E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850devr50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Separate power supply input to operate internal logic at 2.2 V when operating at or below 25 MHz
- Can be dynamically shifted between high frequency (3.3 V internal) and low frequency (2.2 V internal) operation
- Debug interface

(GND = 0V)

- Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
- The MPC850 can compare using the =, \neq , <, and > conditions to generate watchpoints
- Each watchpoint can generate a breakpoint internally
- 3.3-V operation with 5-V TTL compatibility on all general purpose I/O pins.

3 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC850. Table 2 provides the maximum ratings.

Rating	Symbol	Value	Unit
Supply voltage	VDDH	-0.3 to 4.0	V
	VDDL	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	VDDSYN	-0.3 to 4.0	V
Input voltage ¹	V _{in}	GND-0.3 to VDDH + 2.5 V	V
Junction temperature ²	Тј	0 to 95 (standard) -40 to 95 (extended)	°C
Storage temperature range	T _{stg}	-55 to +150	°C

¹ Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. CAUTION: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction

applies to power-up and normal operation (that is, if the MPC850 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

² The MPC850, a high-frequency device in a BGA package, does not provide a guaranteed maximum ambient temperature. Only maximum junction temperature is guaranteed. It is the responsibility of the user to consider power dissipation and thermal management. Junction temperature ratings are the same regardless of frequency rating of the device.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}). Table 3 provides the package thermal characteristics for the MPC850.

Figure 4 provides the timing for the synchronous output signals.

Figure 4. Synchronous Output Signals Timing

Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.

Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing

Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 16 provides the timing for the external bus controlled by the UPM.

Figure 16. External Bus Timing (UPM Controlled Signals)

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 21 provides the timing for the asynchronous external master control signals negation.

Figure 21. Asynchronous External Master—Control Signals Negation Timing

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Characteristic		50 MHz		66 MHz		80 MHz	
Num		Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx valid	_	19.00	—	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹	18.00	—	26.00	—	22.00	—	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00	—	5.00	—	5.00	—	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00		1.00		ns

¹ OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

Figure 28. PCMCIA Input Port Timing

Figure 33. Reset Timing—Debug Port Configuration

7 IEEE 1149.1 Electrical Specifications

Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37.

Table 12. JTAG Timing

Num	m Characteristic		MHz	66N	/IHz	80 N	/Hz	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
J82	TCK cycle time	100.00		100.00	-	100.00		ns
J83	TCK clock pulse width measured at 1.5 V	40.00		40.00		40.00		ns
J84	TCK rise and fall times	0.00	10.00	0.00	10.00	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	5.00	_	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	25.00	_	25.00	_	ns
J87	TCK low to TDO data valid	_	27.00	—	27.00	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	0.00	_	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	—	20.00	_	20.00	ns
J90	TRST assert time	100.00		100.00		100.00	_	ns
J91	TRST setup time to TCK low	40.00		40.00		40.00		ns
J92	TCK falling edge to output valid	_	50.00	—	50.00	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	—	50.00	—	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	—	50.00	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	50.00	_	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00		50.00		50.00	—	ns

Figure 37. Boundary Scan (JTAG) Timing Diagram

8 **CPM Electrical Characteristics**

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

Table 13. Parallel I/O Timing

Num	Characteristic	All Freque	Unit	
Num	Giaracteristic		Max	onit
29	Data-in setup time to clock high	15	—	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Num Characteristic		All Frequencies		
Num	Undractensite	Min Max		onne	
50	BRGO rise and fall time	_	10.00	ns	
51	BRGO duty cycle	40.00	60.00	%	
52	BRGO cycle	40.00	—	ns	

Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Num	Charactoristic	All Frequencies		Unit	
Num	Characteristic	Min	Мах	Unit	
61	TIN/TGATE rise and fall time	10.00	_	ns	
62	TIN/TGATE low time	1.00	_	clk	
63	TIN/TGATE high time	2.00	—	clk	
64	TIN/TGATE cycle time	3.00	—	clk	
65	CLKO high to TOUT valid	3.00	25.00	ns	

Table 16. Timer Timing

	Table 17. SI Timing (cont	inued)		
	Oh ann a thurin tha	All Frequencies		11
NUM	Characteristic	Min	Мах	Unit
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	—	ns
83A	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	—	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)		30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	—	L1TCLK
86	L1GR setup time ²	42.00	—	ns
87	L1GR hold time	42.00	—	ns
88	L1xCLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

- 2 These specs are valid for IDL mode only.
- ³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

CPM Electrical Characteristics

Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)

CPM Electrical Characteristics

Figure 50 through Figure 52 show the NMSI timings.

CPM Electrical Characteristics

Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

Num	Characteristic		All Frequencies		
Num	Characteristic	Min	Мах	Om	
150	SMCLKx clock period ¹	100.00	_	ns	
151	SMCLKx width low	50.00	_	ns	
151a	SMCLKx width high	50.00	_	ns	
152	SMCLKx rise/fall time	_	15.00	ns	
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns	
154	SMRXDx/SMSYNx setup time	20.00	_	ns	
155	SMRXDx/SMSYNx hold time	5.00	—	ns	

Table 21.	Serial	Management	Controller	Timing
-----------	--------	------------	------------	--------

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

CPM Electrical Characteristics

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26. MPC850 Family Derivativ

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

¹ Serial Communication Controller (SCC)

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

Figure 65 shows the JEDEC package dimensions of the PBGA.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.91	2.35	
A1	0.50	0.70	
A2	1.12	1.22	
A3	0.29	0.43	
b	0.60	0.90	
D	23.00 BSC		
D1	19.05 REF		
D2	19.00	20.00	
Е	23.00 BSC		
E1	19.05 REF		
E2	19.00	20.00	
е	1.27 BSC		

CASE 1130-01 ISSUE B

Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK