.00  | _     | 4.00   | _     | 0.250   | 50.00                | ns   |
| B29a | WE[0–3] negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access, TRLX = 0 CSNT = 1,<br>EBDF = 0                                          | 8.00  | _     | 13.00 | _     | 11.00  | _     | 0.500   | 50.00                | ns   |
| B29b | CS negated to D[0–31],<br>DP[0–3], high-Z GPCM write<br>access, ACS = 00, TRLX = 0 &<br>CSNT = 0                                            | 3.00  |       | 6.00  |       | 4.00   |       | 0.250   | 50.00                | ns   |
| B29c | $\overline{\text{CS}}$ negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access, TRLX = 0, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>0 | 8.00  |       | 13.00 |       | 11.00  |       | 0.500   | 50.00                | ns   |
| B29d | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, TRLX = 1, CSNT = 1,<br>EBDF = 0                                         | 28.00 |       | 43.00 |       | 36.00  |       | 1.500   | 50.00                | ns   |
| B29e | CS negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access, TRLX = 1, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>0                     | 28.00 |       | 43.00 |       | 36.00  |       | 1.500   | 50.00                | ns   |
| B29f | WE[0–3] negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>EBDF = 1                                          | 5.00  |       | 9.00  |       | 7.00   |       | 0.375   | 50.00                | ns   |
| B29g | CS negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>1                      | 5.00  |       | 9.00  |       | 7.00   |       | 0.375   | 50.00                | ns   |

| Table 6. | <b>Bus Operation</b> | Timing <sup>1</sup> | (continued) |
|----------|----------------------|---------------------|-------------|
|----------|----------------------|---------------------|-------------|



Figure 6 provides the timing for the synchronous input signals.



### Figure 6. Synchronous Input Signals Timing

Figure 7 provides normal case timing for input data.

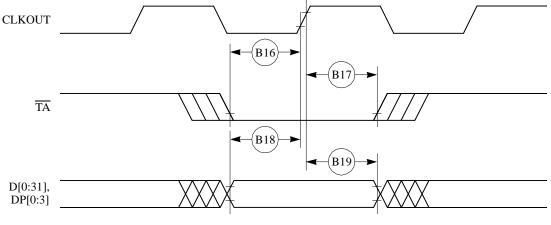



Figure 7. Input Data Timing in Normal Case



**Bus Signal Timing** 

Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.

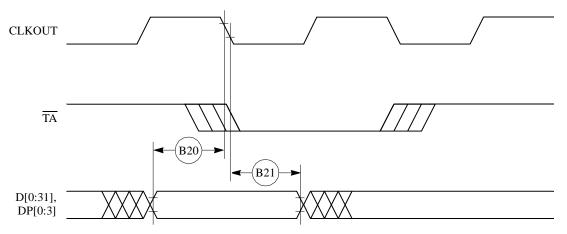



Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller

Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.

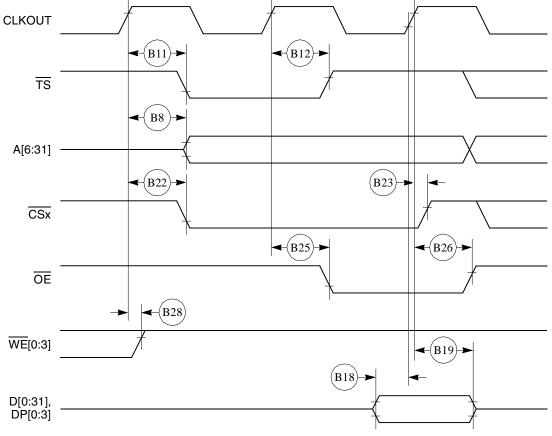



Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)



**Bus Signal Timing** 

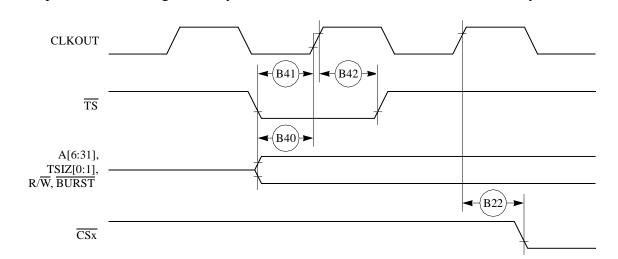
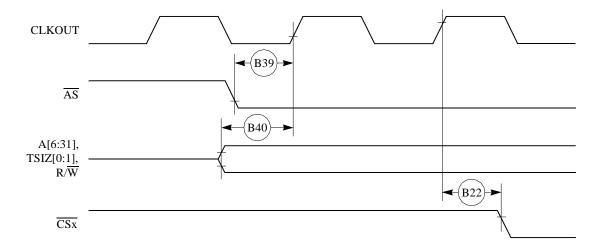




Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.



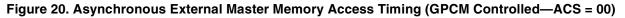



Figure 21 provides the timing for the asynchronous external master control signals negation.

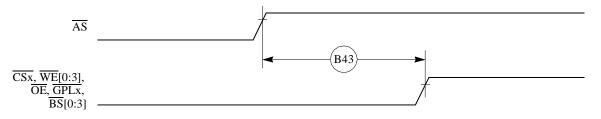



Figure 21. Asynchronous External Master—Control Signals Negation Timing



Table 7 provides interrupt timing for the MPC850.

| Num | Characteristic <sup>1</sup>                    | 50 MHz |     | 66MHz |     | 80 MHz |     | Unit |
|-----|------------------------------------------------|--------|-----|-------|-----|--------|-----|------|
|     | onaracioneno                                   |        | Max | Min   | Max | Min    | Max | Omt  |
| 139 | IRQx valid to CLKOUT rising edge (set up time) | 6.00   |     | 6.00  | _   | 6.00   |     | ns   |
| 140 | IRQx hold time after CLKOUT.                   | 2.00   | _   | 2.00  |     | 2.00   |     | ns   |
| l41 | IRQx pulse width low                           | 3.00   |     | 3.00  |     | 3.00   |     | ns   |
| 142 | IRQx pulse width high                          | 3.00   | _   | 3.00  |     | 3.00   | _   | ns   |
| 143 | IRQx edge-to-edge time                         | 80.00  | _   | 121.0 | _   | 100.0  | _   | ns   |

 Table 7. Interrupt Timing

<sup>1</sup> The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support

Figure 22 provides the interrupt detection timing for the external level-sensitive lines.

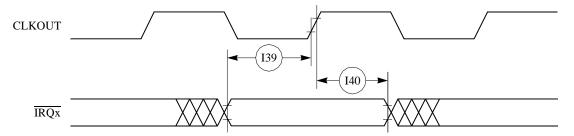



Figure 22. Interrupt Detection Timing for External Level Sensitive Lines

Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.

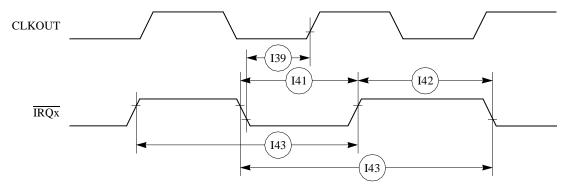



Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines



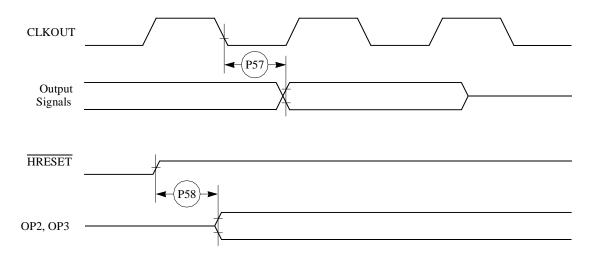

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

| Num | Characteristic                           | 50 MHz |       | 66 MHz |       | 80 MHz |       | Unit |
|-----|------------------------------------------|--------|-------|--------|-------|--------|-------|------|
|     | Characteristic                           | Min    | Max   | Min    | Max   | Min    | Max   | Onne |
| P57 | CLKOUT to OPx valid                      | _      | 19.00 | _      | 19.00 | _      | 19.00 | ns   |
| P58 | HRESET negated to OPx drive <sup>1</sup> | 18.00  | _     | 26.00  | _     | 22.00  | _     | ns   |
| P59 | IP_Xx valid to CLKOUT rising edge        | 5.00   | _     | 5.00   | _     | 5.00   | _     | ns   |
| P60 | CLKOUT rising edge to IP_Xx invalid      | 1.00   | _     | 1.00   | _     | 1.00   | _     | ns   |

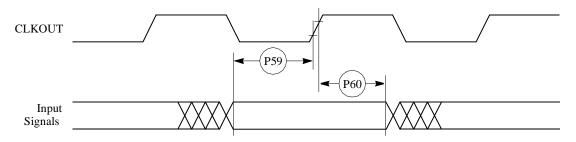
<sup>1</sup> OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.



### Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.



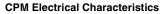


Figure 28. PCMCIA Input Port Timing



Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

| Num | Characteristic                                                                            | 50 I   | ЛНz   | 66N    | /IHz  | 80 1   | MHz   | FFACTOR | Unit |
|-----|-------------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|---------|------|
| Num | Characteristic                                                                            | Min    | Max   | Min    | Max   | Min    | Max   | FRETOR  | Unit |
| R69 | CLKOUT to HRESET high impedance                                                           | —      | 20.00 | _      | 20.00 | —      | 20.00 |         | ns   |
| R70 | CLKOUT to SRESET high impedance                                                           | —      | 20.00 | —      | 20.00 | —      | 20.00 | —       | ns   |
| R71 | RSTCONF pulse width                                                                       | 340.00 |       | 515.00 | _     | 425.00 | _     | 17.000  | ns   |
| R72 |                                                                                           | —      |       | —      | _     | —      | _     | —       |      |
| R73 | Configuration data to HRESET rising edge set up time                                      | 350.00 | _     | 505.00 | _     | 425.00 |       | 15.000  | ns   |
| R74 | Configuration data to RSTCONF rising edge set up time                                     | 350.00 | _     | 350.00 | _     | 350.00 |       | —       | ns   |
| R75 | Configuration data hold time after<br>RSTCONF negation                                    | 0.00   |       | 0.00   | —     | 0.00   |       | —       | ns   |
| R76 | Configuration data hold time after<br>HRESET negation                                     | 0.00   |       | 0.00   | _     | 0.00   |       | —       | ns   |
| R77 | HRESET and RSTCONF asserted to data out drive                                             | —      | 25.00 | _      | 25.00 | —      | 25.00 | —       | ns   |
| R78 | RSTCONF negated to data out high impedance.                                               | _      | 25.00 | _      | 25.00 | _      | 25.00 | —       | ns   |
| R79 | CLKOUT of last rising edge before chip<br>tristates HRESET to data out high<br>impedance. | _      | 25.00 | _      | 25.00 | _      | 25.00 | _       | ns   |
| R80 | DSDI, DSCK set up                                                                         | 60.00  |       | 90.00  | —     | 75.00  |       | 3.000   | ns   |
| R81 | DSDI, DSCK hold time                                                                      | 0.00   | _     | 0.00   | —     | 0.00   | _     | —       | ns   |
| R82 | SRESET negated to CLKOUT rising edge for DSDI and DSCK sample                             | 160.00 |       | 242.00 | —     | 200.00 | _     | 8.000   | ns   |





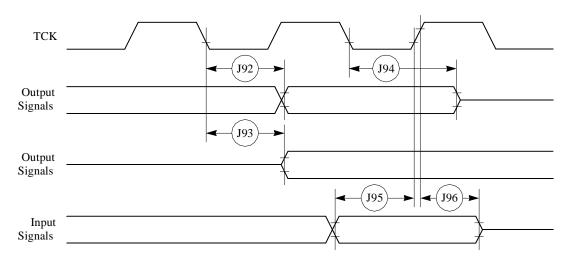



Figure 37. Boundary Scan (JTAG) Timing Diagram

# 8 **CPM Electrical Characteristics**

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

## 8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

### Table 13. Parallel I/O Timing

| Num | Characteristic                                                       | All Freque | Unit |      |
|-----|----------------------------------------------------------------------|------------|------|------|
| Num | Characteristic                                                       | Min        | Max  | Unit |
| 29  | Data-in setup time to clock high                                     | 15         | _    | ns   |
| 30  | Data-in hold time from clock high                                    | 7.5        | _    | ns   |
| 31  | Clock low to data-out valid (CPU writes data, control, or direction) | -          | 25   | ns   |



