

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	- ·
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850devr66bur2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The CPM of the MPC850 supports up to seven serial channels, as follows:

- One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation.
- One USB channel
- Two serial management controllers (SMCs)
- One I²C port
- One serial peripheral interface (SPI).

Table 1 shows the functionality supported by the members of the MPC850 family.

Part	Number of SCCs Supported	Ethernet Support	ATM Support	USB Support	Multi-channel HDLC Support	Number of PCMCIA Slots Supported
MPC850	1	Yes	-	Yes	-	1
MPC850DE	2	Yes	-	Yes	-	1
MPC850SR	2	Yes	Yes	Yes	Yes	1
MPC850DSL	2	Yes	Yes	Yes	No	1

Table 1. MPC850 Functionality Matrix

Additional documentation may be provided for parts listed in Table 1.

Features

- QUICC multichannel controller (QMC) microcode features
 - Up to 64 independent communication channels on a single SCC
 - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
 - Supports either transparent or HDLC protocols for each channel
 - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
 - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C[®] (interprocessor-integrated circuit) port
 - Supports master and slave modes
 - Supports multimaster environment
- Time slot assigner
 - Allows SCCs and SMCs to run in multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame syncs, clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
 - Full high: all units fully powered at high clock frequency
 - Full low: all units fully powered at low clock frequency
 - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
 - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
 - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
 - Low-power stop: to provide lower power dissipation

NP

Table 6.	Bus	Operation	Timing	1
----------	-----	-----------	--------	---

	a	50 I	MHz	66 I	MHz	80 1	MHz		Cap Load	
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B1	CLKOUT period	20	_	30.30	_	25	_	_		ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	_	50.00	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	—	50.00	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) 2	-0.60	0.60	-0.60	0.60	-0.60	0.60	_	50.00	ns
B1d	CLKOUT phase jitter ²	-2.00	2.00	-2.00	2.00	-2.00	2.00	—	50.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ²	—	0.50	—	0.50	—	0.50	_	50.00	%
B1f	CLKOUT frequency jitter (10 < MF < 500) 2	—	2.00	—	2.00	_	2.00	—	50.00	%
B1g	CLKOUT frequency jitter (MF > 500) ²	—	3.00	_	3.00	_	3.00	_	50.00	%
B1h	Frequency jitter on EXTCLK ³	—	0.50	—	0.50	—	0.50	—	50.00	%
B2	CLKOUT pulse width low	8.00		12.12	—	10.00		—	50.00	ns
B3	CLKOUT width high	8.00	_	12.12	—	10.00	_	—	50.00	ns
B4	CLKOUT rise time	—	4.00	—	4.00	—	4.00	—	50.00	ns
B5	CLKOUT fall time	_	4.00	_	4.00	—	4.00	—	50.00	ns
B7	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] invalid	5.00	—	7.58	—	6.25	_	0.250	50.00	ns
B7a	CLKOUT to TSIZ[0–1], REG, RSV, AT[0–3], BDIP, PTR invalid	5.00		7.58	_	6.25	_	0.250	50.00	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid ⁴	5.00		7.58	_	6.25	_	0.250	50.00	ns
B8	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8a	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3] BDIP, PTR valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8b	CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid ⁴	5.00	11.74	7.58	14.33	6.25	13.00	0.250	50.00	ns

		50	MHz	66	MHz	80	MHz		Cap Load	
Num	Characteristic					Min		FFACT	(default	Unit
B22	CLKOUT rising edge to \overline{CS}	Min 5.00	Max 11.75	Min 7.58	Max 14.33	6.25	Max 13.00	0.250	50 pF) 50.00	ns
.	asserted GPCM ACS = 00						0.00		50.00	
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0,1	_	8.00	_	8.00		8.00	_	50.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0	2.00	8.00	2.00	8.00	2.00	8.00		50.00	ns
B24	A[6-31] to \overline{CS} asserted GPCM ACS = 10, TRLX = 0.	3.00	—	6.00	—	4.00	—	0.250	50.00	ns
B24a	A[6–31] to \overline{CS} asserted GPCM ACS = 11, TRLX = 0	8.00	—	13.00	_	11.00	—	0.500	50.00	ns
B25	$\frac{CLKOUT}{WE[0-3]} \text{ asserted}$	—	9.00	_	9.00	—	9.00	—	50.00	ns
B26	CLKOUT rising edge to \overline{OE} negated	2.00	9.00	2.00	9.00	2.00	9.00	—	50.00	ns
B27	A[6–31] to \overline{CS} asserted GPCM ACS = 10, TRLX = 1	23.00	—	36.00	—	29.00	—	1.250	50.00	ns
B27a	A[6–31] to \overline{CS} asserted GPCM ACS = 11, TRLX = 1	28.00	—	43.00	—	36.00	—	1.500	50.00	ns
B28	CLKOUT rising edge to WE[0–3] negated GPCM write access CSNT = 0	—	9.00	—	9.00	—	9.00	—	50.00	ns
B28a	CLKOUT falling edge to WE[0–3] negated GPCM write access TRLX = 0,1 CSNT = 1, EBDF = 0	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	_	12.00		14.00	_	13.00	0.250	50.00	ns

Table 6. Bus Operation Timing	1	(continued)
-------------------------------	---	-------------

			50 MHz 66 MHz			00.5	/LI-		Cap Load	
Num	Characteristic			66 1	VIHZ	801	MHz	FFACT	(default	Unit
		Min	Max	Min	Мах	Min	Мах		50 pF)	
B29h	WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cases} \mbox{ CSNT = 1, } \hline CS \mbox{ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$	8.00		13.00		11.00		0.500	50.00	ns
B30b	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 1, \\ CSNT = 1. \ensuremath{\overline{CS}}\xspace$ negated to $ A[6-31] \mbox{ Invalid GPCM write $ access TRLX = 1, CSNT = 1, $ ACS = 10 \mbox{ or } ACS = 11, $ EBDF = $ 0 $ $ 0 $ $ $ $ $ $ $ $ $ $ $ $ $ $$	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B30c	$\label{eq:WE[0-3]} \begin{array}{l} \mbox{megated to A[6-31]} \\ \mbox{invalid} \\ \mbox{GPCM write access, TRLX = 0,} \\ \mbox{CSNT = 1. } \hline CS \mbox{ negated to} \\ \mbox{A[6-31] invalid GPCM write} \\ \mbox{access, TRLX = 0, CSNT = 1,} \\ \mbox{ACS = 10 or ACS = 11, EBDF =} \\ \mbox{1} \end{array}$	5.00	_	8.00	_	6.00		0.375	50.00	ns
B30d	$\label{eq:WE[0-3]} \begin{array}{l} \hline WE[0-3] \mbox{ negated to } A[6-31] \\ \hline \mbox{ invalid GPCM write access} \\ \hline TRLX = 1, \mbox{ CSNT = 1}, \mbox{ CS} \\ \hline \mbox{ negated to } A[6-31] \mbox{ invalid} \\ \hline \mbox{ GPCM write access } TRLX = 1, \\ \hline \mbox{ CSNT = 1}, \mbox{ ACS = 10 or } ACS = \\ \hline \mbox{ 11, EBDF = 1} \end{array}$	25.00		39.00		31.00		1.375	50.00	ns

Num	Characteristic	50 MHz		66 I	66 MHz		80 MHz		Cap Load (default	Unit
		Min	Max	Min	Max	Min	Мах	_	50 pF)	
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to CS valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to CS valid - as requested by CST2 in the corresponding word in UPM	13.00	—	21.00	—	17.00	—	0.750	50.00	ns
B35	A[6-31] to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	—	6.00	—	4.00	—	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to BS valid - as requested by BST1 in the corresponding word in the UPM	8.00	—	13.00	—	11.00	—	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	—	6.00	—	6.00	—	—	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	—	1.00	—	1.00	—	—	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	—	50.00	ns
B40	A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00		7.00		7.00		—	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	—	7.00	—	_	50.00	ns

Bus Signal Timing

Figure 4 provides the timing for the synchronous output signals.

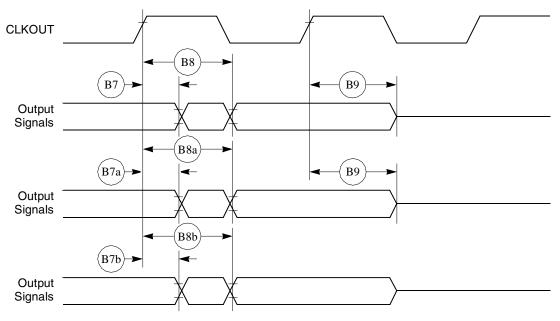


Figure 4. Synchronous Output Signals Timing

Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.

