E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	- ·
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850srvr66bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Interrupt can be masked on reference match and event capture
- Interrupts
 - Eight external interrupt request (IRQ) lines
 - Twelve port pins with interrupt capability
 - Fifteen internal interrupt sources
 - Programmable priority among SCCs and USB
 - Programmable highest-priority request
- Single socket PCMCIA-ATA interface
 - Master (socket) interface, release 2.1 compliant
 - Single PCMCIA socket
 - Supports eight memory or I/O windows
- Communications processor module (CPM)
 - 32-bit, Harvard architecture, scalar RISC communications processor (CP)
 - Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD closes the receive buffer descriptor)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8 Kbytes of dual-port RAM
 - Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints
 - Three parallel I/O registers with open-drain capability
- Four independent baud-rate generators (BRGs)
 - Can be connected to any SCC, SMC, or USB
 - Allow changes during operation
 - Autobaud support option
- Two SCCs (serial communications controllers)
 - Ethernet/IEEE 802.3, supporting full 10-Mbps operation
 - HDLC/SDLCTM (all channels supported at 2 Mbps)
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk[®]
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC))

 θ_{IA} = Package thermal resistance, junction to ambient, °C/W

 $\begin{aligned} \mathbf{P}_{\mathrm{D}} &= \mathbf{P}_{\mathrm{INT}} + \mathbf{P}_{\mathrm{I/O}} \\ \mathbf{P}_{\mathrm{INT}} &= \mathbf{I}_{\mathrm{DD}} \ge \mathbf{V}_{\mathrm{DD}}, \text{watts}\text{---chip internal power} \end{aligned}$

 $P_{I/O}$ = Power dissipation on input and output pins—user determined

For most applications $P_{I/O} < 0.3 \bullet P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

 $P_{\rm D} = K \div (T_{\rm I} + 273^{\circ} \rm C)(2)$

Solving equations (1) and (2) for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \bullet (\mathbf{T}_{\mathrm{A}} + 273^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \bullet \mathbf{P}_{\mathrm{D}}^{2}(3)$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

5.1 Layout Practices

Each V_{CC} pin on the MPC850 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

6 Bus Signal Timing

Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.

The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).

The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.

		50	MHz	66	MHz	80	MHz		Cap Load	
Num	Characteristic					Min		FFACT	(default	Unit
B22	CLKOUT rising edge to \overline{CS}	Min 5.00	Max 11.75	Min 7.58	Max 14.33	6.25	Max 13.00	0.250	50 pF) 50.00	ns
.	asserted GPCM ACS = 00						0.00		50.00	
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0,1	_	8.00	_	8.00		8.00	_	50.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0	2.00	8.00	2.00	8.00	2.00	8.00		50.00	ns
B24	A[6-31] to \overline{CS} asserted GPCM ACS = 10, TRLX = 0.	3.00	—	6.00	—	4.00	—	0.250	50.00	ns
B24a	A[6–31] to \overline{CS} asserted GPCM ACS = 11, TRLX = 0	8.00	—	13.00	_	11.00	—	0.500	50.00	ns
B25	$\frac{CLKOUT}{WE[0-3]} \text{ asserted}$	—	9.00	_	9.00	—	9.00	—	50.00	ns
B26	CLKOUT rising edge to \overline{OE} negated	2.00	9.00	2.00	9.00	2.00	9.00	—	50.00	ns
B27	A[6–31] to \overline{CS} asserted GPCM ACS = 10, TRLX = 1	23.00	—	36.00	—	29.00	—	1.250	50.00	ns
B27a	A[6–31] to \overline{CS} asserted GPCM ACS = 11, TRLX = 1	28.00	—	43.00	—	36.00	—	1.500	50.00	ns
B28	CLKOUT rising edge to WE[0–3] negated GPCM write access CSNT = 0	—	9.00	—	9.00	—	9.00	—	50.00	ns
B28a	CLKOUT falling edge to WE[0–3] negated GPCM write access TRLX = 0,1 CSNT = 1, EBDF = 0	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	_	12.00		14.00	_	13.00	0.250	50.00	ns

Table 6. Bus Operation Timing	1	(continued)
-------------------------------	---	-------------

		50 I	MHz	66 I	MHz	80 1	MHz		Cap Load	
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B31	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31b	CLKOUT rising edge to \overline{CS} valid - as requested by control bit CST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	_	50.00	ns
B31c	CLKOUT rising edge to CS valid - as requested by control bit CST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31d	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B32a	CLKOUT falling edge to \overline{BS} valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32b	CLKOUT rising edge to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	—	50.00	ns
B32c	CLKOUT rising edge to BS valid - as requested by control bit BST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32d	CLKOUT falling edge to \overline{BS} valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B33	CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00		50.00	ns

Table 6.	Bus Operation	Timing	¹ (continued)
----------	----------------------	--------	--------------------------

Figure 4 provides the timing for the synchronous output signals.

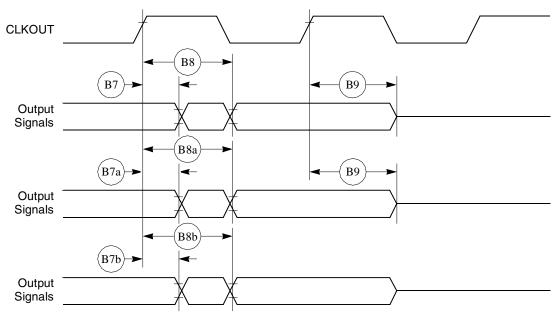


Figure 4. Synchronous Output Signals Timing

Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.

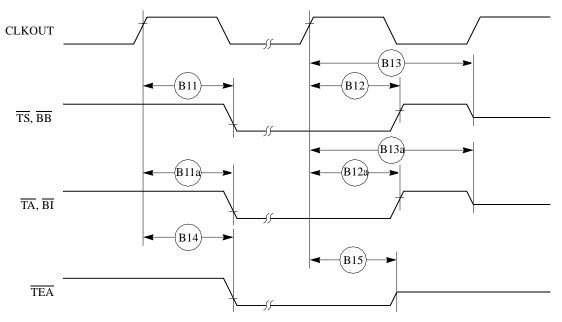


Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing

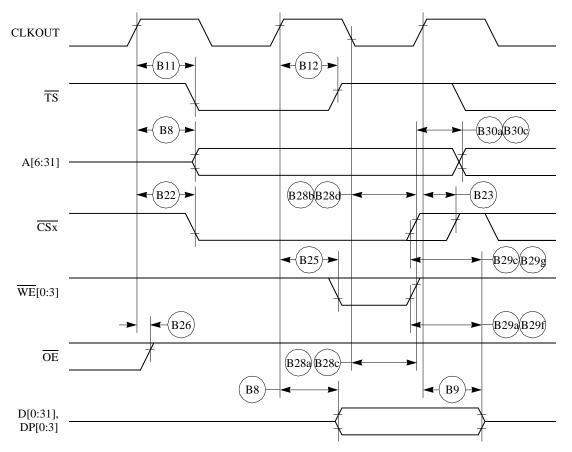


Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

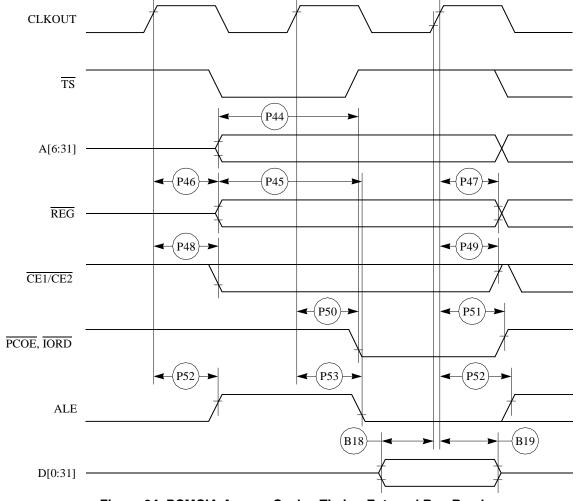


Figure 24 provides the PCMCIA access cycle timing for the external bus read.

Figure 24. PCMCIA Access Cycles Timing External Bus Read

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

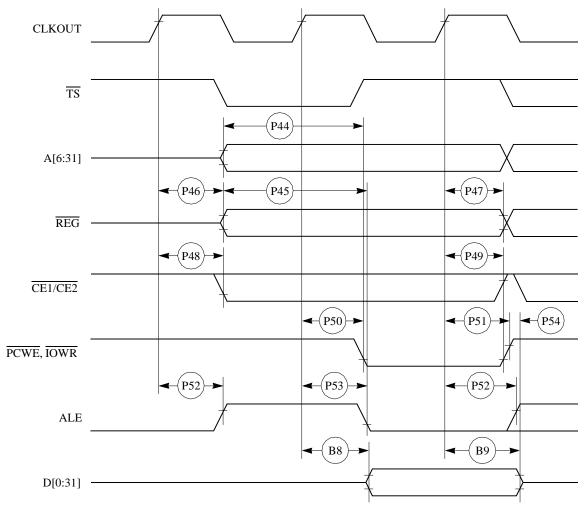


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

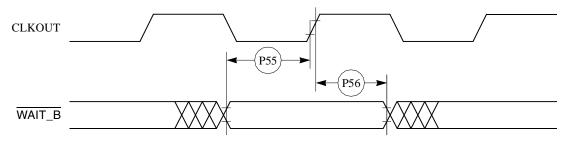


Figure 26. PCMCIA WAIT Signal Detection Timing

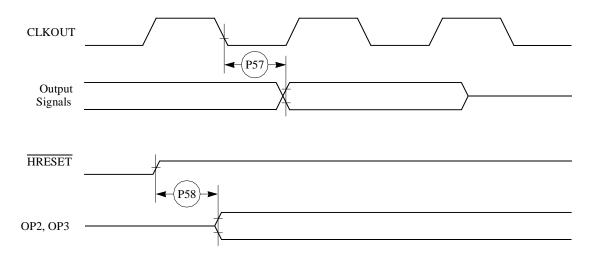

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Num Characteristic		50 MHz		66 MHz		80 MHz	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx valid	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹	18.00	_	26.00	_	22.00	_	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00	_	ns

¹ OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

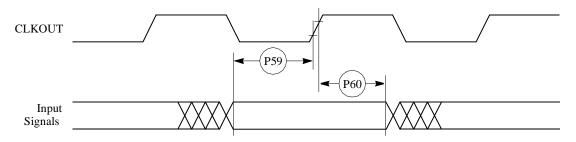


Figure 28. PCMCIA Input Port Timing

Table 10 shows the debug port timing for the MPC850.

Num	Num Characteristic		50 MHz		66 MHz		80 MHz	
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Unit
D61	DSCK cycle time	60.00		91.00		75.00	—	ns
D62	DSCK clock pulse width	25.00	_	38.00	_	31.00	—	ns
D63	DSCK rise and fall times	0.00	3.00	0.00	3.00	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	8.00	_	8.00	—	ns
D65	DSDI data hold time	5.00	_	5.00	_	5.00	—	ns
D66	DSCK low to DSDO data valid	0.00	15.00	0.00	15.00	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	0.00	2.00	0.00	2.00	ns

Table 10. Debug Port Timing

Figure 29 provides the input timing for the debug port clock.

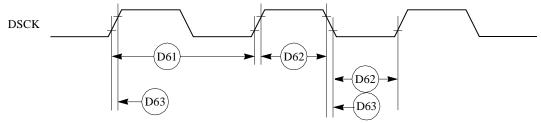


Figure 29. Debug Port Clock Input Timing

Figure 30 provides the timing for the debug port.

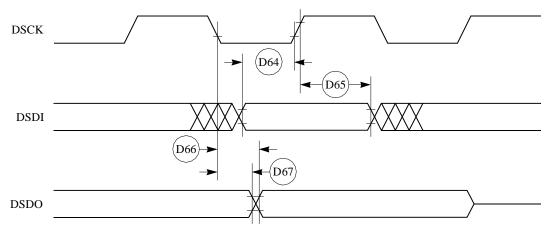
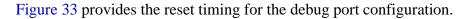



Figure 30. Debug Port Timings

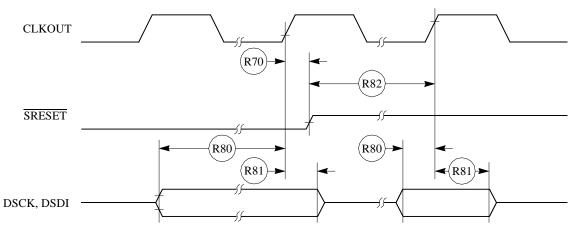


Figure 33. Reset Timing—Debug Port Configuration

7 IEEE 1149.1 Electrical Specifications

Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37.

Table 12. JTAG Timing

Num	Characteristic	50 I	MHz	66N	ЛНz	80 MHz		Unit
num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
J82	TCK cycle time	100.00	_	100.00	_	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00		40.00		40.00		ns
J84	TCK rise and fall times	0.00	10.00	0.00	10.00	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00		5.00		5.00		ns
J86	TMS, TDI data hold time	25.00		25.00		25.00		ns
J87	TCK low to TDO data valid	—	27.00	—	27.00	—	27.00	ns
J88	TCK low to TDO data invalid	0.00		0.00		0.00		ns
J89	TCK low to TDO high impedance	—	20.00	—	20.00	—	20.00	ns
J90	TRST assert time	100.00		100.00		100.00		ns
J91	TRST setup time to TCK low	40.00		40.00		40.00		ns
J92	TCK falling edge to output valid	_	50.00	—	50.00	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	_	50.00	—	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	_	50.00	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	50.00	_	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	50.00	_	50.00	_	ns

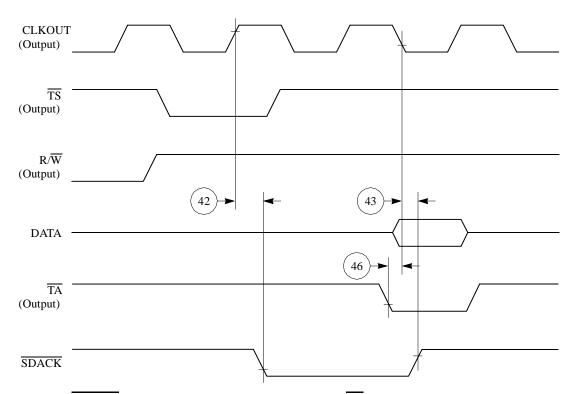


Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Characteristic	All Frequ	iencies	Unit
Num	Characteristic	Min	Max	Unit
50	BRGO rise and fall time	_	10.00	ns
51	BRGO duty cycle	40.00	60.00	%
52	BRGO cycle	40.00	—	ns

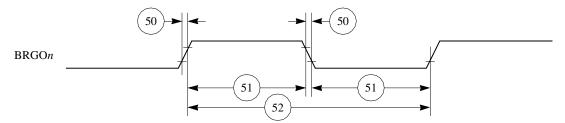


Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Num	Characteristic	All Frequ	Unit	
Num Characteristic -		Min	Мах	Unit
61	TIN/TGATE rise and fall time	10.00		ns
62	TIN/TGATE low time	1.00	_	clk
63	TIN/TGATE high time	2.00	_	clk
64	TIN/TGATE cycle time	3.00	_	clk
65	CLKO high to TOUT valid	3.00	25.00	ns

Table 16. Timer Timing

CPM Electrical Characteristics

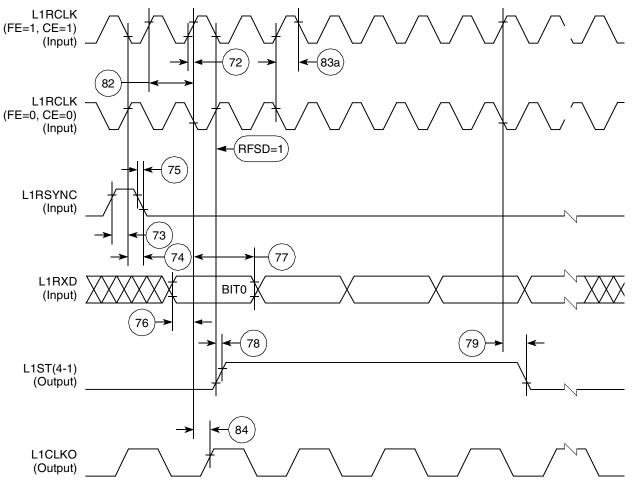


Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)

