

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850cvr50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Gate mode can enable/disable counting
- Interrupt can be masked on reference match and event capture

Interrupts

- Eight external interrupt request (IRQ) lines
- Twelve port pins with interrupt capability
- Fifteen internal interrupt sources
- Programmable priority among SCCs and USB
- Programmable highest-priority request
- Single socket PCMCIA-ATA interface
 - Master (socket) interface, release 2.1 compliant
 - Single PCMCIA socket
 - Supports eight memory or I/O windows
- Communications processor module (CPM)
 - 32-bit, Harvard architecture, scalar RISC communications processor (CP)
 - Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission
 after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD
 closes the receive buffer descriptor)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8 Kbytes of dual-port RAM
 - Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints
 - Three parallel I/O registers with open-drain capability
- Four independent baud-rate generators (BRGs)
 - Can be connected to any SCC, SMC, or USB
 - Allow changes during operation
 - Autobaud support option
- Two SCCs (serial communications controllers)
 - Ethernet/IEEE 802.3, supporting full 10-Mbps operation
 - HDLC/SDLCTM (all channels supported at 2 Mbps)
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk[®]
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC))

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Bus Signal Timing

 θ_{1A} = Package thermal resistance, junction to ambient, °C/W

$$P_D = P_{INT} + P_{I/O}$$

$$P_{INT} = I_{DD} \times V_{DD}$$
, watts—chip internal power

P_{I/O} = Power dissipation on input and output pins—user determined

For most applications $P_{I/O} < 0.3 \bullet P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

$$P_D = K \div (T_1 + 273^{\circ}C)(2)$$

Solving equations (1) and (2) for K gives:

$$K = P_D \cdot (T_A + 273^{\circ}C) + \theta_{JA} \cdot P_D^2(3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and P_D can be obtained by solving equations (1) and (2) iteratively for any value of P_D .

5.1 Layout Practices

Each V_{CC} pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 μ F by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the $V_{\rm CC}$ and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6. Bus Operation Timing ¹

N	Oh ava atawiatia	50 I	ИНz	66 1	ИНz	1 08	ИНz	FEAGE	Cap Load	11!4
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B1	CLKOUT period	20	_	30.30	_	25	_	_	_	ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	_	50.00	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	_	50.00	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) ²	-0.60	0.60	-0.60	0.60	-0.60	0.60	_	50.00	ns
B1d	CLKOUT phase jitter ²	-2.00	2.00	-2.00	2.00	-2.00	2.00	_	50.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ²	_	0.50	_	0.50	_	0.50	_	50.00	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ²	_	2.00	_	2.00	_	2.00	_	50.00	%
B1g	CLKOUT frequency jitter (MF > 500) ²	_	3.00	_	3.00	_	3.00	_	50.00	%
B1h	Frequency jitter on EXTCLK ³	_	0.50	_	0.50	_	0.50	_	50.00	%
B2	CLKOUT pulse width low	8.00	_	12.12	_	10.00	_	_	50.00	ns
В3	CLKOUT width high	8.00	_	12.12	_	10.00	_	_	50.00	ns
B4	CLKOUT rise time	_	4.00	_	4.00	_	4.00	_	50.00	ns
B5	CLKOUT fall time	_	4.00	_	4.00	_	4.00	_	50.00	ns
В7	CLKOUT to A[6-31], RD/WR, BURST, D[0-31], DP[0-3] invalid	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
В7а	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3], BDIP, PTR invalid	5.00	_	7.58		6.25	_	0.250	50.00	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid ⁴	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
B8	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8a	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3] BDIP, PTR valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8b	CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid ⁴	5.00	11.74	7.58	14.33	6.25	13.00	0.250	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Bus Signal Timing

Table 6. Bus Operation Timing ¹ (continued)

Num	Chavastavistis	50 I	ИНz	66 I	ИНz	80 1	ИНz	FEACT	Cap Load	l lmit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B28c	CLKOUT falling edge to WE[0-3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B28d	CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	_	14.00	_	18.00	_	16.00	0.375	50.00	ns
B29	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29a	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B29b	CS negated to D[0-31], DP[0-3], high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29c	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B29d	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B29e	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B29f	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	5.00	_	9.00	_	7.00	_	0.375	50.00	ns
B29g	CS negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00	_	9.00	_	7.00	_	0.375	50.00	ns

Table 6. Bus Operation Timing ¹ (continued)

Nive	Chavastavistis	50 I	ИНz	66 1	ИHz	80 1	ИНz	FEACT	Cap Load	Hali
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B29h	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B29i	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF =	25.00		39.00		31.00		1.375	50.00	ns
B30	CS, WE[0-3] negated to A[6-31] invalid GPCM write access 9	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B30a	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, CS negated to A[6-31] invalid GPCM write access TRLX = 0, CSNT =1, ACS = 10 or ACS = 11, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A[6-31] Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00		43.00	_	36.00	_	1.500	50.00	ns
B30c	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00	ı	8.00	1	6.00	1	0.375	50.00	ns
B30d	WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00		39.00	_	31.00	_	1.375	50.00	ns

Table 6. Bus Operation Timing ¹ (continued)

Nivee	Characteristic	50 MHz 66 MHz		80 1	MHz	EEAOT	Cap Load (default	المثادا		
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by CST2 in the corresponding word in UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B35	A[6–31] to CS valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to \overline{BS} valid - as requested by BST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	_	6.00	_	6.00	_	_	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	_	1.00	_	1.00	_	_	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	_	50.00	ns
B40	A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00	_	7.00	_	7.00	_	_	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	_	7.00	_	_	50.00	ns

Bus Signal Timing

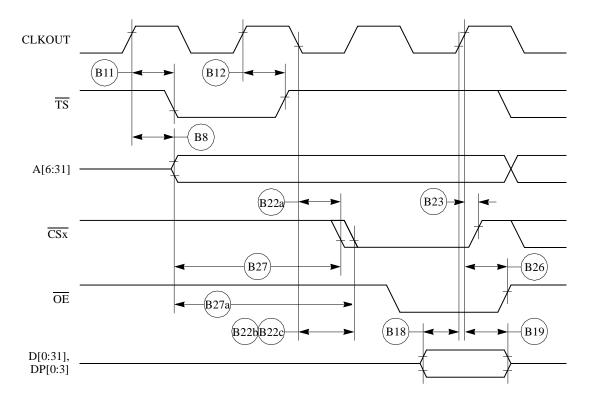


Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

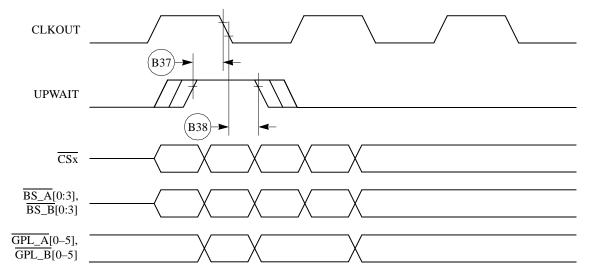


Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

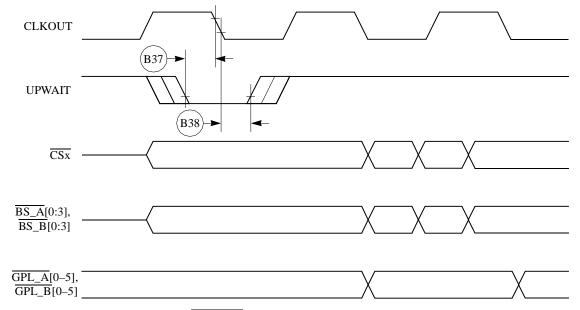


Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Figure 24 provides the PCMCIA access cycle timing for the external bus read.