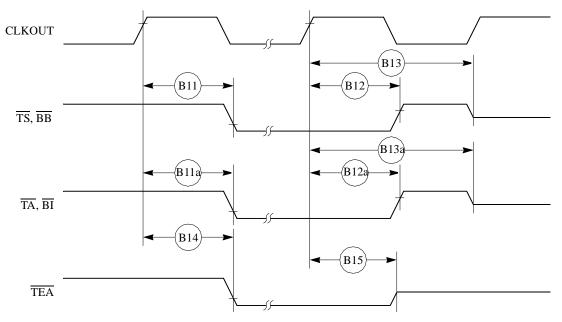
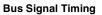



Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing

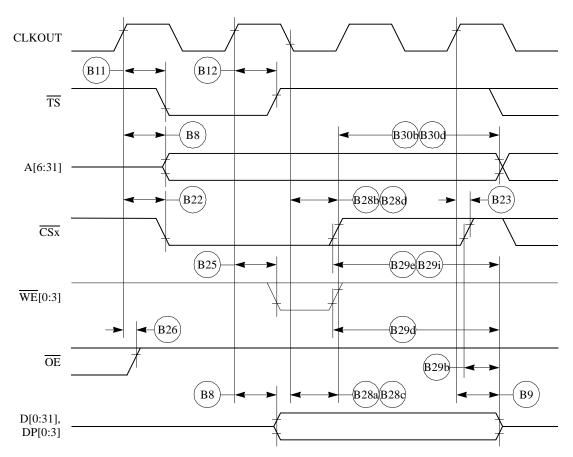


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Bus Signal Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

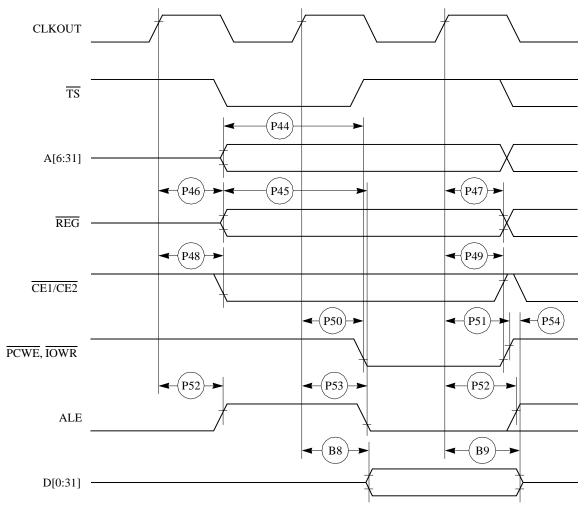


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

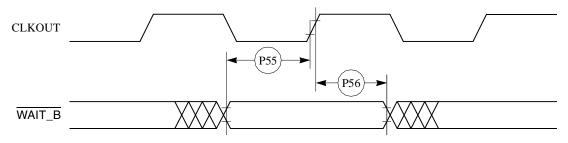


Figure 26. PCMCIA WAIT Signal Detection Timing

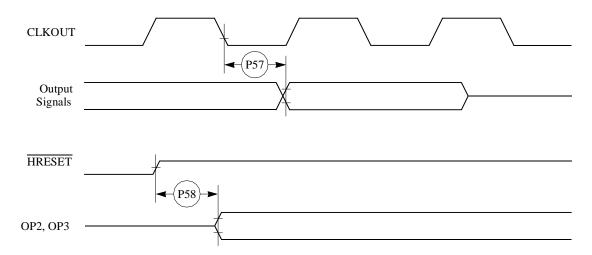

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Characteristic	50 I	MHz	66 I	MHz	80 I	Unit	
	Characteristic	Min	Max	Min	Max	Min	Max	Onne
P57	CLKOUT to OPx valid	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹	18.00	_	26.00	_	22.00	_	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00	_	ns

¹ OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

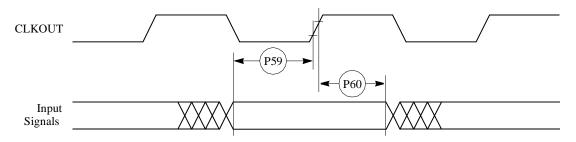


Figure 28. PCMCIA Input Port Timing

CPM Electrical Characteristics

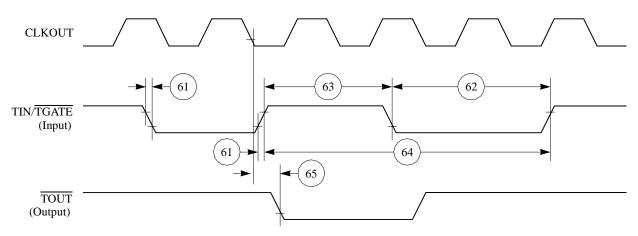


Figure 44. CPM General-Purpose Timers Timing Diagram

8.5 Serial Interface AC Electrical Specifications

Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.

Num	Characteristic	All Frequencies		11
		Min	Мах	Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}		SYNCCLK/2. 5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	—	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns
72	L1TXD, L1ST <i>n</i> , L1RQ, L1xCLKO rise/fall time		15.00	ns
73	L1RSYNC, L1TSYNC valid to L1xCLK edge Edge (SYNC setup time)	20.00	—	ns
74	L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns
75	L1RSYNC, L1TSYNC rise/fall time	_	15.00	ns
76	L1RXD valid to L1xCLK edge (L1RXD setup time)	17.00	—	ns
77	L1xCLK edge to L1RXD invalid (L1RXD hold time)	13.00	—	ns
78	L1xCLK edge to L1ST <i>n</i> valid ⁴	10.00	45.00	ns
78A	L1SYNC valid to L1ST <i>n</i> valid	10.00	45.00	ns
79	L1xCLK edge to L1ST <i>n</i> invalid	10.00	45.00	ns
80	L1xCLK edge to L1TXD valid	10.00	55.00	ns
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns
81	L1xCLK edge to L1TXD high impedance	0.00	42.00	ns

Table 17. SI Timing

CPM Electrical Characteristics

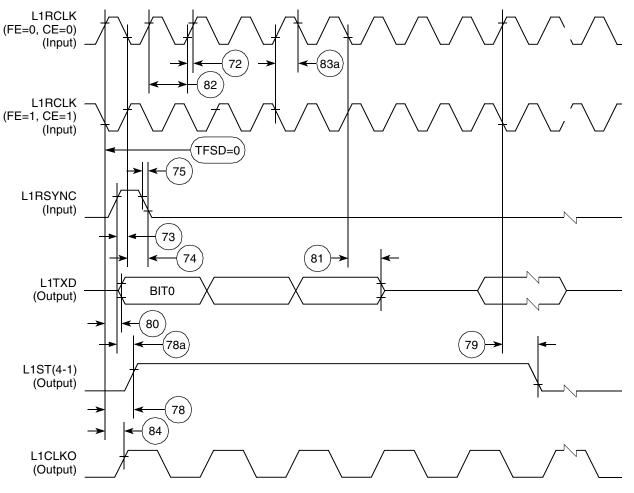
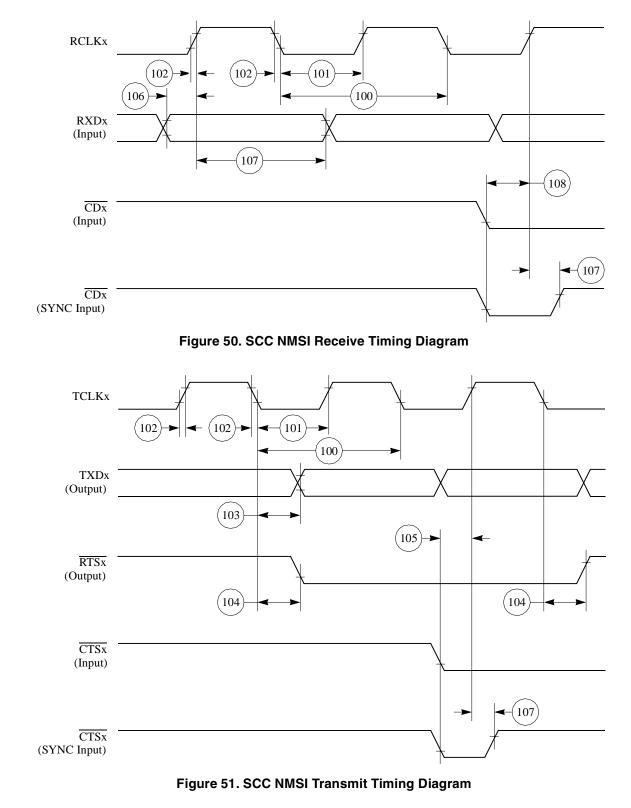



Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)

CPM Electrical Characteristics

Figure 50 through Figure 52 show the NMSI timings.

CPM Electrical Characteristics

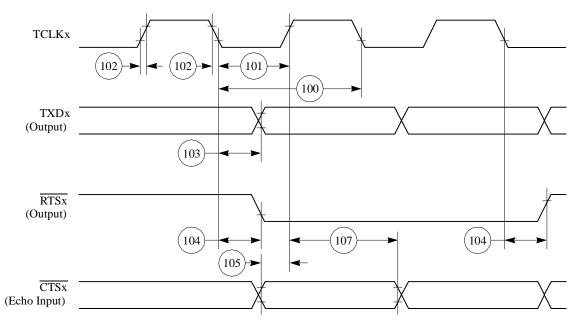


Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Num	Characteristic	All Frequencies		Unit
	Characteristic		Max	
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	_	15.00	ns
122	RCLKx width low	40.00		ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00		ns
125	RXDx hold time	5.00		ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	—	15.00	ns
129	TCLKx width low	40.00		ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

8.10 SPI Slave AC Electrical Specifications

Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60.

Table 23. SPI Slave Timing

Num	Characteristic	All Frequencies		Unit
	Characteristic	Min	Max	Unit
170	Slave cycle time	2		t _{cyc}
171	Slave enable lead time	15.00	—	ns
172	Slave enable lag time	15.00	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20.00	—	ns
176	Slave data hold time (inputs)	20.00	—	ns
177	Slave access time	_	50.00	ns
178	Slave SPI MISO disable time	_	50.00	ns
179	Slave data valid (after SPICLK edge)	_	50.00	ns
180	Slave data hold time (outputs)	0.00	—	ns
181	Rise time (input)	_	15.00	ns
182	Fall time (input)	_	15.00	ns

CPM Electrical Characteristics

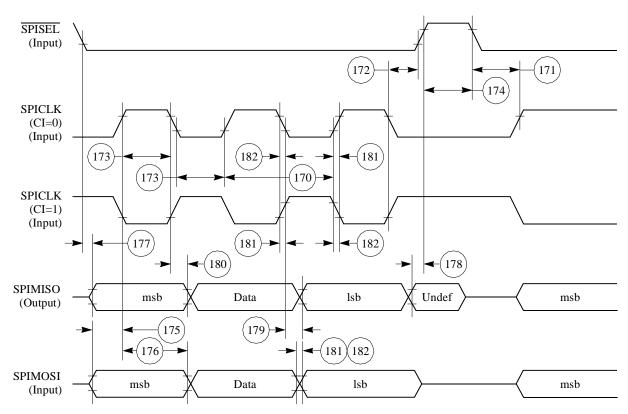
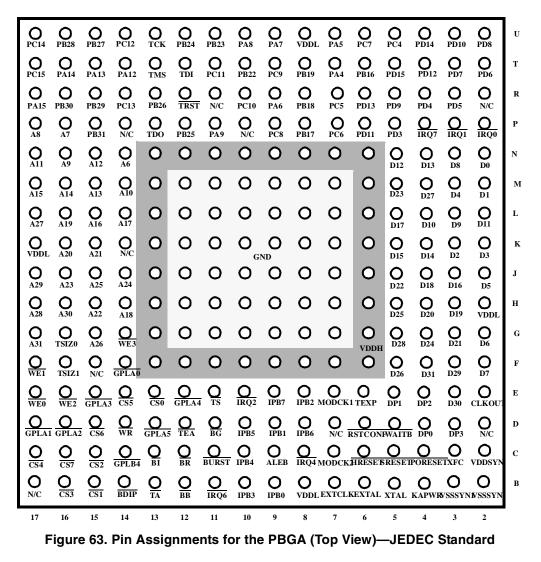
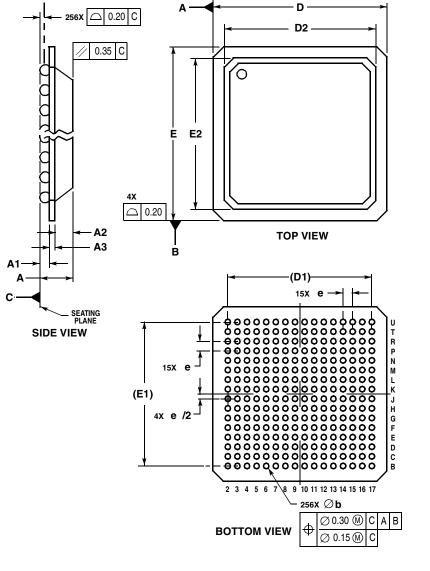



Figure 59. SPI Slave (CP = 0) Timing Diagram


Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

Figure 65 shows the JEDEC package dimensions of the PBGA.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.91	2.35	
A1	0.50	0.70	
A2	1.12	1.22	
A3	0.29	0.43	
b	0.60	0.90	
D	23.00 BSC		
D1	19.05 REF		
D2	19.00	20.00	
Е	23.00 BSC		
E1	19.05 REF		
E2	19.00	20.00	
е	1.27 BSC		

CASE 1130-01 ISSUE B

Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC850EC Rev. 2 07/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2005.