CPM Electrical Characteristics

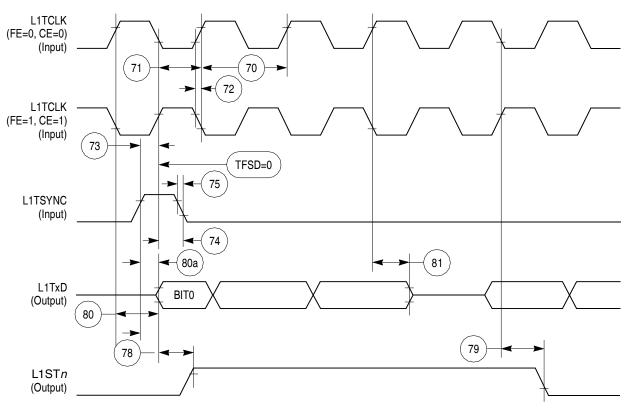


Figure 47. SI Transmit Timing Diagram

CPM Electrical Characteristics

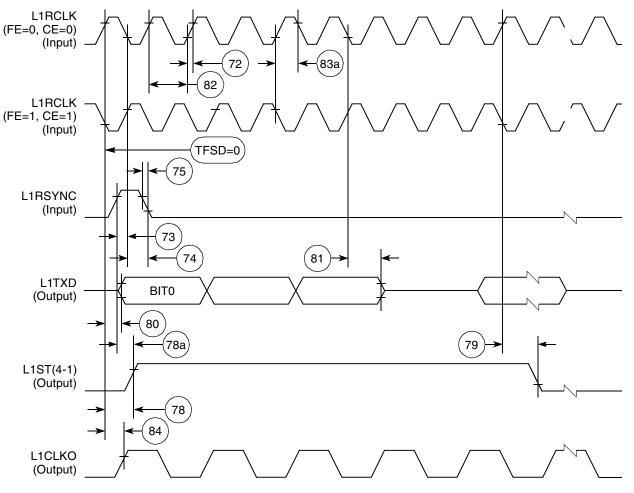


Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)

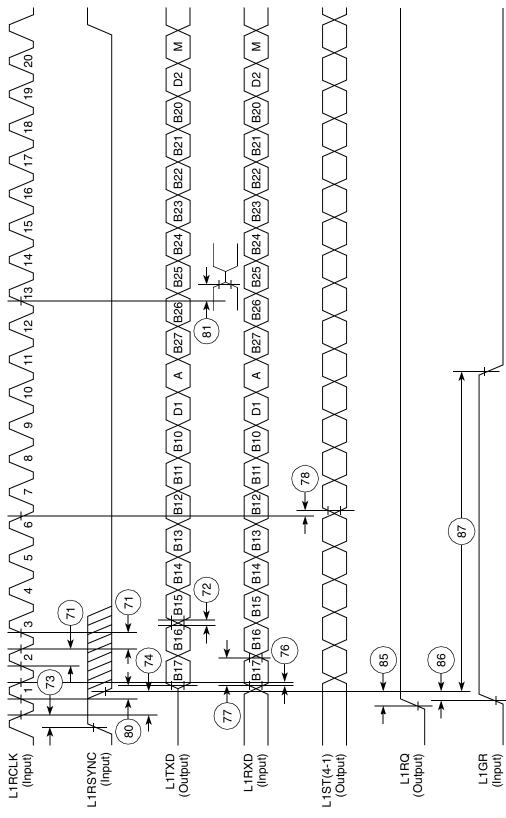


Figure 49. IDL Timing

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26.	MPC850	Family	/ Derivatives
-----------	---------------	--------	---------------

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Тwo	N/A	Yes
MPC850DSL	Yes	Two	No	No

¹ Serial Communication Controller (SCC)

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK