

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc850decvr50bur2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- 2-Kbyte instruction cache and 1-Kbyte data cache (Harvard architecture)
 - Caches are two-way, set-associative
 - Physically addressed
 - Cache blocks can be updated with a 4-word line burst
 - Least-recently used (LRU) replacement algorithm
 - Lockable one-line granularity
- Memory management units (MMUs) with 8-entry translation lookaside buffers (TLBs) and fully-associative instruction and data TLBs
- MMUs support multiple page sizes of 4 Kbytes, 16 Kbytes, 256 Kbytes, 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and eight protection groups
- Advanced on-chip emulation debug mode
- Data bus dynamic bus sizing for 8, 16, and 32-bit buses
 - Supports traditional 68000 big-endian, traditional x86 little-endian and modified little-endian memory systems
 - Twenty-six external address lines
- Completely static design (0–80 MHz operation)
- System integration unit (SIU)
 - Hardware bus monitor
 - Spurious interrupt monitor
 - Software watchdog
 - Periodic interrupt timer
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)
- Memory controller (eight banks)
 - Glueless interface to DRAM single in-line memory modules (SIMMs), synchronous DRAM (SDRAM), static random-access memory (SRAM), electrically programmable read-only memory (EPROM), flash EPROM, etc.
 - Memory controller programmable to support most size and speed memory interfaces
 - Boot chip-select available at reset (options for 8, 16, or 32-bit memory)
 - Variable block sizes, 32 Kbytes to 256 Mbytes
 - Selectable write protection
 - On-chip bus arbiter supports one external bus master
 - Special features for burst mode support
- General-purpose timers
 - Four 16-bit timers or two 32-bit timers

Num	Characteristic	50 MHz		66 MHz		80 MHz		FEACT	Cap Load	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACI	50 pF)	Unit
B29h	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00		6.00		4.00		0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} \\ A[6-31] \mbox{ invalid } GPCM \mbox{ write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	$\label{eq:WE0-3} \hline WE[0-3] \ negated to \ A[6-31] \ invalid \ GPCM write access, TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \ A[6-31] \ Invalid \ GPCM write \ access \ TRLX = 1, \ CSNT = 1, \ ACS = 10 \ or \ ACS = 11, \ EBDF = 0 \ O$	28.00		43.00		36.00		1.500	50.00	ns
B30c	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, TRLX = 0, } \\ CSNT = 1. \ \hline CS \mbox{ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ \mbox{ access, TRLX = 0, CSNT = 1, } \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 1 \\ \hline \hline \end{array}$	5.00		8.00	_	6.00	_	0.375	50.00	ns
B30d	WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns

Figure 2 is the control timing diagram.

Figure 3 provides the timing for the external clock.

Figure 3. External Clock Timing

Figure 6 provides the timing for the synchronous input signals.

Figure 6. Synchronous Input Signals Timing

Figure 7 provides normal case timing for input data.

Figure 7. Input Data Timing in Normal Case

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 21 provides the timing for the asynchronous external master control signals negation.

Figure 21. Asynchronous External Master—Control Signals Negation Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

Figure 26. PCMCIA WAIT Signal Detection Timing

Table 10 shows the debug port timing for the MPC850.

Num	Charactoristic	50 MHz		66 MHz		80 MHz		Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Unit
D61	DSCK cycle time	60.00	—	91.00	—	75.00	—	ns
D62	DSCK clock pulse width	25.00	—	38.00	—	31.00	—	ns
D63	DSCK rise and fall times	0.00	3.00	0.00	3.00	0.00	3.00	ns
D64	DSDI input data setup time	8.00	—	8.00	—	8.00	—	ns
D65	DSDI data hold time	5.00	—	5.00	—	5.00	—	ns
D66	DSCK low to DSDO data valid	0.00	15.00	0.00	15.00	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	0.00	2.00	0.00	2.00	ns

Table 10. Debug Port Timing

Figure 29 provides the input timing for the debug port clock.

Figure 29. Debug Port Clock Input Timing

Figure 30 provides the timing for the debug port.

Figure 30. Debug Port Timings

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	Characteristic	50 MHz		66MHz		80 MHz		FEACTOR	Unit
Num	Characteristic	Min	Мах	Min	Max	Min	Max	TRETOR	Onne
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R71	RSTCONF pulse width	340.00	—	515.00	—	425.00	_	17.000	ns
R72		_	—	_	—	_	_	—	
R73	Configuration data to HRESET rising edge set up time	350.00	—	505.00	—	425.00	—	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	—	350.00	—	350.00	—	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00	-	25.00	-	25.00	—	ns
R78	RSTCONF negated to data out high impedance.	—	25.00	—	25.00	—	25.00	—	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	—	242.00	—	200.00	—	8.000	ns

Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

CPM Electrical Characteristics

Figure 47. SI Transmit Timing Diagram

Figure 49. IDL Timing

Num	Characteristic		All Frequencies		
			Мах	onit	
134	TENA inactive delay (from TCLKx rising edge)	10.00	50.00	ns	
138	CLKOUT low to SDACK asserted ²	_	20.00	ns	
139	CLKOUT low to SDACK negated ²	_	20.00	ns	

Table 20. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory.

Figure 53. Ethernet Collision Timing Diagram

Figure 54. Ethernet Receive Timing Diagram

CPM Electrical Characteristics

Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

Num	Characteristic	All Frequ	Unit	
Nulli	Characteristic	Min	Мах	Om
150	SMCLKx clock period ¹	100.00	_	ns
151	SMCLKx width low	50.00	_	ns
151a	SMCLKx width high	50.00	_	ns
152	SMCLKx rise/fall time	_	15.00	ns
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns
154	SMRXDx/SMSYNx setup time	20.00	_	ns
155	SMRXDx/SMSYNx hold time	5.00	—	ns

Table 21.	Serial	Management	Controller	Timing
-----------	--------	------------	------------	--------

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

CPM Electrical Characteristics

Num	Characteristic	All Frequ	Unit	
Num	Unardeteristic	Min	Мах	onit
210	SDL/SCL fall time	—	300.00	ns
211	Stop condition setup time	4.70		μs

Table 24. I²C Timing (SCL < 100 KHz) (CONTINUED)

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 25 provides the I^2C (SCL > 100 KHz) timings.

Table 25. I^2C Timing (SCL > 100 KHz)

Num	Charactariatia	Expression	All Freq	Unit	
Num	Characteristic	Expression	Min	Max	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	_	S
203	Low period of SCL		1/(2.2 * fSCL)	_	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	_	s
206	Start condition hold time		1/(2.2 * fSCL)	_	s
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		_	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	_	s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 61 shows the I^2C bus timing.

Figure 61. I²C Bus Timing Diagram

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26. MPC850 Family Derivativ

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

¹ Serial Communication Controller (SCC)

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.