E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc850zq50bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP,

2 Features

Figure 1 is a block diagram of the MPC850, showing its major components and the relationships among those components:

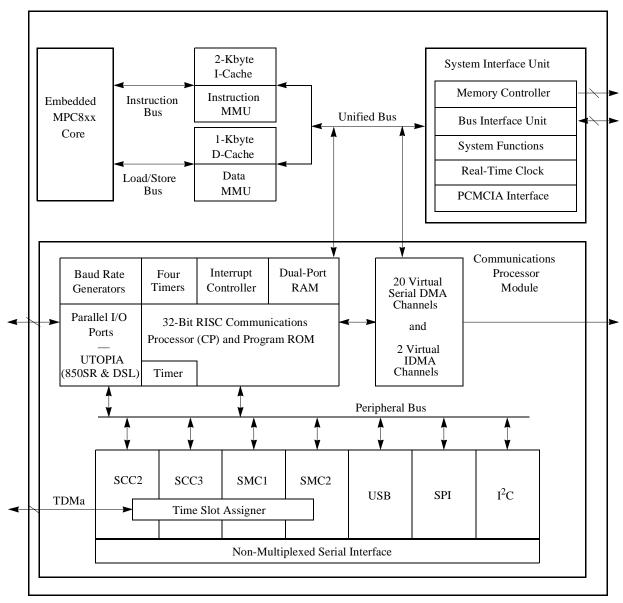


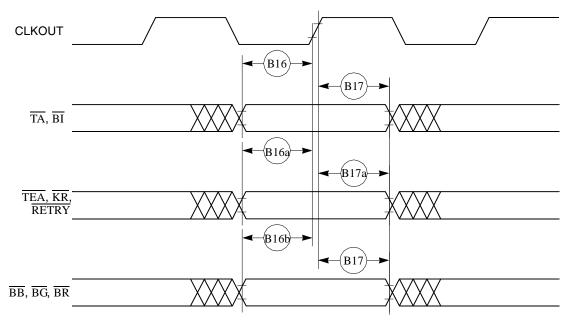
Figure 1. MPC850 Microprocessor Block Diagram

The following list summarizes the main features of the MPC850:

- Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - Performs branch folding and branch prediction with conditional prefetch, but without conditional execution

Features

- QUICC multichannel controller (QMC) microcode features
 - Up to 64 independent communication channels on a single SCC
 - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
 - Supports either transparent or HDLC protocols for each channel
 - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
 - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C[®] (interprocessor-integrated circuit) port
 - Supports master and slave modes
 - Supports multimaster environment
- Time slot assigner
 - Allows SCCs and SMCs to run in multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame syncs, clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
 - Full high: all units fully powered at high clock frequency
 - Full low: all units fully powered at low clock frequency
 - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
 - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
 - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
 - Low-power stop: to provide lower power dissipation


		50 MHz 66 MHz			00.5	/LI-		Contract		
Num	Characteristic			MHZ	Hz 80 MHz		FFACT	Cap Load (default	Unit	
			Max	Min	Мах	Min	Мах		50 pF)	
B29h	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \ negated to \ A[6-31] \\ invalid \\ GPCM write \ access, TRLX = 0, \\ CSNT = 1, \ \overline{CS} \ negated to \\ A[6-31] \ invalid \ GPCM \ write \\ access \ TRLX = 0, \ CSNT = 1, \\ ACS = 10 \ or \ ACS = 11, \ EBDF = 0 \\ 0 \\ \hline \hline \end{array}$	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	$eq:weighted_$	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B30c	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, TRLX = 0, } \\ CSNT = 1. \ensuremath{\overline{CS}}\xspace$ negated to } \\ A[6-31] \mbox{ invalid GPCM write } \\ access, TRLX = 0, \ensuremath{CSNT}\xspace = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \ensuremath{EBDF}\xspace = 1 \\ \hline 1 \\ \hline \hline \hline \ensuremath{\mathbb{R}}\xspace \ensuremath$	5.00	_	8.00		6.00		0.375	50.00	ns
B30d	$\label{eq:WE[0-3]} \begin{array}{l} \hline WE[0-3] \mbox{ negated to } A[6-31] \\ \hline \mbox{invalid GPCM write access} \\ \hline TRLX = 1, \mbox{ CSNT = 1, } \hline CS \\ \hline \mbox{ negated to } A[6-31] \mbox{ invalid } \\ \hline GPCM \mbox{ write access } TRLX = 1, \\ \hline CSNT = 1, \mbox{ ACS = 10 or } ACS = \\ \hline 11, \mbox{ EBDF = 1} \end{array}$	25.00		39.00		31.00		1.375	50.00	ns

									_	
Num	Characteristic		50 MHz 66 MHz		80 1	MHz	FFACT	Cap Load (default	Unit	
		Min	Max	Min	Max	Min	Max		` 50 pF)	
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to CS valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to CS valid - as requested by CST2 in the corresponding word in UPM	13.00	_	21.00		17.00		0.750	50.00	ns
B35	A[6-31] to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to BS valid - as requested by BST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00		6.00		4.00		0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00		6.00		6.00		—	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	—	1.00	_	1.00	_	—	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00		7.00	—	7.00	—	—	50.00	ns
B40	A[6-31], TSIZ[0-1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00		7.00		7.00		—	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	_	7.00	_	_	50.00	ns

Figure 6 provides the timing for the synchronous input signals.

Figure 6. Synchronous Input Signals Timing

Figure 7 provides normal case timing for input data.

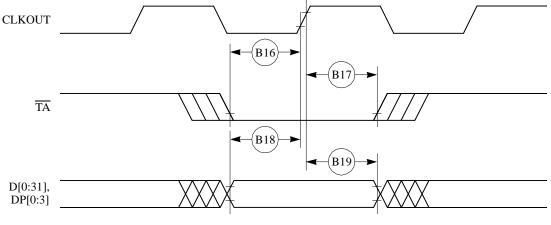


Figure 7. Input Data Timing in Normal Case

Bus Signal Timing

Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.

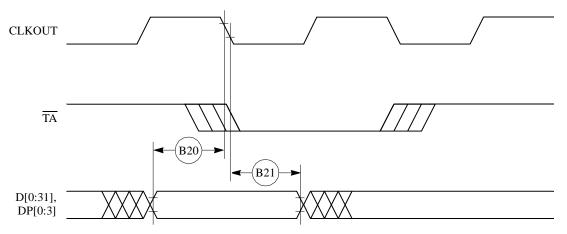


Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller

Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.

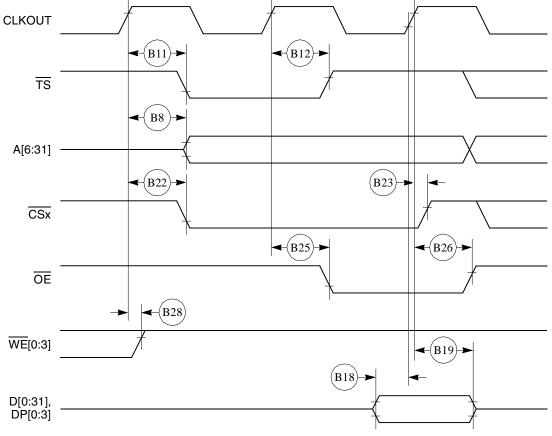


Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)

Bus Signal Timing

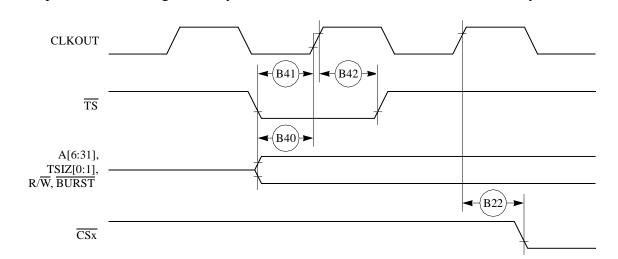
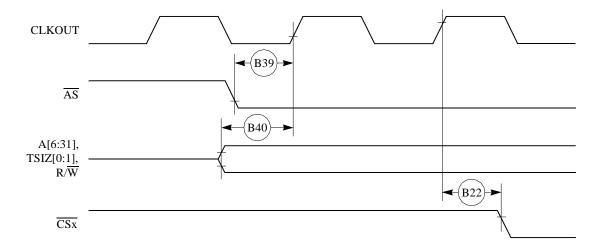



Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

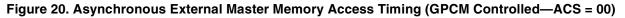


Figure 21 provides the timing for the asynchronous external master control signals negation.

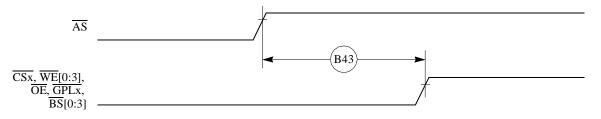


Figure 21. Asynchronous External Master—Control Signals Negation Timing

Bus Signal Timing

Figure 25 provides the PCMCIA access cycle timing for the external bus write.

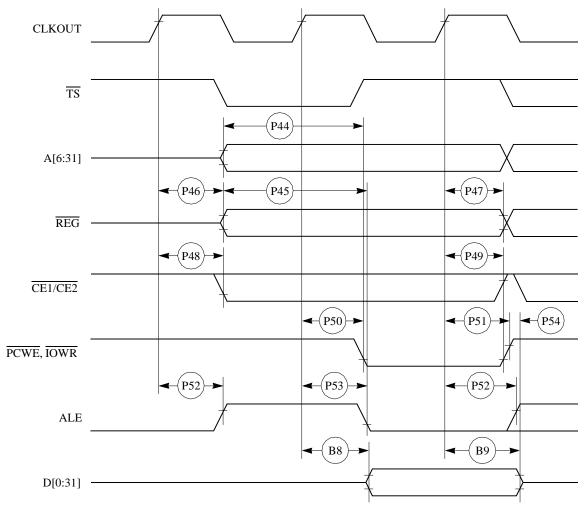


Figure 25. PCMCIA Access Cycles Timing External Bus Write

Figure 26 provides the PCMCIA WAIT signals detection timing.

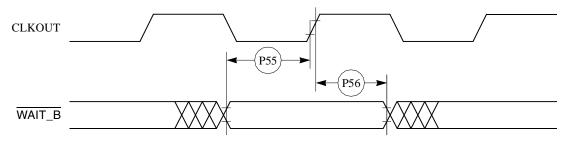
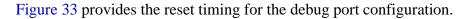



Figure 26. PCMCIA WAIT Signal Detection Timing

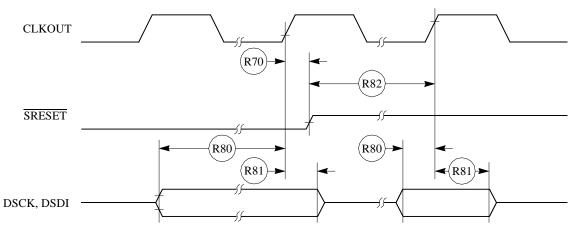


Figure 33. Reset Timing—Debug Port Configuration

7 IEEE 1149.1 Electrical Specifications

Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37.

Table 12. JTAG Timing

Num	Characteristic	50 MHz		66MHz		80 MHz		Unit
num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
J82	TCK cycle time	100.00	_	100.00	_	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00		40.00		40.00		ns
J84	TCK rise and fall times	0.00	10.00	0.00	10.00	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00		5.00		5.00		ns
J86	TMS, TDI data hold time	25.00		25.00		25.00		ns
J87	TCK low to TDO data valid	—	27.00	—	27.00	—	27.00	ns
J88	TCK low to TDO data invalid	0.00		0.00		0.00		ns
J89	TCK low to TDO high impedance	—	20.00	—	20.00	—	20.00	ns
J90	TRST assert time	100.00		100.00		100.00		ns
J91	TRST setup time to TCK low	40.00		40.00		40.00		ns
J92	TCK falling edge to output valid	—	50.00	_	50.00	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	—	50.00	_	50.00	—	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	—	50.00	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	50.00	_	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	50.00	_	50.00	_	ns

IEEE 1149.1 Electrical Specifications

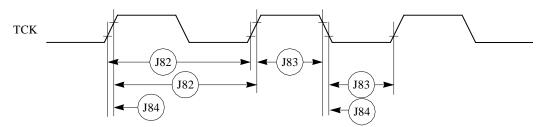


Figure 34. JTAG Test Clock Input Timing

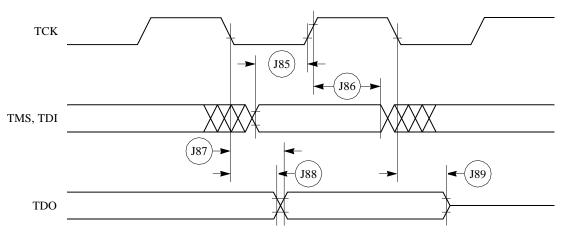


Figure 35. JTAG Test Access Port Timing Diagram

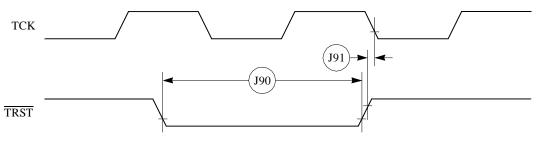


Figure 36. JTAG TRST Timing Diagram

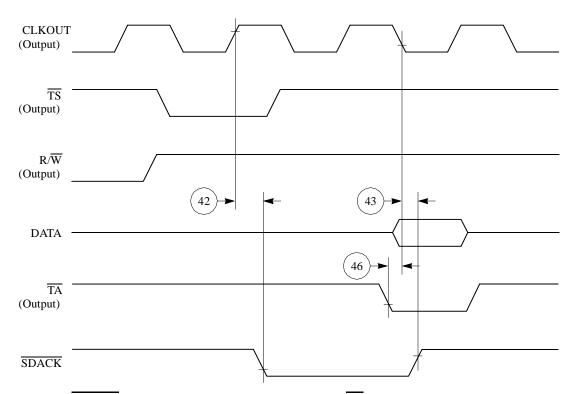


Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

CPM Electrical Characteristics

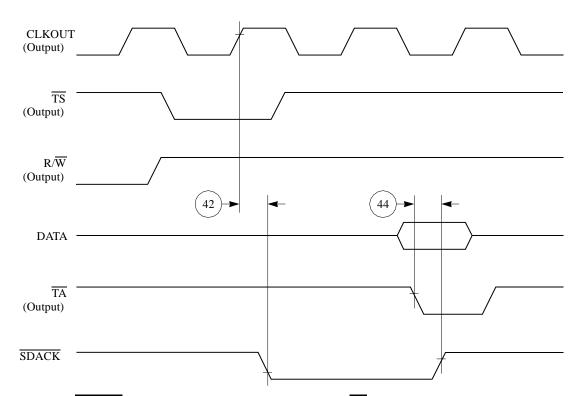
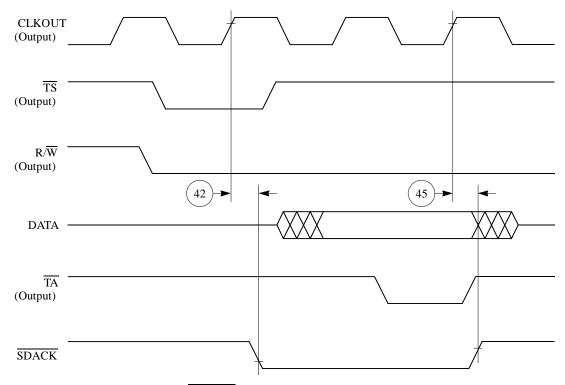



Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Max	Unit
50	BRGO rise and fall time	_	10.00	ns
51	BRGO duty cycle	40.00	60.00	%
52	BRGO cycle	40.00	—	ns

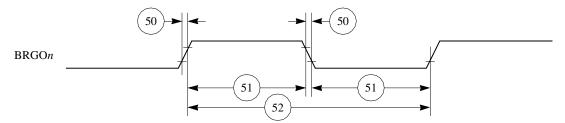


Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Num	Characteristic	All Frequ	Unit	
	Characteristic	Min	Мах	Unit
61	TIN/TGATE rise and fall time	10.00		ns
62	TIN/TGATE low time	1.00	_	clk
63	TIN/TGATE high time	2.00	_	clk
64	TIN/TGATE cycle time	3.00	_	clk
65	CLKO high to TOUT valid	3.00	25.00	ns

Table 16. Timer Timing

CPM Electrical Characteristics

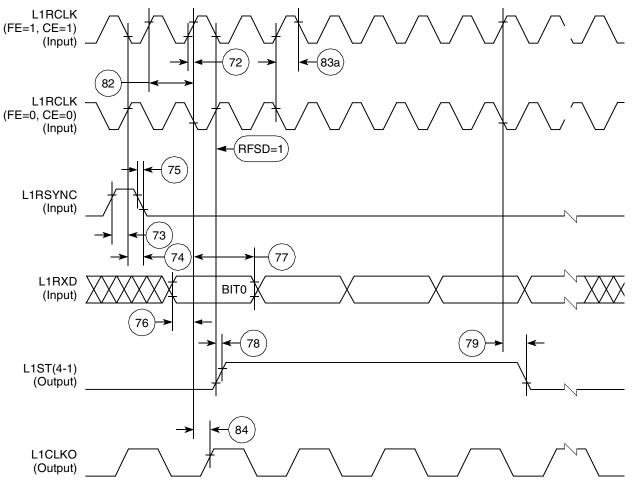


Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)

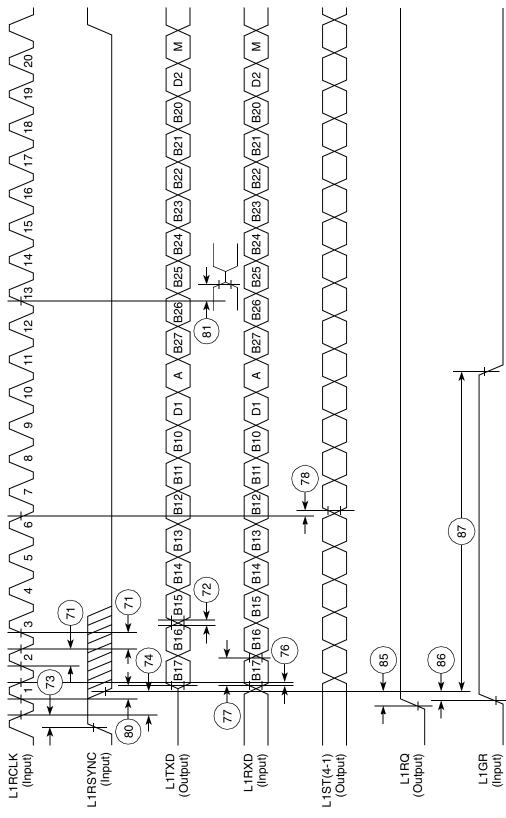


Figure 49. IDL Timing

CPM Electrical Characteristics

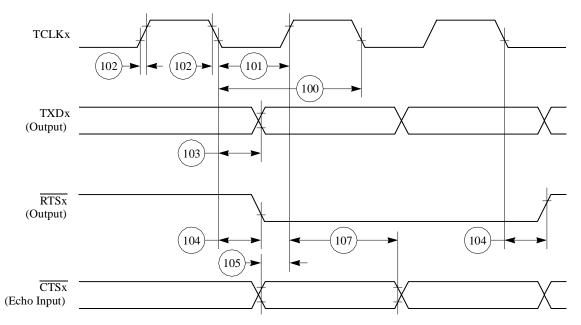


Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Num	Characteristic	All Fred	Unit	
Num	Characteristic	Min	Max	Unit
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	_	15.00	ns
122	RCLKx width low	40.00		ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00		ns
125	RXDx hold time	5.00		ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	—	15.00	ns
129	TCLKx width low	40.00		ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

Mechanical Data and Ordering Information

customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document.

Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface.

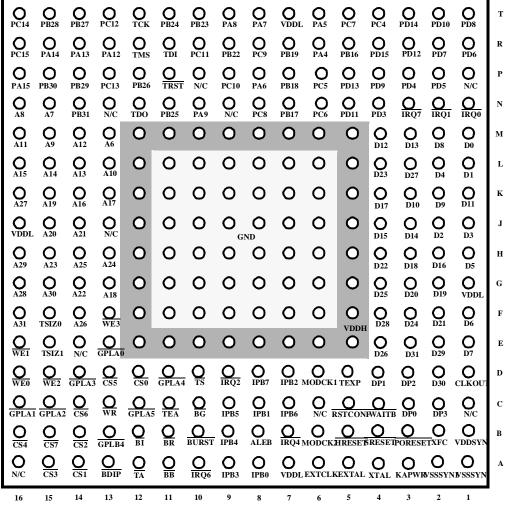


Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK