# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | MPC8xx                                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 50MHz                                                                   |
| Co-Processors/DSP               | Communications; CPM                                                     |
| RAM Controllers                 | DRAM                                                                    |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | · ·                                                                     |
| Ethernet                        | 10Mbps (1)                                                              |
| SATA                            | -                                                                       |
| USB                             | USB 1.x (1)                                                             |
| Voltage - I/O                   | 3.3V                                                                    |
| Operating Temperature           | 0°C ~ 95°C (TA)                                                         |
| Security Features               |                                                                         |
| Package / Case                  | 256-BBGA                                                                |
| Supplier Device Package         | 256-PBGA (23x23)                                                        |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc850srzq50bu |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



 $\theta_{IA}$  = Package thermal resistance, junction to ambient, °C/W

 $\begin{aligned} \mathbf{P}_{\mathrm{D}} &= \mathbf{P}_{\mathrm{INT}} + \mathbf{P}_{\mathrm{I/O}} \\ \mathbf{P}_{\mathrm{INT}} &= \mathbf{I}_{\mathrm{DD}} \ge \mathbf{V}_{\mathrm{DD}}, \text{watts}\text{---chip internal power} \end{aligned}$ 

 $P_{I/O}$  = Power dissipation on input and output pins—user determined

For most applications  $P_{I/O} < 0.3 \bullet P_{INT}$  and can be neglected. If  $P_{I/O}$  is neglected, an approximate relationship between  $P_D$  and  $T_I$  is:

 $P_{\rm D} = K \div (T_{\rm I} + 273^{\circ} \rm C)(2)$ 

Solving equations (1) and (2) for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \bullet (\mathbf{T}_{\mathrm{A}} + 273^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \bullet \mathbf{P}_{\mathrm{D}}^{2}(3)$ 

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring  $P_D$  (at equilibrium) for a known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  can be obtained by solving equations (1) and (2) iteratively for any value of  $T_A$ .

# 5.1 Layout Practices

Each  $V_{CC}$  pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The  $V_{CC}$  power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip  $V_{CC}$  and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as  $V_{CC}$  and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the  $V_{CC}$  and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

# 6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.



|      | <b>a</b>                                                                                                                | 50 MHz 66 MHz |       |       | MHz   | 80 I  | MHz   |       | Cap Load           |      |
|------|-------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|-------|-------|-------|--------------------|------|
| Num  | Characteristic                                                                                                          | Min           | Max   | Min   | Max   | Min   | Мах   | FFACT | (default<br>50 pF) | Unit |
| B9   | CLKOUT to A[6–31] RD/WR,<br>BURST, D[0–31], DP[0–3],<br>TSIZ[0–1], REG, RSV, AT[0–3],<br>PTR high-Z                     | 5.00          | 11.75 | 7.58  | 14.33 | 6.25  | 13.00 | 0.250 | 50.00              | ns   |
| B11  | CLKOUT to $\overline{TS}$ , $\overline{BB}$ assertion                                                                   | 5.00          | 11.00 | 7.58  | 13.58 | 6.25  | 12.25 | 0.250 | 50.00              | ns   |
| B11a | CLKOUT to $\overline{TA}$ , $\overline{BI}$ assertion,<br>(When driven by the memory<br>controller or PCMCIA interface) | 2.50          | 9.25  | 2.50  | 9.25  | 2.50  | 9.25  | —     | 50.00              | ns   |
| B12  | CLKOUT to $\overline{TS}$ , $\overline{BB}$ negation                                                                    | 5.00          | 11.75 | 7.58  | 14.33 | 6.25  | 13.00 | 0.250 | 50.00              | ns   |
| B12a | CLKOUT to TA, BI negation<br>(when driven by the memory<br>controller or PCMCIA interface)                              | 2.50          | 11.00 | 2.50  | 11.00 | 2.50  | 11.00 | —     | 50.00              | ns   |
| B13  | CLKOUT to $\overline{TS}$ , $\overline{BB}$ high-Z                                                                      | 5.00          | 19.00 | 7.58  | 21.58 | 6.25  | 20.25 | 0.250 | 50.00              | ns   |
| B13a | CLKOUT to $\overline{TA}$ , $\overline{BI}$ high-Z,<br>(when driven by the memory<br>controller or PCMCIA interface)    | 2.50          | 15.00 | 2.50  | 15.00 | 2.50  | 15.00 | —     | 50.00              | ns   |
| B14  | CLKOUT to $\overline{TEA}$ assertion                                                                                    | 2.50          | 10.00 | 2.50  | 10.00 | 2.50  | 10.00 | —     | 50.00              | ns   |
| B15  | CLKOUT to TEA high-Z                                                                                                    | 2.50          | 15.00 | 2.50  | 15.00 | 2.50  | 15.00 | —     | 50.00              | ns   |
| B16  | $\overline{\text{TA}}$ , $\overline{\text{BI}}$ valid to CLKOUT(setup time) <sup>5</sup>                                | 9.75          | —     | 9.75  | —     | 9.75  | —     | —     | 50.00              | ns   |
| B16a | TEA, KR, RETRY, valid to CLKOUT (setup time) <sup>5</sup>                                                               | 10.00         | —     | 10.00 | —     | 10.00 | —     | —     | 50.00              | ns   |
| B16b | $\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}$ valid to CLKOUT (setup time) <sup>6</sup>            | 8.50          | _     | 8.50  | —     | 8.50  | —     | _     | 50.00              | ns   |
| B17  | $\frac{\text{CLKOUT to TA, TEA, BI, BB,}}{\text{BG, BR valid (Hold time).}^5}$                                          | 1.00          |       | 1.00  | —     | 1.00  | _     | _     | 50.00              | ns   |
| B17a | CLKOUT to KR, RETRY, except<br>TEA valid (hold time)                                                                    | 2.00          | —     | 2.00  | —     | 2.00  | —     | _     | 50.00              | ns   |
| B18  | D[0–31], DP[0–3] valid to<br>CLKOUT rising edge (setup<br>time) <sup>7</sup>                                            | 6.00          | _     | 6.00  |       | 6.00  |       | _     | 50.00              | ns   |
| B19  | CLKOUT rising edge to<br>D[0–31], DP[0–3] valid (hold<br>time) <sup>7</sup>                                             | 1.00          | _     | 1.00  |       | 1.00  |       | _     | 50.00              | ns   |
| B20  | D[0–31], DP[0–3] valid to<br>CLKOUT falling edge (setup<br>time) <sup>8</sup>                                           | 4.00          |       | 4.00  |       | 4.00  | —     | _     | 50.00              | ns   |
| B21  | CLKOUT falling edge to<br>D[0–31], DP[0–3] valid (hold<br>time) <sup>8</sup>                                            | 2.00          | —     | 2.00  |       | 2.00  | —     | —     | —                  |      |

| Table 6. | <b>Bus Operation Timing</b> | <sup>1</sup> (continued) |
|----------|-----------------------------|--------------------------|
|----------|-----------------------------|--------------------------|



|      |                                                                                                                                                                                                                                                                                                                                                                                      | 50 MHz 66 MHz |     |       | 00.5 | /LI-   |     | Cap Load |          |      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-------|------|--------|-----|----------|----------|------|
| Num  | Characteristic                                                                                                                                                                                                                                                                                                                                                                       |               |     |       |      | 80 MHz |     | FFACT    | (default | Unit |
|      |                                                                                                                                                                                                                                                                                                                                                                                      | Min           | Max | Min   | Мах  | Min    | Мах |          | 50 pF)   |      |
| B29h | WE[0–3] negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>EBDF = 1                                                                                                                                                                                                                                                                                   | 25.00         |     | 39.00 |      | 31.00  |     | 1.375    | 50.00    | ns   |
| B29i | $\overline{\text{CS}}$ negated to D[0–31],<br>DP[0–3] high-Z GPCM write<br>access, TRLX = 1, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>1                                                                                                                                                                                                                                          | 25.00         | _   | 39.00 | _    | 31.00  | _   | 1.375    | 50.00    | ns   |
| B30  | CS, WE[0–3] negated to<br>A[6–31] invalid<br>GPCM write access <sup>9</sup>                                                                                                                                                                                                                                                                                                          | 3.00          | _   | 6.00  | _    | 4.00   | _   | 0.250    | 50.00    | ns   |
| B30a | $\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cases} \mbox{ CSNT = 1, } \hline CS \mbox{ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$        | 8.00          |     | 13.00 |      | 11.00  |     | 0.500    | 50.00    | ns   |
| B30b | $\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 1, \\ CSNT = 1. \ensuremath{\overline{CS}}\xspace$ negated to $ A[6-31] \mbox{ Invalid GPCM write $ access TRLX = 1, CSNT = 1, $ ACS = 10 \mbox{ or } ACS = 11, $ EBDF = $ 0 $ $ 0 $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                        | 28.00         | _   | 43.00 | _    | 36.00  | _   | 1.500    | 50.00    | ns   |
| B30c | $\label{eq:WE[0-3]} \begin{array}{l} \mbox{megated to A[6-31]} \\ \mbox{invalid} \\ \mbox{GPCM write access, TRLX = 0,} \\ \mbox{CSNT = 1. } \hline CS \mbox{ negated to} \\ \mbox{A[6-31] invalid GPCM write} \\ \mbox{access, TRLX = 0, CSNT = 1,} \\ \mbox{ACS = 10 or ACS = 11, EBDF =} \\ \mbox{1} \end{array}$                                                                 | 5.00          | _   | 8.00  | _    | 6.00   |     | 0.375    | 50.00    | ns   |
| B30d | $\label{eq:WE[0-3]} \begin{array}{l} \hline WE[0-3] \mbox{ negated to } A[6-31] \\ \hline \mbox{ invalid GPCM write access} \\ \hline TRLX = 1, \mbox{ CSNT = 1}, \mbox{ CS} \\ \hline \mbox{ negated to } A[6-31] \mbox{ invalid} \\ \hline \mbox{ GPCM write access } TRLX = 1, \\ \hline \mbox{ CSNT = 1}, \mbox{ ACS = 10 or } ACS = \\ \hline \mbox{ 11, EBDF = 1} \end{array}$ | 25.00         |     | 39.00 |      | 31.00  |     | 1.375    | 50.00    | ns   |



| Num  | Characteristic                                                                                                                | 50 MHz |       | 66 I  | 66 MHz |       | 80 MHz |       | Cap Load<br>(default | Unit |
|------|-------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------|-------|--------|-------|----------------------|------|
|      |                                                                                                                               | Min    | Max   | Min   | Max    | Min   | Мах    | _     | 50 pF)               |      |
| B33a | CLKOUT rising edge to GPL<br>valid - as requested by control<br>bit GxT3 in the corresponding<br>word in the UPM              | 5.00   | 12.00 | 8.00  | 14.00  | 6.00  | 13.00  | 0.250 | 50.00                | ns   |
| B34  | A[6–31] and D[0–31] to CS valid<br>- as requested by control bit<br>CST4 in the corresponding<br>word in the UPM              | 3.00   | _     | 6.00  | _      | 4.00  | _      | 0.250 | 50.00                | ns   |
| B34a | A[6–31] and D[0–31] to $\overline{CS}$ valid<br>- as requested by control bit<br>CST1 in the corresponding<br>word in the UPM | 8.00   | _     | 13.00 | _      | 11.00 | _      | 0.500 | 50.00                | ns   |
| B34b | A[6–31] and D[0–31] to CS valid<br>- as requested by CST2 in the<br>corresponding word in UPM                                 | 13.00  | —     | 21.00 | —      | 17.00 | —      | 0.750 | 50.00                | ns   |
| B35  | A[6-31] to $\overline{CS}$ valid - as<br>requested by control bit BST4 in<br>the corresponding word in UPM                    | 3.00   | —     | 6.00  | —      | 4.00  | —      | 0.250 | 50.00                | ns   |
| B35a | A[6–31] and D[0–31] to BS valid<br>- as requested by BST1 in the<br>corresponding word in the UPM                             | 8.00   | —     | 13.00 | —      | 11.00 | —      | 0.500 | 50.00                | ns   |
| B35b | A[6–31] and D[0–31] to BS valid<br>- as requested by control bit<br>BST2 in the corresponding<br>word in the UPM              | 13.00  | _     | 21.00 | _      | 17.00 | _      | 0.750 | 50.00                | ns   |
| B36  | A[6–31] and D[0–31] to GPL<br>valid - as requested by control<br>bit GxT4 in the corresponding<br>word in the UPM             | 3.00   | _     | 6.00  | _      | 4.00  | _      | 0.250 | 50.00                | ns   |
| B37  | UPWAIT valid to CLKOUT falling edge 10                                                                                        | 6.00   | —     | 6.00  | —      | 6.00  | —      | —     | 50.00                | ns   |
| B38  | CLKOUT falling edge to<br>UPWAIT valid <sup>10</sup>                                                                          | 1.00   | —     | 1.00  | —      | 1.00  | —      | —     | 50.00                | ns   |
| B39  | AS valid to CLKOUT rising edge                                                                                                | 7.00   | _     | 7.00  | _      | 7.00  | _      | —     | 50.00                | ns   |
| B40  | A[6–31], TSIZ[0–1], RD/WR,<br>BURST, valid to CLKOUT rising<br>edge.                                                          | 7.00   |       | 7.00  |        | 7.00  |        | —     | 50.00                | ns   |
| B41  | TS valid to CLKOUT rising edge (setup time)                                                                                   | 7.00   | _     | 7.00  | —      | 7.00  | —      | _     | 50.00                | ns   |



Figure 2 is the control timing diagram.

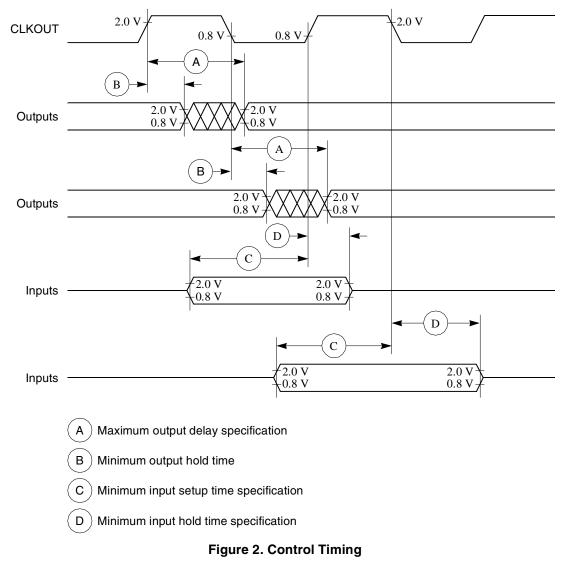



Figure 3 provides the timing for the external clock.

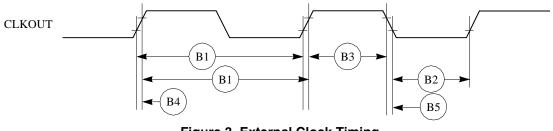
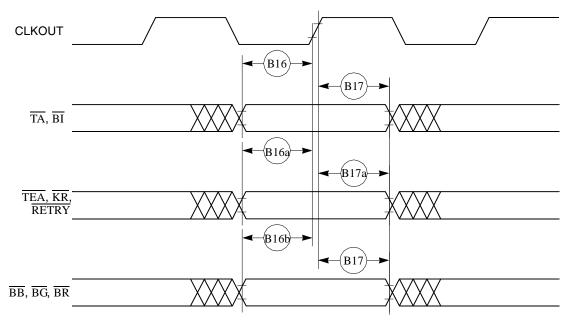




Figure 3. External Clock Timing



Figure 6 provides the timing for the synchronous input signals.



## Figure 6. Synchronous Input Signals Timing

Figure 7 provides normal case timing for input data.

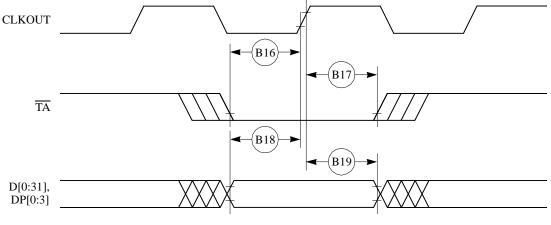



Figure 7. Input Data Timing in Normal Case



Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.

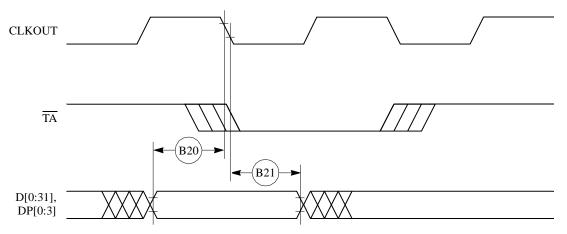



Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller

Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.

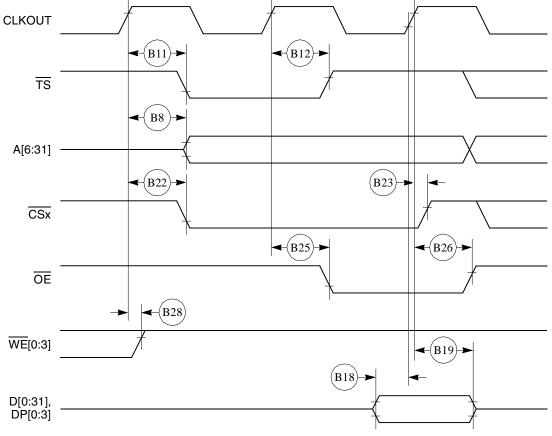



Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)



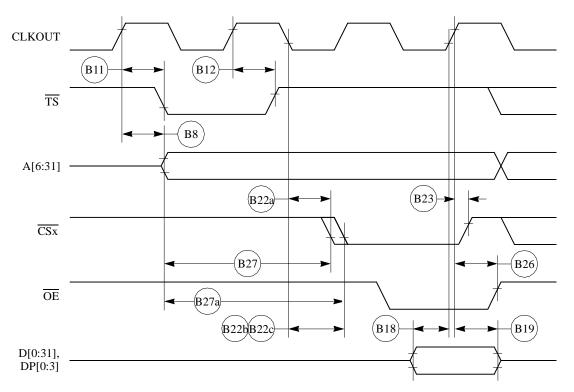



Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)



Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

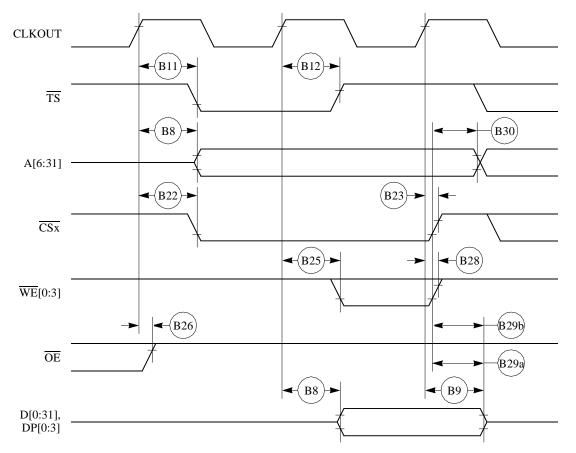
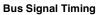




Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)





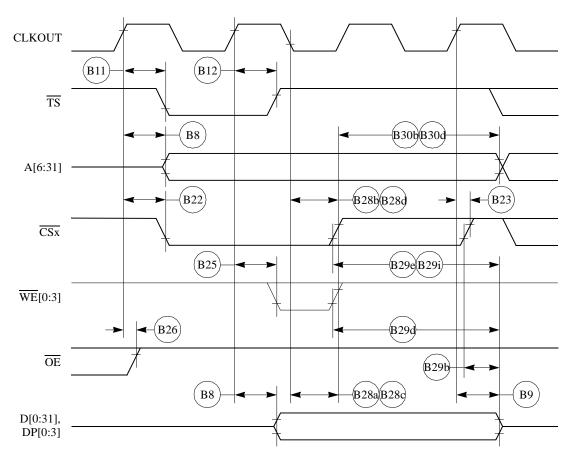



Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)



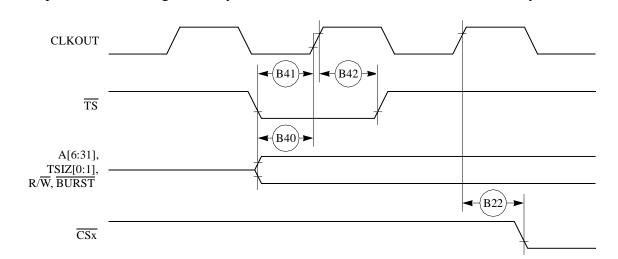
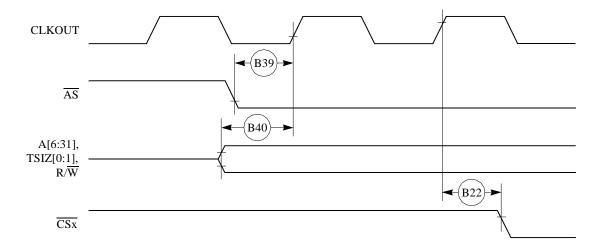




Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.



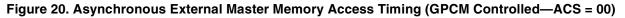



Figure 21 provides the timing for the asynchronous external master control signals negation.

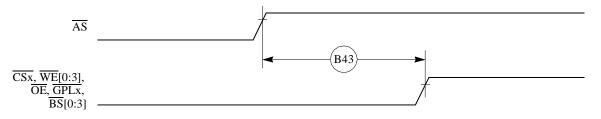
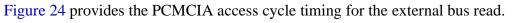



Figure 21. Asynchronous External Master—Control Signals Negation Timing



## Table 8 shows the PCMCIA timing for the MPC850.

Table 8. PCMCIA Timing


| Num | Characteristic                                      | 50MHz |       | 66MHz |       | 80 MHz |       | FFACTOR | Unit |
|-----|-----------------------------------------------------|-------|-------|-------|-------|--------|-------|---------|------|
| Num | Characteristic                                      | Min   | Max   | Min   | Max   | Min    | Max   | TRETOR  | Unit |
| P44 | A[6-31], REG valid to PCMCIA strobe asserted. 1     | 13.00 | —     | 21.00 | —     | 17.00  | —     | 0.750   | ns   |
| P45 | A[6–31], REG valid to ALE negation. <sup>1</sup>    | 18.00 |       | 28.00 | —     | 23.00  |       | 1.000   | ns   |
| P46 | CLKOUT to REG valid                                 | 5.00  | 13.00 | 8.00  | 16.00 | 6.00   | 14.00 | 0.250   | ns   |
| P47 | CLKOUT to REG Invalid.                              | 6.00  |       | 9.00  | —     | 7.00   |       | 0.250   | ns   |
| P48 | CLKOUT to CE1, CE2 asserted.                        | 5.00  | 13.00 | 8.00  | 16.00 | 6.00   | 14.00 | 0.250   |      |
| P49 | CLKOUT to CE1, CE2 negated.                         | 5.00  | 13.00 | 8.00  | 16.00 | 6.00   | 14.00 | 0.250   | ns   |
| P50 | CLKOUT to PCOE, IORD, PCWE,<br>IOWR assert time.    | —     | 11.00 | _     | 11.00 |        | 11.00 | _       | ns   |
| P51 | CLKOUT to PCOE, IORD, PCWE,<br>IOWR negate time.    | 2.00  | 11.00 | 2.00  | 11.00 | 2.00   | 11.00 | _       | ns   |
| P52 | CLKOUT to ALE assert time                           | 5.00  | 13.00 | 8.00  | 16.00 | 6.00   | 14.00 | 0.250   | ns   |
| P53 | CLKOUT to ALE negate time                           | —     | 13.00 | —     | 16.00 |        | 14.00 | 0.250   | ns   |
| P54 | PCWE, IOWR negated to D[0–31] invalid. <sup>1</sup> | 3.00  | _     | 6.00  | _     | 4.00   | —     | 0.250   | ns   |
| P55 | WAIT_B valid to CLKOUT rising edge.1                | 8.00  | —     | 8.00  | —     | 8.00   | —     | —       | ns   |
| P56 | CLKOUT rising edge to WAIT_B invalid. <sup>1</sup>  | 2.00  | —     | 2.00  | —     | 2.00   | —     | —       | ns   |

<sup>1</sup> PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAIT\_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT\_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC850 PowerQUICC User's Manual.





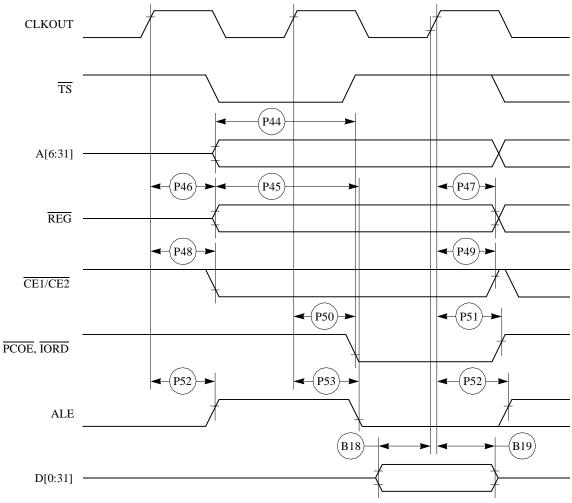



Figure 24. PCMCIA Access Cycles Timing External Bus Read



Table 10 shows the debug port timing for the MPC850.

| Num | Characteristic              | 50 I  | MHz   | 66 N  | ИНz   | 80 MHz |       | Unit |
|-----|-----------------------------|-------|-------|-------|-------|--------|-------|------|
|     | Characteristic              | Min   | Max   | Min   | Max   | Min    | Max   | Unit |
| D61 | DSCK cycle time             | 60.00 |       | 91.00 |       | 75.00  |       | ns   |
| D62 | DSCK clock pulse width      | 25.00 |       | 38.00 |       | 31.00  |       | ns   |
| D63 | DSCK rise and fall times    | 0.00  | 3.00  | 0.00  | 3.00  | 0.00   | 3.00  | ns   |
| D64 | DSDI input data setup time  | 8.00  | _     | 8.00  | _     | 8.00   | _     | ns   |
| D65 | DSDI data hold time         | 5.00  | _     | 5.00  | _     | 5.00   | _     | ns   |
| D66 | DSCK low to DSDO data valid | 0.00  | 15.00 | 0.00  | 15.00 | 0.00   | 15.00 | ns   |
| D67 | DSCK low to DSDO invalid    | 0.00  | 2.00  | 0.00  | 2.00  | 0.00   | 2.00  | ns   |

Table 10. Debug Port Timing

Figure 29 provides the input timing for the debug port clock.

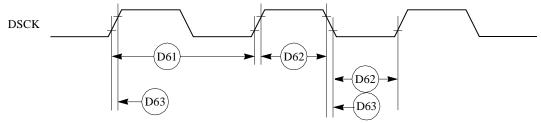



Figure 29. Debug Port Clock Input Timing

Figure 30 provides the timing for the debug port.

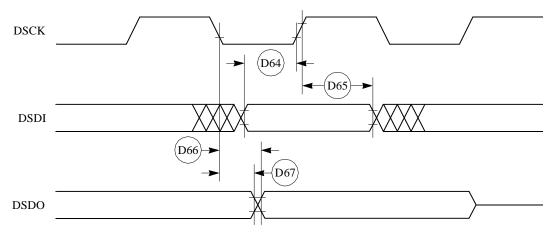



Figure 30. Debug Port Timings



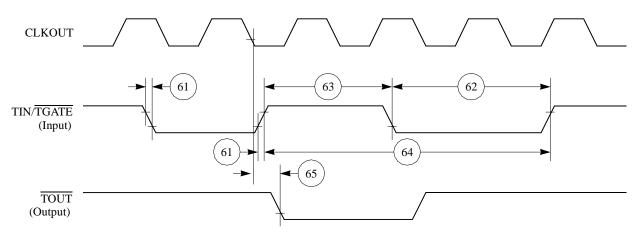



Figure 44. CPM General-Purpose Timers Timing Diagram

# 8.5 Serial Interface AC Electrical Specifications

Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.

| Num | Characteristic                                                  | All Fre | l lucit         |      |
|-----|-----------------------------------------------------------------|---------|-----------------|------|
| Num | Characteristic                                                  | Min     | Мах             | Unit |
| 70  | L1RCLK, L1TCLK frequency (DSC = 0) <sup>1, 2</sup>              |         | SYNCCLK/2.<br>5 | MHz  |
| 71  | L1RCLK, L1TCLK width low (DSC = 0) $^{2}$                       | P + 10  | —               | ns   |
| 71a | L1RCLK, L1TCLK width high (DSC = 0) $^{3}$                      | P + 10  | —               | ns   |
| 72  | L1TXD, L1ST <i>n</i> , L1RQ, L1xCLKO rise/fall time             |         | 15.00           | ns   |
| 73  | L1RSYNC, L1TSYNC valid to L1xCLK edge Edge<br>(SYNC setup time) | 20.00   | —               | ns   |
| 74  | L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)       | 35.00   | _               | ns   |
| 75  | L1RSYNC, L1TSYNC rise/fall time                                 | _       | 15.00           | ns   |
| 76  | L1RXD valid to L1xCLK edge (L1RXD setup time)                   | 17.00   | —               | ns   |
| 77  | L1xCLK edge to L1RXD invalid (L1RXD hold time)                  | 13.00   | —               | ns   |
| 78  | L1xCLK edge to L1ST <i>n</i> valid <sup>4</sup>                 | 10.00   | 45.00           | ns   |
| 78A | L1SYNC valid to L1ST <i>n</i> valid                             | 10.00   | 45.00           | ns   |
| 79  | L1xCLK edge to L1ST <i>n</i> invalid                            | 10.00   | 45.00           | ns   |
| 80  | L1xCLK edge to L1TXD valid                                      | 10.00   | 55.00           | ns   |
| 80A | L1TSYNC valid to L1TXD valid <sup>4</sup>                       | 10.00   | 55.00           | ns   |
| 81  | L1xCLK edge to L1TXD high impedance                             | 0.00    | 42.00           | ns   |

## Table 17. SI Timing



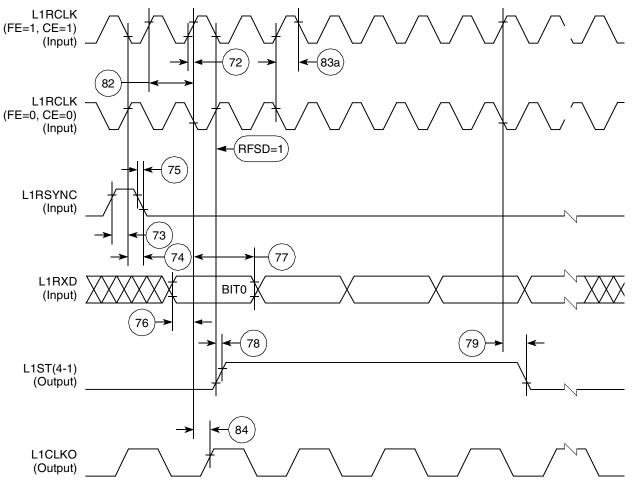



Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)



# 8.6 SCC in NMSI Mode Electrical Specifications

Table 18 provides the NMSI external clock timing.

| Num | Characteristic                                                          | All Frequencie | Unit    |    |  |
|-----|-------------------------------------------------------------------------|----------------|---------|----|--|
| Num | onaracteristic                                                          | Min            | Min Max |    |  |
| 100 | RCLKx and TCLKx frequency $^{1}$ (x = 2, 3 for all specs in this table) | 1/SYNCCLK      | -       | ns |  |
| 101 | RCLKx and TCLKx width low                                               | 1/SYNCCLK +5   | _       | ns |  |
| 102 | RCLKx and TCLKx rise/fall time                                          | _              | 15.00   | ns |  |
| 103 | TXDx active delay (from TCLKx falling edge)                             | 0.00           | 50.00   | ns |  |
| 104 | RTSx active/inactive delay (from TCLKx falling edge)                    | 0.00           | 50.00   | ns |  |
| 105 | CTSx setup time to TCLKx rising edge                                    | 5.00           |         | ns |  |
| 106 | RXDx setup time to RCLKx rising edge                                    | 5.00           | _       | ns |  |
| 107 | RXDx hold time from RCLKx rising edge <sup>2</sup>                      | 5.00           | _       | ns |  |
| 108 | CDx setup time to RCLKx rising edge                                     | 5.00           | _       | ns |  |

<sup>1</sup> The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.

<sup>2</sup> Also applies to  $\overline{\text{CD}}$  and  $\overline{\text{CTS}}$  hold time when they are used as an external sync signal.

Table 19 provides the NMSI internal clock timing.

Table 19. NMSI Internal Clock Timing

| Num | Characteristic                                                               | All Frequencies |           | Unit |
|-----|------------------------------------------------------------------------------|-----------------|-----------|------|
|     | Characteristic                                                               | Min             | Мах       | onn  |
| 100 | RCLKx and TCLKx frequency $1 (x = 2, 3 \text{ for all specs in this table})$ | 0.00            | SYNCCLK/3 | MHz  |
| 102 | RCLKx and TCLKx rise/fall time                                               |                 | —         | ns   |
| 103 | TXDx active delay (from TCLKx falling edge)                                  | 0.00            | 30.00     | ns   |
| 104 | RTSx active/inactive delay (from TCLKx falling edge)                         | 0.00            | 30.00     | ns   |
| 105 | CTSx setup time to TCLKx rising edge                                         | 40.00           | —         | ns   |
| 106 | RXDx setup time to RCLKx rising edge                                         | 40.00           | —         | ns   |
| 107 | RXDx hold time from RCLKx rising edge <sup>2</sup>                           |                 | —         | ns   |
| 108 | CDx setup time to RCLKx rising edge                                          |                 | —         | ns   |

<sup>1</sup> The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.

<sup>2</sup> Also applies to  $\overline{\text{CD}}$  and  $\overline{\text{CTS}}$  hold time when they are used as an external sync signals.



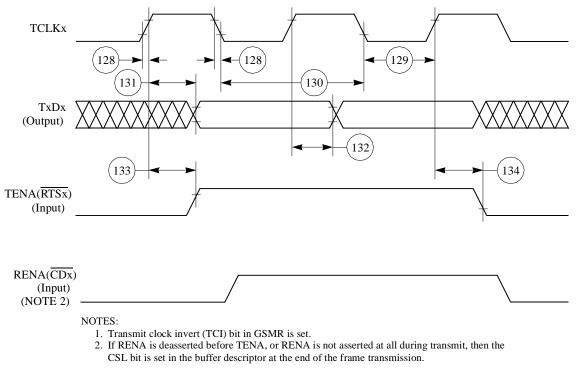



Figure 55. Ethernet Transmit Timing Diagram

# 8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

| Num  | Characteristic                                 | All Frequencies |       | Unit |
|------|------------------------------------------------|-----------------|-------|------|
|      | Characteristic                                 | Min             | Мах   | onic |
| 150  | SMCLKx clock period <sup>1</sup>               | 100.00          | _     | ns   |
| 151  | SMCLKx width low                               | 50.00           | _     | ns   |
| 151a | SMCLKx width high                              | 50.00           | _     | ns   |
| 152  | SMCLKx rise/fall time                          | _               | 15.00 | ns   |
| 153  | SMTXDx active delay (from SMCLKx falling edge) | 10.00           | 50.00 | ns   |
| 154  | SMRXDx/SMSYNx setup time                       | 20.00           | _     | ns   |
| 155  | SMRXDx/SMSYNx hold time                        | 5.00            | _     | ns   |

| Table 21. | Serial | Management | Controller | Timing |
|-----------|--------|------------|------------|--------|
|-----------|--------|------------|------------|--------|

<sup>1</sup> The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.



# 9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

| Table 26. | <b>MPC850</b> | Family | / Derivatives |
|-----------|---------------|--------|---------------|
|-----------|---------------|--------|---------------|

| Device    | Ethernet Support | Number of SCCs <sup>1</sup> | 32-Channel HDLC<br>Support | 64-Channel HDLC<br>Support <sup>2</sup> |
|-----------|------------------|-----------------------------|----------------------------|-----------------------------------------|
| MPC850    | N/A              | One                         | N/A                        | N/A                                     |
| MPC850DE  | Yes              | Two                         | N/A                        | N/A                                     |
| MPC850SR  | Yes              | Two                         | N/A                        | Yes                                     |
| MPC850DSL | Yes              | Two                         | No                         | No                                      |

<sup>1</sup> Serial Communication Controller (SCC)

<sup>2</sup> 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability

| Package Type                                     | Frequency (MHz) | Temperature (Tj) | Order Number                                                            |
|--------------------------------------------------|-----------------|------------------|-------------------------------------------------------------------------|
| 256-Lead Plastic Ball Grid Array<br>(ZT suffix)  | 50              | 0°C to 95°C      | XPC850ZT50BU<br>XPC850DEZT50BU<br>XPC850SRZT50BU<br>XPC850DSLZT50BU     |
|                                                  | 66              | 0°C to 95°C      | XPC850ZT66BU<br>XPC850DEZT66BU<br>XPC850SRZT66BU                        |
|                                                  | 80              | 0°C to 95°C      | XPC850ZT80BU<br>XPC850DEZT80BU<br>XPC850SRZT80BU                        |
| 256-Lead Plastic Ball Grid Array<br>(CZT suffix) | 50              | -40°C to 95°C    | XPC850CZT50BU<br>XPC850DECZT50BU<br>XPC850SRCZT50BU<br>XPC850DSLCZT50BU |
|                                                  | 66              |                  | XPC850CZT66BU<br>XPC850DECZT66BU<br>XPC850SRCZT66BU                     |
|                                                  | 80              |                  | XPC850CZT80B<br>XPC850DECZT80B<br>XPC850SRCZT80B                        |

# 9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

#### How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC850EC Rev. 2 07/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2005.

