

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850srvr50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The CPM of the MPC850 supports up to seven serial channels, as follows:

- One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation.
- One USB channel
- Two serial management controllers (SMCs)
- One I²C port
- One serial peripheral interface (SPI).

Table 1 shows the functionality supported by the members of the MPC850 family.

Table 1. MPC850 Functionality Matrix

Part	Number of SCCs Supported	Ethernet Support	ATM Support	USB Support	Multi-channel HDLC Support	Number of PCMCIA Slots Supported
MPC850	1	Yes	-	Yes	-	1
MPC850DE	2	Yes	-	Yes	-	1
MPC850SR	2	Yes	Yes	Yes	Yes	1
MPC850DSL	2	Yes	Yes	Yes	No	1

Additional documentation may be provided for parts listed in Table 1.

- Gate mode can enable/disable counting
- Interrupt can be masked on reference match and event capture

Interrupts

- Eight external interrupt request (IRQ) lines
- Twelve port pins with interrupt capability
- Fifteen internal interrupt sources
- Programmable priority among SCCs and USB
- Programmable highest-priority request
- Single socket PCMCIA-ATA interface
 - Master (socket) interface, release 2.1 compliant
 - Single PCMCIA socket
 - Supports eight memory or I/O windows
- Communications processor module (CPM)
 - 32-bit, Harvard architecture, scalar RISC communications processor (CP)
 - Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission
 after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD
 closes the receive buffer descriptor)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8 Kbytes of dual-port RAM
 - Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints
 - Three parallel I/O registers with open-drain capability
- Four independent baud-rate generators (BRGs)
 - Can be connected to any SCC, SMC, or USB
 - Allow changes during operation
 - Autobaud support option
- Two SCCs (serial communications controllers)
 - Ethernet/IEEE 802.3, supporting full 10-Mbps operation
 - HDLC/SDLCTM (all channels supported at 2 Mbps)
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk[®]
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC))

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Features

- QUICC multichannel controller (QMC) microcode features
 - Up to 64 independent communication channels on a single SCC
 - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
 - Supports either transparent or HDLC protocols for each channel
 - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
 - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C[®] (interprocessor-integrated circuit) port
 - Supports master and slave modes
 - Supports multimaster environment
- Time slot assigner
 - Allows SCCs and SMCs to run in multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame syncs, clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
 - Full high: all units fully powered at high clock frequency
 - Full low: all units fully powered at low clock frequency
 - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
 - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
 - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
 - Low-power stop: to provide lower power dissipation

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ_{JC}	8	°C/W

For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA})$$
$$P_{D} = (V_{DD} \bullet I_{DD}) + P_{I/O}$$

P_{I/O} is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions (1:1) Mode	40	TBD	590	mW
(111) 111000	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	٧
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

² Assumes natural convection and a single layer board (no thermal vias).

Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

² Maximum power dissipation is measured at 3.65 V

 θ_{1A} = Package thermal resistance, junction to ambient, °C/W

$$P_D = P_{INT} + P_{I/O}$$

$$P_{INT} = I_{DD} \times V_{DD}$$
, watts—chip internal power

P_{I/O} = Power dissipation on input and output pins—user determined

For most applications $P_{I/O} < 0.3 \bullet P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

$$P_D = K \div (T_1 + 273^{\circ}C)(2)$$

Solving equations (1) and (2) for K gives:

$$K = P_D \bullet (T_A + 273^{\circ}C) + \theta_{JA} \bullet P_D^{2}(3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and P_D can be obtained by solving equations (1) and (2) iteratively for any value of P_D .

5.1 Layout Practices

Each V_{CC} pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 μ F by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the $V_{\rm CC}$ and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6. Bus Operation Timing ¹

N	Oh ava atawiatia	50 I	ИНz	66 1	ИНz	1 08	ИНz	FEAGE	Cap Load	11!4
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B1	CLKOUT period	20	_	30.30	_	25	_	_	_	ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	_	50.00	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	_	50.00	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) ²	-0.60	0.60	-0.60	0.60	-0.60	0.60	_	50.00	ns
B1d	CLKOUT phase jitter ²	-2.00	2.00	-2.00	2.00	-2.00	2.00	_	50.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ²	_	0.50	_	0.50	_	0.50	_	50.00	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ²	_	2.00	_	2.00	_	2.00	_	50.00	%
B1g	CLKOUT frequency jitter (MF > 500) ²	_	3.00	_	3.00	_	3.00	_	50.00	%
B1h	Frequency jitter on EXTCLK ³	_	0.50	_	0.50	_	0.50	_	50.00	%
B2	CLKOUT pulse width low	8.00	_	12.12	_	10.00	_	_	50.00	ns
В3	CLKOUT width high	8.00	_	12.12	_	10.00	_	_	50.00	ns
B4	CLKOUT rise time	_	4.00	_	4.00	_	4.00	_	50.00	ns
B5	CLKOUT fall time	_	4.00	_	4.00	_	4.00	_	50.00	ns
В7	CLKOUT to A[6-31], RD/WR, BURST, D[0-31], DP[0-3] invalid	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
В7а	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3], BDIP, PTR invalid	5.00	_	7.58		6.25	_	0.250	50.00	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid ⁴	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
B8	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8a	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3] BDIP, PTR valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8b	CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid ⁴	5.00	11.74	7.58	14.33	6.25	13.00	0.250	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6.	Bus O	peration	Timing ¹	1 ((continued)
----------	-------	----------	---------------------	-----	-------------

Num	Characteristic	50 MHz 66 MHz		ИHz	80 1	ИНz	FFACT	Cap Load (default	Unit	
		Min	Max	Min	Max	Min	Max		50 pF)	Omit
B42	CLKOUT rising edge to TS valid (hold time)	2.00	_	2.00	_	2.00	_	_	50.00	ns
B43	AS negation to memory controller signals negation	_	TBD	_	TBD	TBD	_	_	50.00	ns

The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. For frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. AC parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part. The following equations should be used in these calculations.

For a frequency F, the following equations should be applied to each one of the above parameters: For minima:

$$D = \frac{FFACTOR \times 1000}{F} + (D_{50} - 20 \times FFACTOR)$$

For maxima:

$$D = \frac{FFACTOR \times 1000}{F} + \frac{(D_{50} - 20 \times FFACTOR)}{F} + \frac{1 ns(CAP LOAD - 50) / 10}{F}$$

where:

D is the parameter value to the frequency required in ns

F is the operation frequency in MHz

 D_{50} is the parameter value defined for 50 MHz

CAP LOAD is the capacitance load on the signal in question.

FFACTOR is the one defined for each of the parameters in the table.

- ² Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value.
- ³ If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.
- The timing for BR output is relevant when the MPC850 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter.
- The setup times required for TA, TEA, and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drives them).
- The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC850 is selected to work with the external bus arbiter.
- The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.
- ⁹ The timing B30 refers to $\overline{\text{CS}}$ when ACS = '00' and to $\overline{\text{WE}[0:3]}$ when CSNT = '0'.
- The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
- ¹¹ The \overline{AS} signal is considered asynchronous to CLKOUT.

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.

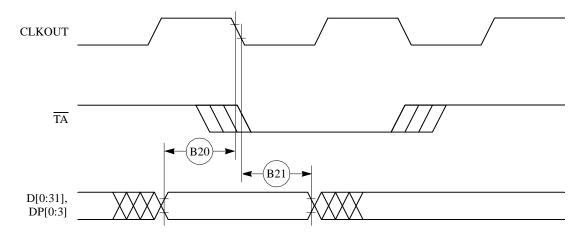


Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller

Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.

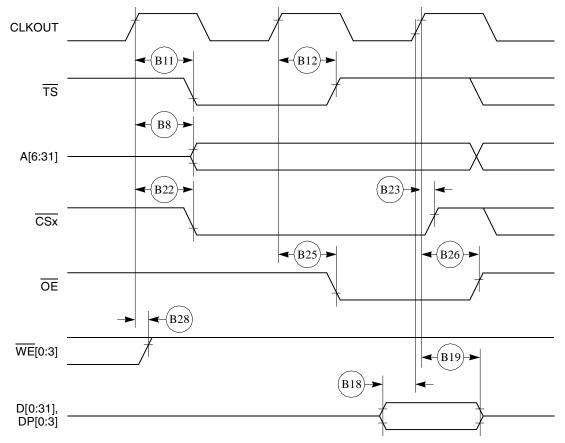


Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

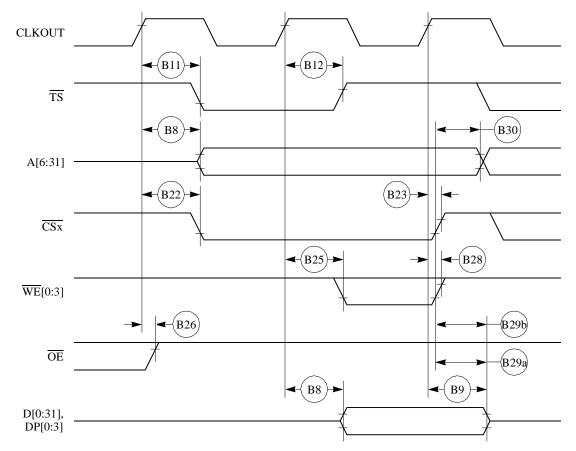


Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

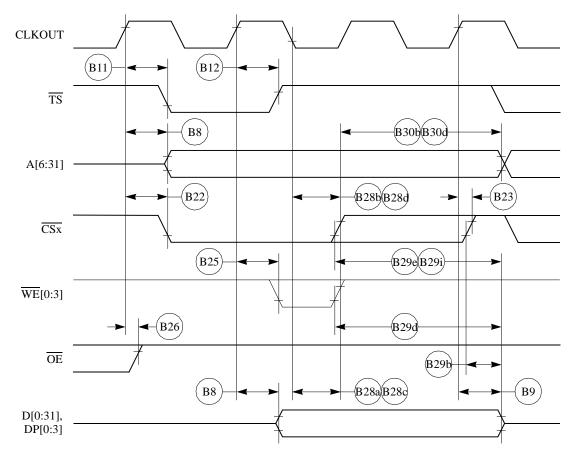


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

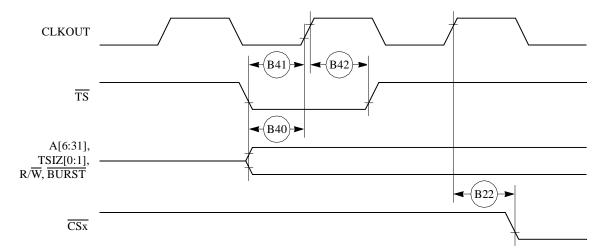


Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

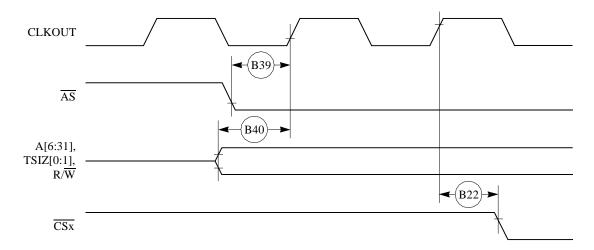


Figure 20. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)

Figure 21 provides the timing for the asynchronous external master control signals negation.

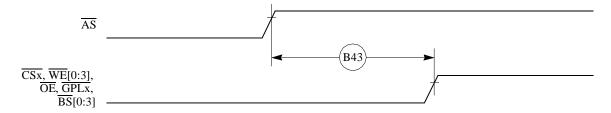


Figure 21. Asynchronous External Master—Control Signals Negation Timing

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 8 shows the PCMCIA timing for the MPC850.

Table 8. PCMCIA Timing

Num	Characteristic	501	ЛНz	661	ЛHz	80 1	ИНz	FFACTOR	Unit
Num	onaraotoriono	Min	Max	Min	Max	Min	Max	FFACION	Oiiit
P44	A[6–31], REG valid to PCMCIA strobe asserted. 1	13.00	_	21.00	_	17.00	_	0.750	ns
P45	A[6-31], REG valid to ALE negation.1	18.00	_	28.00	_	23.00	_	1.000	ns
P46	CLKOUT to REG valid	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P47	CLKOUT to REG Invalid.	6.00	_	9.00	_	7.00	_	0.250	ns
P48	CLKOUT to CE1, CE2 asserted.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	
P49	CLKOUT to CE1, CE2 negated.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time.	_	11.00	_	11.00	_	11.00	_	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time.	2.00	11.00	2.00	11.00	2.00	11.00	_	ns
P52	CLKOUT to ALE assert time	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P53	CLKOUT to ALE negate time	_	13.00	_	16.00	_	14.00	0.250	ns
P54	PCWE, IOWR negated to D[0-31] invalid.1	3.00	_	6.00	_	4.00	_	0.250	ns
P55	WAIT_B valid to CLKOUT rising edge.1	8.00	_	8.00	_	8.00	_	_	ns
P56	CLKOUT rising edge to WAIT_B invalid.1	2.00	_	2.00	_	2.00	_	_	ns

PSST = 1. Otherwise add PSST times cycle time.

These synchronous timings define when the WAIT_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC850 PowerQUICC User's Manual.

PSHT = 0. Otherwise add PSHT times cycle time.

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

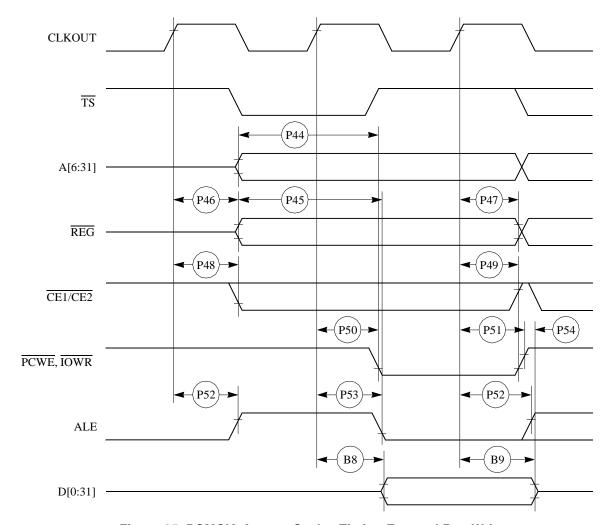


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

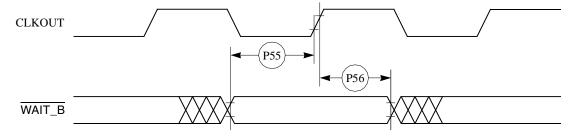


Figure 26. PCMCIA WAIT Signal Detection Timing

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	Characteristic	50 N	ЛНz	66MHz		80 1	ИНz	FFACTOR	Unit
INUIII	Characteristic	Min	Max	Min	Max	Min	Max	FFACION	Onit
R69	CLKOUT to HRESET high impedance	_	20.00	_	20.00	_	20.00	_	ns
R70	CLKOUT to SRESET high impedance	_	20.00	_	20.00	_	20.00	_	ns
R71	RSTCONF pulse width	340.00	_	515.00	_	425.00	_	17.000	ns
R72		_	_	_	_	_	_	_	
R73	Configuration data to HRESET rising edge set up time	350.00	_	505.00	_	425.00	_	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	_	350.00	_	350.00	_	_	ns
R75	Configuration data hold time after RSTCONF negation	0.00	_	0.00	_	0.00	_	_	ns
R76	Configuration data hold time after HRESET negation	0.00	_	0.00	_	0.00	_	_	ns
R77	HRESET and RSTCONF asserted to data out drive	_	25.00	_	25.00	_	25.00	_	ns
R78	RSTCONF negated to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00	_	0.00	_	_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	_	242.00	_	200.00	_	8.000	ns

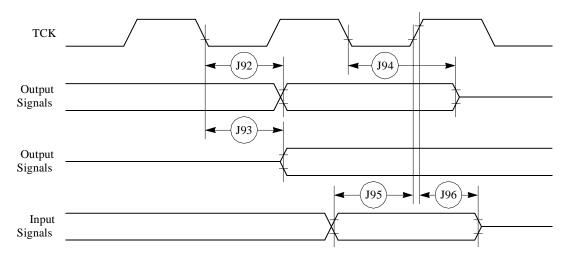


Figure 37. Boundary Scan (JTAG) Timing Diagram

8 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

Table 13. Parallel I/O Timing

Num	Characteristic	All Freque	Unit	
Nulli	Characteristic	Min	Min Max	Offic
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

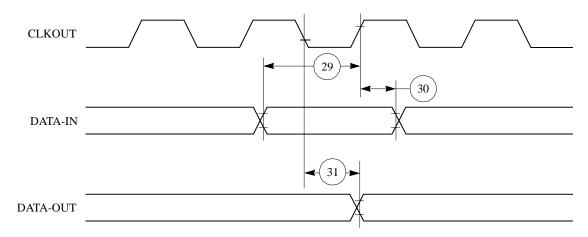


Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num	Characteristic	All Fred	Unit	
Nulli	Characteristic	Min	Max	Onn
40	DREQ setup time to clock high	7.00	_	ns
41	DREQ hold time from clock high	3.00	_	ns
42	SDACK assertion delay from clock high	_	12.00	ns
43	SDACK negation delay from clock low	_	12.00	ns
44	SDACK negation delay from TA low	_	20.00	ns
45	SDACK negation delay from clock high	_	15.00	ns
46	TA assertion to falling edge of the clock setup time (applies to external TA)	7.00		ns

Table 14. IDMA Controller Timing

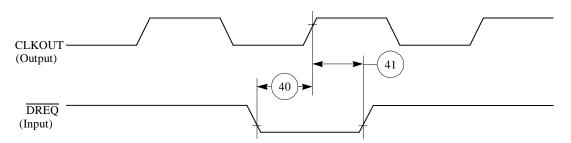


Figure 39. IDMA External Requests Timing Diagram

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

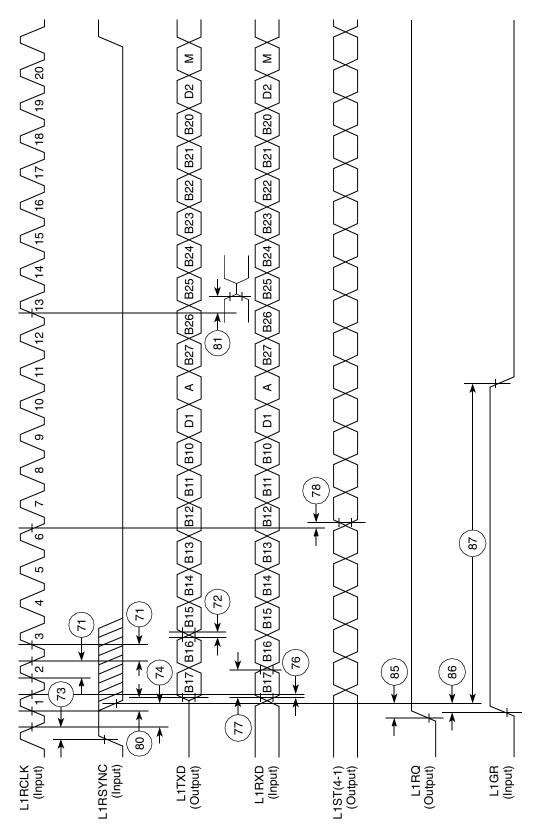


Figure 49. IDL Timing

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

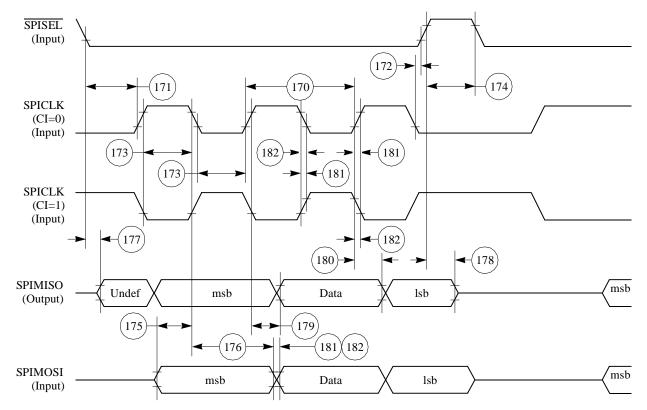


Figure 60. SPI Slave (CP = 1) Timing Diagram

8.11 I²C AC Electrical Specifications

Table 24 provides the I^2C (SCL < 100 KHz) timings.

Table 24. I²C Timing (SCL < 100 KHz)

Num	Characteristic	All Frequencies		Unit
		Min	Max	Ollit
200	SCL clock frequency (slave)	0.00	100.00	KHz
200	SCL clock frequency (master) ¹	1.50	100.00	KHz
202	Bus free time between transmissions	4.70	_	μs
203	Low period of SCL	4.70	_	μs
204	High period of SCL	4.00		μs
205	Start condition setup time	4.70	_	μs
206	Start condition hold time	4.00	_	μs
207	Data hold time	0.00	_	μs
208	Data setup time	250.00	_	ns
209	SDL/SCL rise time	_	1.00	μs

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 24. I²C Timing (SCL < 100 KHz) (CONTINUED)

Num	Characteristic	All Frequencies		Unit
		Min	Max	Oilit
210	SDL/SCL fall time	_	300.00	ns
211	Stop condition setup time	4.70	_	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

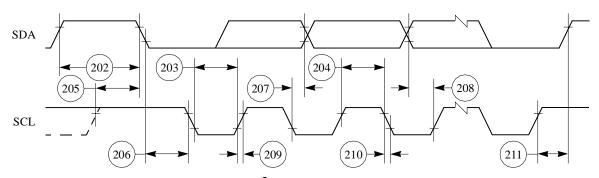
Table 25 provides the I^2C (SCL > 100 KHz) timings.

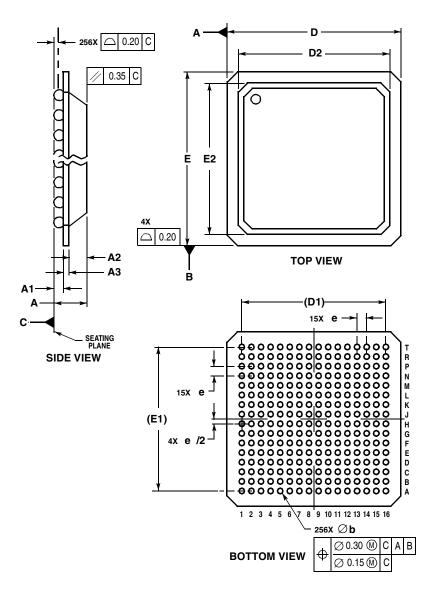
Table 25. I^2C Timing (SCL > 100 KHz)

Num	Characteristic	Expression	All Frequencies		l lmit
Nulli			Min	Max	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	_	S
203	Low period of SCL		1/(2.2 * fSCL)	_	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	_	S
206	Start condition hold time		1/(2.2 * fSCL)	_	S
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		_	1/(10 * fSCL)	S
210	SDL/SCL fall time		_	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	_	S

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 61 shows the I²C bus timing.




Figure 61. I²C Bus Timing Diagram

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.91	2.35	
A 1	0.50	0.70	
A2	1.12	1.22	
A3	0.29	0.43	
b	0.60	0.90	
D	23.00 BSC		
D1	19.05 REF		
D2	19.00	20.00	
Е	23.00 BSC		
E1	19.05 REF		
E2	19.00	20.00	
е	1.27 BSC		

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)—non-JEDEC Standard

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2