**CPM Electrical Characteristics** 

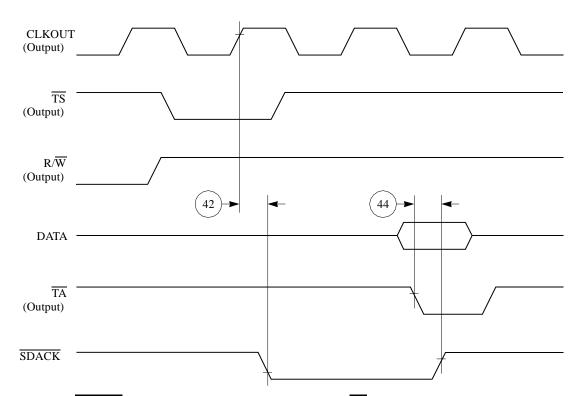
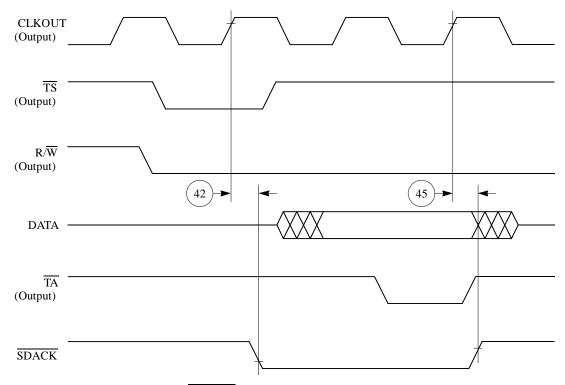
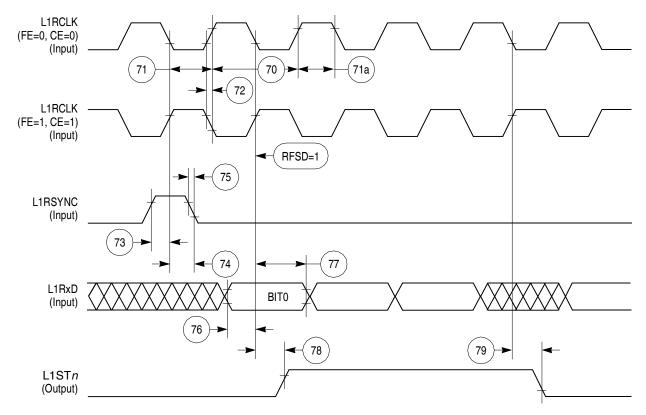




Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock






|       |                                                                         |          | СРМ                   | Electrical Ch |
|-------|-------------------------------------------------------------------------|----------|-----------------------|---------------|
|       | Table 17. SI Timing (cont                                               | inued)   |                       |               |
| Num   | Characteristic                                                          | All Free | quencies              | Unit          |
| NUIII | Cildracteristic                                                         | Min      | Мах                   | Unit          |
| 82    | L1RCLK, L1TCLK frequency (DSC =1)                                       | —        | 16.00 or<br>SYNCCLK/2 | MHz           |
| 83    | L1RCLK, L1TCLK width low (DSC =1)                                       | P + 10   | —                     | ns            |
| 83A   | L1RCLK, L1TCLK width high (DSC = $1$ ) <sup>3</sup>                     | P + 10   | —                     | ns            |
| 84    | L1CLK edge to L1CLKO valid (DSC = 1)                                    | —        | 30.00                 | ns            |
| 85    | L1RQ valid before falling edge of L1TSYNC <sup>4</sup>                  | 1.00     | —                     | L1TCLK        |
| 86    | L1GR setup time <sup>2</sup>                                            | 42.00    | —                     | ns            |
| 87    | L1GR hold time                                                          | 42.00    | —                     | ns            |
| 88    | L1xCLK edge to L1SYNC valid (FSD = 00) CNT =<br>0000, BYT = 0, DSC = 0) | —        | 0.00                  | ns            |

1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

- 2 These specs are valid for IDL mode only.
- <sup>3</sup> Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

<sup>4</sup> These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.







**CPM Electrical Characteristics** 

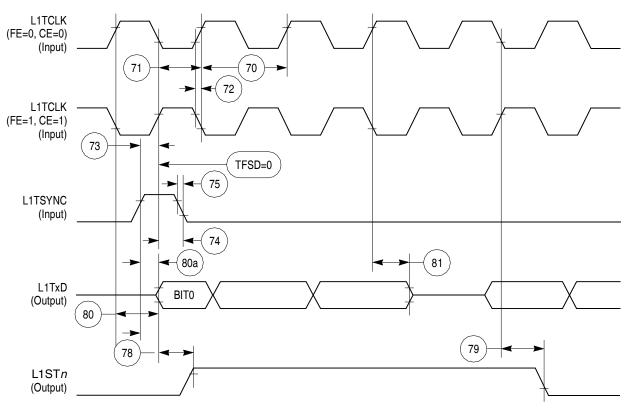



Figure 47. SI Transmit Timing Diagram



**CPM Electrical Characteristics** 

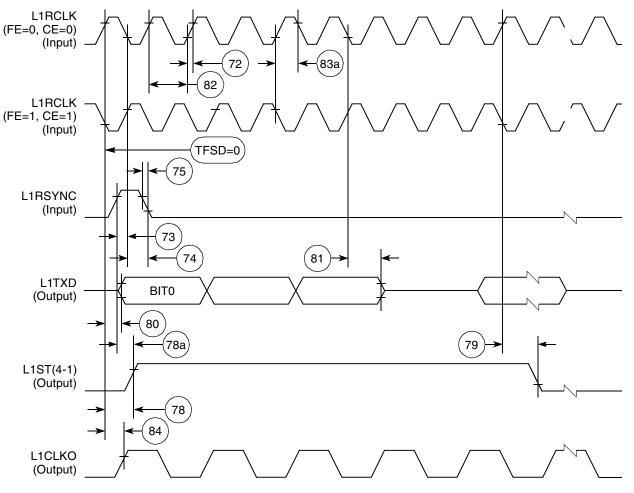



Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)



**CPM Electrical Characteristics** 

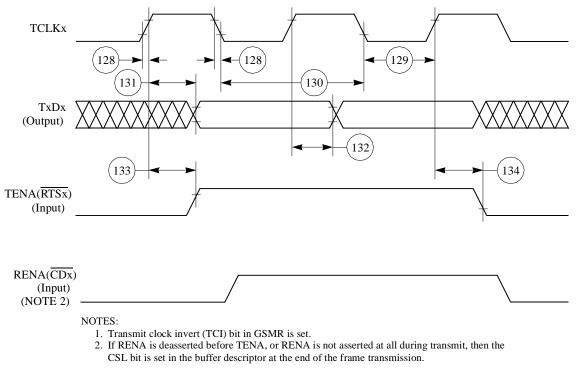
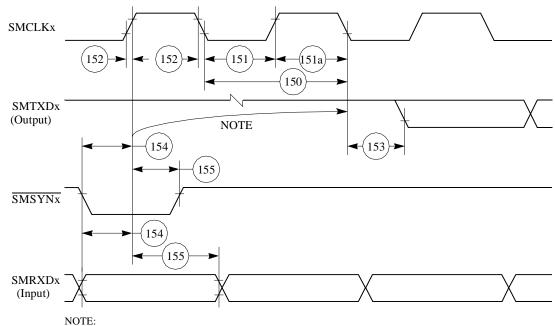



Figure 55. Ethernet Transmit Timing Diagram

### 8.8 SMC Transparent AC Electrical Specifications


Figure 21 provides the SMC transparent timings as shown in Figure 56.

| Num  | Characteristic                                 | All Frequ | Unit  |      |
|------|------------------------------------------------|-----------|-------|------|
| Num  | Characteristic                                 | Min       | Мах   | Unit |
| 150  | SMCLKx clock period <sup>1</sup>               | 100.00    | _     | ns   |
| 151  | SMCLKx width low                               | 50.00     | _     | ns   |
| 151a | SMCLKx width high                              | 50.00     | _     | ns   |
| 152  | SMCLKx rise/fall time                          | _         | 15.00 | ns   |
| 153  | SMTXDx active delay (from SMCLKx falling edge) | 10.00     | 50.00 | ns   |
| 154  | SMRXDx/SMSYNx setup time                       | 20.00     | _     | ns   |
| 155  | SMRXDx/SMSYNx hold time                        | 5.00      | _     | ns   |

| Table 21. | Serial | Management | Controller | Timing |
|-----------|--------|------------|------------|--------|
|-----------|--------|------------|------------|--------|

<sup>1</sup> The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

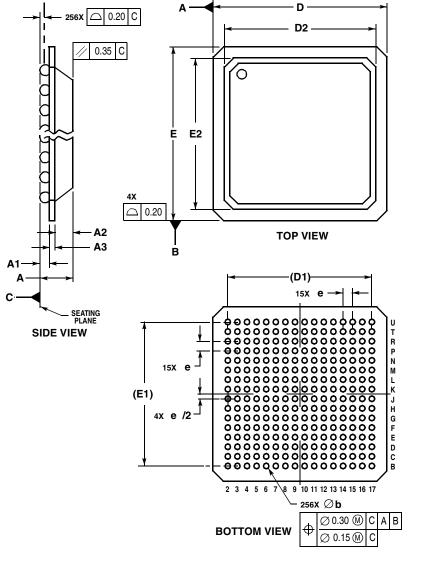




1. This delay is equal to an integer number of character-length clocks.

### Figure 56. SMC Transparent Timing Diagram

### 8.9 SPI Master AC Electrical Specifications


Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58.

| Num | Characteristic                      | All Frequencies |       | Unit             |
|-----|-------------------------------------|-----------------|-------|------------------|
|     |                                     | Min             | Max   | Unit             |
| 160 | MASTER cycle time                   | 4               | 1024  | t <sub>cyc</sub> |
| 161 | MASTER clock (SCK) high or low time | 2               | 512   | t <sub>cyc</sub> |
| 162 | MASTER data setup time (inputs)     | 50.00           | _     | ns               |
| 163 | Master data hold time (inputs)      | 0.00            | _     | ns               |
| 164 | Master data valid (after SCK edge)  | —               | 20.00 | ns               |
| 165 | Master data hold time (outputs)     | 0.00            | _     | ns               |
| 166 | Rise time output                    | —               | 15.00 | ns               |
| 167 | Fall time output                    | —               | 15.00 | ns               |

### Table 22. SPI Master Timing



### Figure 65 shows the JEDEC package dimensions of the PBGA.



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

|     | MILLIMETERS |       |  |
|-----|-------------|-------|--|
| DIM | MIN         | MAX   |  |
| Α   | 1.91        | 2.35  |  |
| A1  | 0.50        | 0.70  |  |
| A2  | 1.12        | 1.22  |  |
| A3  | 0.29        | 0.43  |  |
| b   | 0.60        | 0.90  |  |
| D   | 23.00 BSC   |       |  |
| D1  | 19.05 REF   |       |  |
| D2  | 19.00       | 20.00 |  |
| Е   | 23.00 BSC   |       |  |
| E1  | 19.05 REF   |       |  |
| E2  | 19.00       | 20.00 |  |
| е   | 1.27 BSC    |       |  |

CASE 1130-01 ISSUE B

Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard



**Document Revision History** 

# **10 Document Revision History**

Table 28 lists significant changes between revisions of this document.

### Table 28. Document Revision History

| Revision | Date    | Change                                                                                                                                                                                           |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | 7/2005  | Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.                                                                                                                        |
| 1        | 10/2002 | Added MPC850DSL. Corrected Figure 25 on page 34.                                                                                                                                                 |
| 0.2      | 04/2002 | Updated power numbers and added Rev. C                                                                                                                                                           |
| 0.1      | 11/2001 | Removed reference to 5 Volt tolerance capability on peripheral interface pins.<br>Replaced SI and IDL timing diagrams with better images. Updated to new<br>template, added this revision table. |



**Document Revision History** 

### THIS PAGE INTENTIONALLY LEFT BLANK