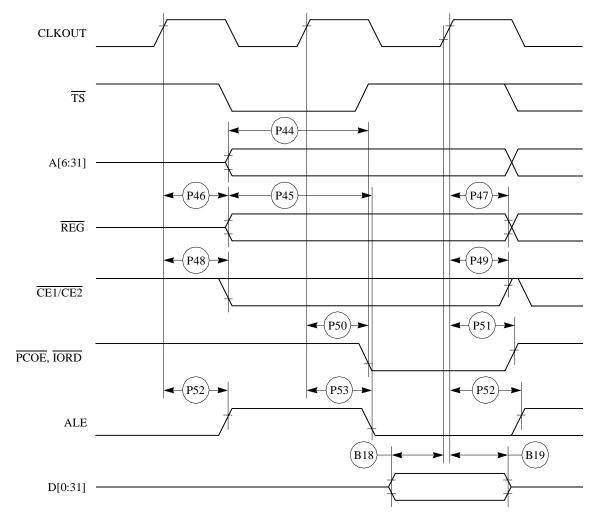


Figure 24. PCMCIA Access Cycles Timing External Bus Read

Bus Signal Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

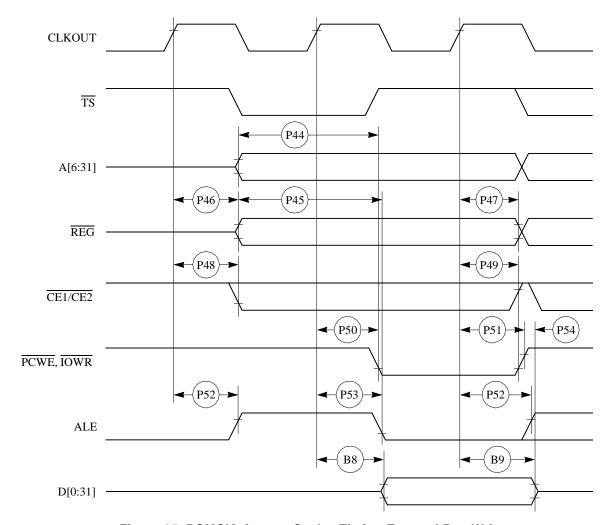


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

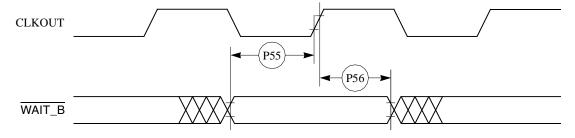


Figure 26. PCMCIA WAIT Signal Detection Timing

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

CPM Electrical Characteristics

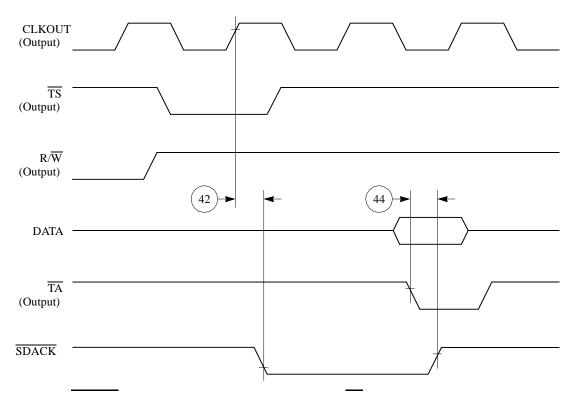


Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

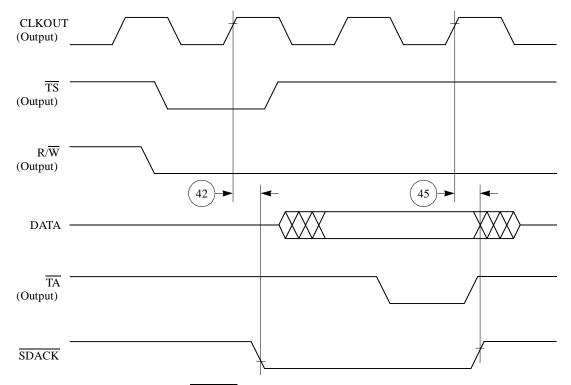


Figure 42. SDACK Timing Diagram—Peripheral Read

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

CPM Electrical Characteristics

8.6 SCC in NMSI Mode Electrical Specifications

Table 18 provides the NMSI external clock timing.

Table 18. NMSI External Clock Timing

Num	Characteristic	All Frequencie	es	Unit
Num	Characteristic	Min	Max	Unit
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	1/SYNCCLK	_	ns
101	RCLKx and TCLKx width low	1/SYNCCLK +5	_	ns
102	RCLKx and TCLKx rise/fall time	_	15.00	ns
103	TXDx active delay (from TCLKx falling edge)	0.00	50.00	ns
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	50.00	ns
105	CTSx setup time to TCLKx rising edge	5.00	_	ns
106	RXDx setup time to RCLKx rising edge	5.00	_	ns
107	RXDx hold time from RCLKx rising edge ²	5.00	_	ns
108	CDx setup time to RCLKx rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.

Table 19 provides the NMSI internal clock timing.

Table 19. NMSI Internal Clock Timing

Nive	Characteristic	All Fr	equencies	Unit	
Num	Characteristic	Min	Max	Unit	
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	0.00	SYNCCLK/3	MHz	
102	RCLKx and TCLKx rise/fall time	_	_	ns	
103	TXDx active delay (from TCLKx falling edge)	0.00	30.00	ns	
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	30.00	ns	
105	CTSx setup time to TCLKx rising edge	40.00	_	ns	
106	RXDx setup time to RCLKx rising edge	40.00	_	ns	
107	RXDx hold time from RCLKx rising edge ²	0.00	_	ns	
108	CDx setup time to RCLKx rising edge	40.00	_	ns	

The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

Figure 50 through Figure 52 show the NMSI timings.

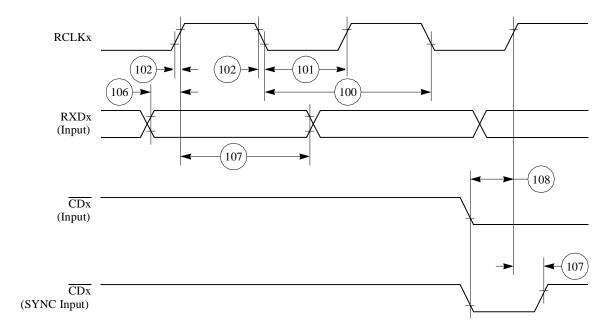


Figure 50. SCC NMSI Receive Timing Diagram

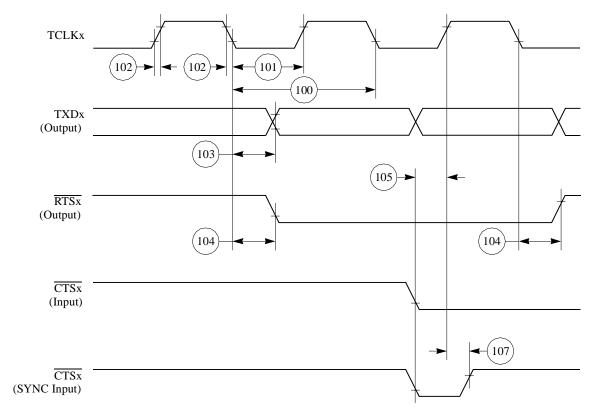


Figure 51. SCC NMSI Transmit Timing Diagram

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 20	Ethernet	Timing ((continued)
I abic 20.		I IIIIIIII	(COIILIII I I C C)

Num	Characteristic	All Fred	uencies	Unit
Num	Onaracteristic	Min	Max	Oilit
134	TENA inactive delay (from TCLKx rising edge)	10.00	50.00	ns
138	CLKOUT low to SDACK asserted ²	_	20.00	ns
139	CLKOUT low to SDACK negated ²	_	20.00	ns

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory.

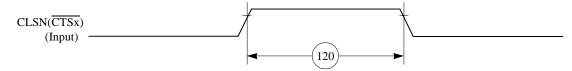


Figure 53. Ethernet Collision Timing Diagram

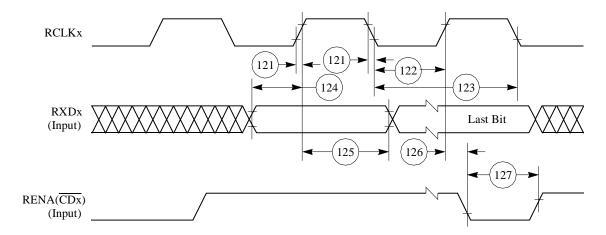
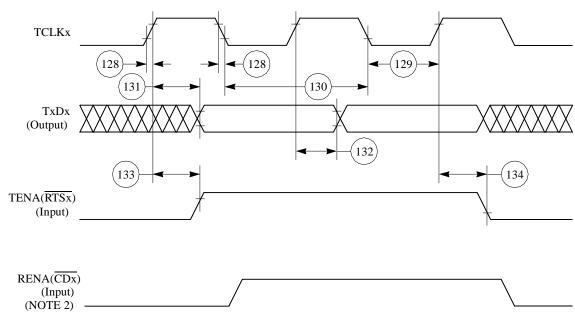



Figure 54. Ethernet Receive Timing Diagram

CPM Electrical Characteristics

- NOTES:
 - 1. Transmit clock invert (TCI) bit in GSMR is set.
 - If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission.

Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

Table 21. Serial Management Controller Timing

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Max	Oilit
150	SMCLKx clock period ¹	100.00	_	ns
151	SMCLKx width low	50.00	_	ns
151a	SMCLKx width high	50.00	_	ns
152	SMCLKx rise/fall time	_	15.00	ns
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns
154	SMRXDx/SMSYNx setup time	20.00	_	ns
155	SMRXDx/SMSYNx hold time	5.00	_	ns

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

CPM Electrical Characteristics

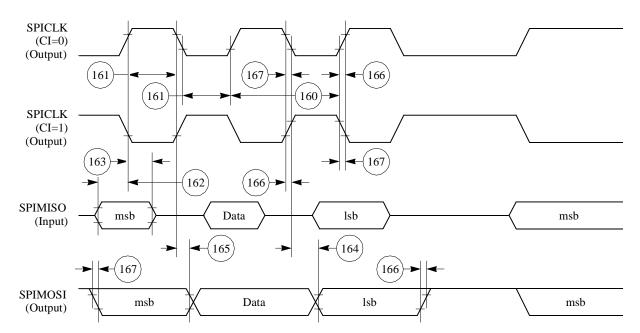


Figure 57. SPI Master (CP = 0) Timing Diagram

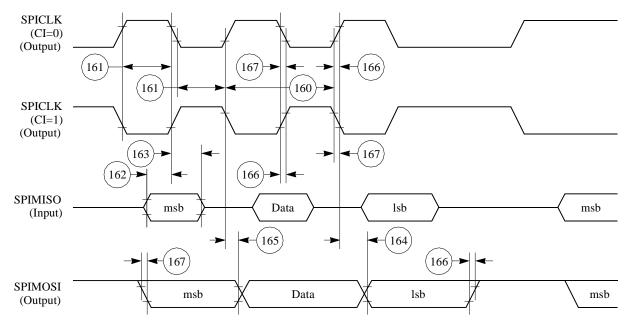


Figure 58. SPI Master (CP = 1) Timing Diagram

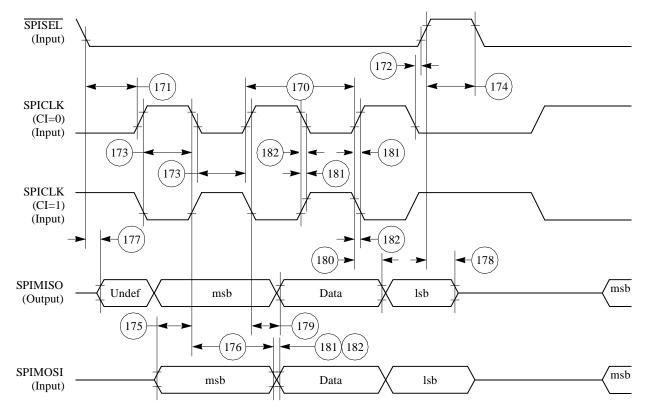


Figure 60. SPI Slave (CP = 1) Timing Diagram

8.11 I²C AC Electrical Specifications

Table 24 provides the I^2C (SCL < 100 KHz) timings.

Table 24. I²C Timing (SCL < 100 KHz)

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Max	Ollit
200	SCL clock frequency (slave)	0.00	100.00	KHz
200	SCL clock frequency (master) ¹	1.50	100.00	KHz
202	Bus free time between transmissions	4.70	_	μs
203	Low period of SCL	4.70	_	μs
204	High period of SCL	4.00		μs
205	Start condition setup time	4.70	_	μs
206	Start condition hold time	4.00	_	μs
207	Data hold time	0.00	_	μs
208	Data setup time	250.00	_	ns
209	SDL/SCL rise time	_	1.00	μs

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2