E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850dslzq50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The CPM of the MPC850 supports up to seven serial channels, as follows:

- One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation.
- One USB channel
- Two serial management controllers (SMCs)
- One I²C port
- One serial peripheral interface (SPI).

Table 1 shows the functionality supported by the members of the MPC850 family.

Part	Number of SCCs Supported	Ethernet Support	ATM Support	USB Support	Multi-channel HDLC Support	Number of PCMCIA Slots Supported
MPC850	1	Yes	-	Yes	-	1
MPC850DE	2	Yes	-	Yes	-	1
MPC850SR	2	Yes	Yes	Yes	Yes	1
MPC850DSL	2	Yes	Yes	Yes	No	1

Table 1. MPC850 Functionality Matrix

Additional documentation may be provided for parts listed in Table 1.

Features

- QUICC multichannel controller (QMC) microcode features
 - Up to 64 independent communication channels on a single SCC
 - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
 - Supports either transparent or HDLC protocols for each channel
 - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
 - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C[®] (interprocessor-integrated circuit) port
 - Supports master and slave modes
 - Supports multimaster environment
- Time slot assigner
 - Allows SCCs and SMCs to run in multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame syncs, clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
 - Full high: all units fully powered at high clock frequency
 - Full low: all units fully powered at low clock frequency
 - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
 - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
 - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
 - Low-power stop: to provide lower power dissipation

- Separate power supply input to operate internal logic at 2.2 V when operating at or below 25 MHz
- Can be dynamically shifted between high frequency (3.3 V internal) and low frequency (2.2 V internal) operation
- Debug interface

(GND = 0V)

- Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
- The MPC850 can compare using the =, \neq , <, and > conditions to generate watchpoints
- Each watchpoint can generate a breakpoint internally
- 3.3-V operation with 5-V TTL compatibility on all general purpose I/O pins.

3 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC850. Table 2 provides the maximum ratings.

Rating	Symbol	Value	Unit
Supply voltage	VDDH	-0.3 to 4.0	V
	VDDL	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	VDDSYN	-0.3 to 4.0	V
Input voltage ¹	V _{in}	GND-0.3 to VDDH + 2.5 V	V
Junction temperature ²	Тј	0 to 95 (standard) -40 to 95 (extended)	°C
Storage temperature range	T _{stg}	-55 to +150	°C

¹ Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. CAUTION: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction

applies to power-up and normal operation (that is, if the MPC850 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

² The MPC850, a high-frequency device in a BGA package, does not provide a guaranteed maximum ambient temperature. Only maximum junction temperature is guaranteed. It is the responsibility of the user to consider power dissipation and thermal management. Junction temperature ratings are the same regardless of frequency rating of the device.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}). Table 3 provides the package thermal characteristics for the MPC850.

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ _{JC}	8	°C/W

¹ For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

² Assumes natural convection and a single layer board (no thermal vias).

³ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

 $\begin{aligned} T_J &= T_A + (P_D \bullet \theta_{JA}) \\ P_D &= (V_{DD} \bullet I_{DD}) + P_{I/O} \\ \text{where:} \end{aligned}$

 $P_{I/O}$ is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions	40	TBD	590	mW
(1:1) Mode	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

² Maximum power dissipation is measured at 3.65 V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	V
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

Bus Signal Timing

 θ_{IA} = Package thermal resistance, junction to ambient, °C/W

 $\begin{aligned} \mathbf{P}_{\mathrm{D}} &= \mathbf{P}_{\mathrm{INT}} + \mathbf{P}_{\mathrm{I/O}} \\ \mathbf{P}_{\mathrm{INT}} &= \mathbf{I}_{\mathrm{DD}} \ge \mathbf{V}_{\mathrm{DD}}, \text{ watts}\text{---chip internal power} \end{aligned}$

 $P_{I/O}$ = Power dissipation on input and output pins—user determined

For most applications $P_{I/O} < 0.3 \bullet P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

 $P_{\rm D} = K \div (T_{\rm I} + 273^{\circ} \rm C)(2)$

Solving equations (1) and (2) for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \bullet (\mathbf{T}_{\mathrm{A}} + 273^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \bullet \mathbf{P}_{\mathrm{D}}^{2}(3)$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

5.1 Layout Practices

Each V_{CC} pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.

Niumo	Chavastavistis	50 I	MHz	66	MHz	80 MHz		FFACT	Cap Load	l lm it
NUM	Characteristic	Min	Max	Min	Max	Min	Max	FFACI	50 pF)	Unit
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to CS valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to CS valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to CS valid - as requested by CST2 in the corresponding word in UPM	13.00	—	21.00	—	17.00		0.750	50.00	ns
B35	A[6-31] to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	—	6.00	—	4.00		0.250	50.00	ns
B35a	A[6–31] and D[0–31] to BS valid - as requested by BST1 in the corresponding word in the UPM	8.00	_	13.00	—	11.00		0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	_	6.00	_	6.00	_	_	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	—	1.00	—	1.00	—	_	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	—	7.00	—	7.00	—	_	50.00	ns
B40	A[6-31], TSIZ[0-1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00	—	7.00	—	7.00	—	—	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00		7.00		7.00	-	_	50.00	ns

Bus Signal Timing

Figure 4 provides the timing for the synchronous output signals.

Figure 4. Synchronous Output Signals Timing

Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.

Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing

Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Bus Signal Timing

Figure 16 provides the timing for the external bus controlled by the UPM.

Figure 16. External Bus Timing (UPM Controlled Signals)

Figure 24 provides the PCMCIA access cycle timing for the external bus read.

Figure 24. PCMCIA Access Cycles Timing External Bus Read

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	Characteristic	50 I	MHz	66N	ЛНz	80 1	MHz	FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	TRETOR	Onne
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R71	RSTCONF pulse width	340.00	—	515.00	—	425.00	_	17.000	ns
R72		_	—	_	—	_	_	—	
R73	Configuration data to HRESET rising edge set up time	350.00	—	505.00	—	425.00	—	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	—	350.00	—	350.00	—	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00	-	25.00	-	25.00	—	ns
R78	RSTCONF negated to data out high impedance.	—	25.00	—	25.00	—	25.00	—	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	—	242.00	—	200.00	—	8.000	ns

IEEE 1149.1 Electrical Specifications

Figure 34. JTAG Test Clock Input Timing

Figure 35. JTAG Test Access Port Timing Diagram

Figure 36. JTAG TRST Timing Diagram

CPM Electrical Characteristics

Figure 44. CPM General-Purpose Timers Timing Diagram

8.5 Serial Interface AC Electrical Specifications

Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.

Num	Characteristic	All Frequenc		Unit	
Nulli	Characteristic	Min	Мах	Unit	
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2. 5	MHz	
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	—	ns	
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns	
72	L1TXD, L1ST <i>n</i> , L1RQ, L1xCLKO rise/fall time	—	15.00	ns	
73	L1RSYNC, L1TSYNC valid to L1xCLK edge Edge (SYNC setup time)	20.00	_	ns	
74	L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns	
75	L1RSYNC, L1TSYNC rise/fall time	—	15.00	ns	
76	L1RXD valid to L1xCLK edge (L1RXD setup time)	17.00	—	ns	
77	L1xCLK edge to L1RXD invalid (L1RXD hold time)	13.00	—	ns	
78	L1xCLK edge to L1ST <i>n</i> valid ⁴	10.00	45.00	ns	
78A	L1SYNC valid to L1ST <i>n</i> valid	10.00	45.00	ns	
79	L1xCLK edge to L1ST <i>n</i> invalid	10.00	45.00	ns	
80	L1xCLK edge to L1TXD valid	10.00	55.00	ns	
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns	
81	L1xCLK edge to L1TXD high impedance	0.00	42.00	ns	

Table 17. SI Timing

1. This delay is equal to an integer number of character-length clocks.

Figure 56. SMC Transparent Timing Diagram

8.9 SPI Master AC Electrical Specifications

Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58.

Num	Charactariatia	All Frequ	iencies	Unit
Num	Characteristic	Min	Max	Unit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50.00	_	ns
163	Master data hold time (inputs)	0.00	_	ns
164	Master data valid (after SCK edge)	—	20.00	ns
165	Master data hold time (outputs)	0.00	_	ns
166	Rise time output	—	15.00	ns
167	Fall time output	—	15.00	ns

Table 22. SPI Master Timing

8.10 SPI Slave AC Electrical Specifications

Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60.

Table 23. SPI Slave Timing

Num	Characteristia	All Frequencies		Unit
	Characteristic	Min	Max	onit
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time		—	ns
172	Slave enable lag time		—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20.00	—	ns
176	Slave data hold time (inputs)	20.00	—	ns
177	Slave access time		50.00	ns
178	Slave SPI MISO disable time		50.00	ns
179	Slave data valid (after SPICLK edge)	—	50.00	ns
180	Slave data hold time (outputs)	0.00	_	ns
181	Rise time (input)	—	15.00	ns
182	Fall time (input)		15.00	ns

CPM Electrical Characteristics

Figure 60. SPI Slave (CP = 1) Timing Diagram

8.11 I²C AC Electrical Specifications

Table 24 provides the I^2C (SCL < 100 KHz) timings.

Table 24.	I ² C Timing	(SCL < 100 KHz)
-----------	-------------------------	-----------------

Num	Charactoristia	All Frequencies		Unit
		Min	Max	Onit
200	SCL clock frequency (slave)	0.00	100.00	KHz
200	SCL clock frequency (master) ¹	1.50	100.00	KHz
202	Bus free time between transmissions	4.70	—	μs
203	Low period of SCL	4.70	—	μs
204	High period of SCL	4.00	—	μs
205	Start condition setup time	4.70	—	μs
206	Start condition hold time	4.00	—	μs
207	Data hold time	0.00	—	μs
208	Data setup time	250.00	_	ns
209	SDL/SCL rise time	—	1.00	μs

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)-non-JEDEC Standard

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK