

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850dezq66bur2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- 2-Kbyte instruction cache and 1-Kbyte data cache (Harvard architecture)
 - Caches are two-way, set-associative
 - Physically addressed
 - Cache blocks can be updated with a 4-word line burst
 - Least-recently used (LRU) replacement algorithm
 - Lockable one-line granularity
- Memory management units (MMUs) with 8-entry translation lookaside buffers (TLBs) and fully-associative instruction and data TLBs
- MMUs support multiple page sizes of 4 Kbytes, 16 Kbytes, 256 Kbytes, 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and eight protection groups
- Advanced on-chip emulation debug mode
- Data bus dynamic bus sizing for 8, 16, and 32-bit buses
 - Supports traditional 68000 big-endian, traditional x86 little-endian and modified little-endian memory systems
 - Twenty-six external address lines
- Completely static design (0–80 MHz operation)
- System integration unit (SIU)
 - Hardware bus monitor
 - Spurious interrupt monitor
 - Software watchdog
 - Periodic interrupt timer
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)
- Memory controller (eight banks)
 - Glueless interface to DRAM single in-line memory modules (SIMMs), synchronous DRAM (SDRAM), static random-access memory (SRAM), electrically programmable read-only memory (EPROM), flash EPROM, etc.
 - Memory controller programmable to support most size and speed memory interfaces
 - Boot chip-select available at reset (options for 8, 16, or 32-bit memory)
 - Variable block sizes, 32 Kbytes to 256 Mbytes
 - Selectable write protection
 - On-chip bus arbiter supports one external bus master
 - Special features for burst mode support
- General-purpose timers
 - Four 16-bit timers or two 32-bit timers

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ _{JC}	8	°C/W

¹ For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

² Assumes natural convection and a single layer board (no thermal vias).

³ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

 $\begin{aligned} T_J &= T_A + (P_D \bullet \theta_{JA}) \\ P_D &= (V_{DD} \bullet I_{DD}) + P_{I/O} \\ \text{where:} \end{aligned}$

 $P_{I/O}$ is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions	40	TBD	590	mW
	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

² Maximum power dissipation is measured at 3.65 V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	V
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

Bus Signal Timing

 θ_{IA} = Package thermal resistance, junction to ambient, °C/W

 $\begin{aligned} \mathbf{P}_{\mathrm{D}} &= \mathbf{P}_{\mathrm{INT}} + \mathbf{P}_{\mathrm{I/O}} \\ \mathbf{P}_{\mathrm{INT}} &= \mathbf{I}_{\mathrm{DD}} \ge \mathbf{V}_{\mathrm{DD}}, \text{ watts}\text{---chip internal power} \end{aligned}$

 $P_{I/O}$ = Power dissipation on input and output pins—user determined

For most applications $P_{I/O} < 0.3 \bullet P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

 $P_{\rm D} = K \div (T_{\rm I} + 273^{\circ} \rm C)(2)$

Solving equations (1) and (2) for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \bullet (\mathbf{T}_{\mathrm{A}} + 273^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \bullet \mathbf{P}_{\mathrm{D}}^{2}(3)$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

5.1 Layout Practices

Each V_{CC} pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.

Num	Characteristic	50 MHz		66 MHz		80 MHz		FEACT	Cap Load	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACI	50 pF)	Unit
B29h	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00		6.00		4.00		0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} \\ A[6-31] \mbox{ invalid } GPCM \mbox{ write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	$\label{eq:WE0-3} \hline WE[0-3] \ negated to \ A[6-31] \ invalid \ GPCM write access, TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \ A[6-31] \ Invalid \ GPCM write \ access \ TRLX = 1, \ CSNT = 1, \ ACS = 10 \ or \ ACS = 11, \ EBDF = 0 \ O$	28.00		43.00		36.00		1.500	50.00	ns
B30c	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, TRLX = 0, } \\ CSNT = 1. \ \hline CS \mbox{ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ \mbox{ access, TRLX = 0, CSNT = 1, } \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 1 \\ \hline \hline \end{array}$	5.00		8.00	_	6.00	_	0.375	50.00	ns
B30d	WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

Bus Signal Timing

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 21 provides the timing for the asynchronous external master control signals negation.

Figure 21. Asynchronous External Master—Control Signals Negation Timing

Table 7 provides interrupt timing for the MPC850.

Num	Characteristic 1	50 MHz		66MHz		80 MHz		Unit
	Characteristic		Max	Min	Max	Min	Max	onic
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		6.00		6.00		ns
140	IRQx hold time after CLKOUT.	2.00	_	2.00	_	2.00	_	ns
141	IRQx pulse width low	3.00	_	3.00	_	3.00	_	ns
142	IRQx pulse width high	3.00	_	3.00	_	3.00	_	ns
143	IRQx edge-to-edge time	80.00	_	121.0	_	100.0	_	ns

 Table 7. Interrupt Timing

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support

Figure 22 provides the interrupt detection timing for the external level-sensitive lines.

Figure 22. Interrupt Detection Timing for External Level Sensitive Lines

Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines

Bus Signal Timing

Table 8 shows the PCMCIA timing for the MPC850.

Table 8. PCMCIA Timing

Num	Characteristic	50MHz		66MHz		80 MHz		FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FREIGH	Unit
P44	A[6–31], REG valid to PCMCIA strobe asserted. ¹	13.00		21.00	—	17.00		0.750	ns
P45	A[6–31], REG valid to ALE negation. ¹	18.00	_	28.00	—	23.00	_	1.000	ns
P46	CLKOUT to REG valid	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P47	CLKOUT to REG Invalid.	6.00	_	9.00	—	7.00	_	0.250	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time.	_	11.00	_	11.00	_	11.00	—	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time.	2.00	11.00	2.00	11.00	2.00	11.00	—	ns
P52	CLKOUT to ALE assert time	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P53	CLKOUT to ALE negate time	_	13.00		16.00	_	14.00	0.250	ns
P54	PCWE, IOWR negated to D[0–31] invalid. ¹	3.00	_	6.00	_	4.00	_	0.250	ns
P55	WAIT_B valid to CLKOUT rising edge.1	8.00	_	8.00	_	8.00	_	—	ns
P56	CLKOUT rising edge to WAIT_B invalid. ¹	2.00	—	2.00	—	2.00	—	_	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAIT_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC850 PowerQUICC User's Manual.

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	Characteristic	50 MHz		66MHz		80 MHz		FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	TRETOR	Onne
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	_	20.00	—	ns
R71	RSTCONF pulse width	340.00	_	515.00	_	425.00	_	17.000	ns
R72		_	_	_	_	_	_	—	
R73	Configuration data to HRESET rising edge set up time	350.00	—	505.00	—	425.00	—	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	—	350.00	—	350.00	—	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00	-	25.00	-	25.00	—	ns
R78	RSTCONF negated to data out high impedance.	—	25.00	—	25.00	—	25.00	—	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	—	242.00	—	200.00	—	8.000	ns

Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

CPM Electrical Characteristics

Figure 47. SI Transmit Timing Diagram

Figure 49. IDL Timing

CPM Electrical Characteristics

Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Niumo	Chavastavistis	All Free	11	
Nulli	Characteristic	Min	Max	Unit
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	—	15.00	ns
122	RCLKx width low	40.00		ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00	_	ns
125	RXDx hold time	5.00	_	ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	—	15.00	ns
129	TCLKx width low	40.00	_	ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

CPM Electrical Characteristics

CPM Electrical Characteristics

Num	Characteristic	All Frequ	Unit		
Num	Unardeteristic	Min	Мах	Onit	
210	SDL/SCL fall time	—	300.00	ns	
211	Stop condition setup time	4.70		μs	

Table 24. I²C Timing (SCL < 100 KHz) (CONTINUED)

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 25 provides the I^2C (SCL > 100 KHz) timings.

Table 25. I^2C Timing (SCL > 100 KHz)

Num	Characteristic	Expression	All Frequencies		Unit
			Min	Max	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	_	S
203	Low period of SCL		1/(2.2 * fSCL)	_	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	_	s
206	Start condition hold time		1/(2.2 * fSCL)	_	s
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		_	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	_	s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 61 shows the I^2C bus timing.

Figure 61. I²C Bus Timing Diagram

Mechanical Data and Ordering Information

customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document.

Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface.

Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard

Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)-non-JEDEC Standard

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC850EC Rev. 2 07/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2005.

