E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850czt50bur2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The CPM of the MPC850 supports up to seven serial channels, as follows:

- One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation.
- One USB channel
- Two serial management controllers (SMCs)
- One I²C port
- One serial peripheral interface (SPI).

Table 1 shows the functionality supported by the members of the MPC850 family.

Part	Number of SCCs Supported	Ethernet Support	ATM Support	USB Support	Multi-channel HDLC Support	Number of PCMCIA Slots Supported
MPC850	1	Yes	-	Yes	-	1
MPC850DE	2	Yes	-	Yes	-	1
MPC850SR	2	Yes	Yes	Yes	Yes	1
MPC850DSL	2	Yes	Yes	Yes	No	1

Table 1. MPC850 Functionality Matrix

Additional documentation may be provided for parts listed in Table 1.

NP,

2 Features

Figure 1 is a block diagram of the MPC850, showing its major components and the relationships among those components:

Figure 1. MPC850 Microprocessor Block Diagram

The following list summarizes the main features of the MPC850:

- Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - Performs branch folding and branch prediction with conditional prefetch, but without conditional execution

Num	Characteristic	50 I	MHz	66 I	MHz	80 MHz		FFACT	Cap Load	Unit
Num	Characteristic	Min	Max	Min	Мах	Min	Мах		50 pF)	onn
B42	CLKOUT rising edge to \overline{TS} valid (hold time)	2.00	—	2.00	—	2.00	—	—	50.00	ns
B43	AS negation to memory controller signals negation	—	TBD	—	TBD	TBD	—	—	50.00	ns

 Table 6. Bus Operation Timing ¹ (continued)

The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. For frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. AC parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part. The following equations should be used in these calculations.

For a frequency F, the following equations should be applied to each one of the above parameters: For minima:

$$D = \frac{FFACTOR \times 1000}{F} + (D_{50} - 20 \times FFACTOR)$$

For maxima:

$$D = \frac{FFACTOR \times 1000}{F} + \frac{(D_{50} - 20 \times FFACTOR)}{F} + \frac{1ns(CAP \text{ LOAD} - 50) / 10}{F}$$

where:

D is the parameter value to the frequency required in ns

F is the operation frequency in MHz

D₅₀ is the parameter value defined for 50 MHz

CAP LOAD is the capacitance load on the signal in question.

FFACTOR is the one defined for each of the parameters in the table.

- ² Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value.
- ³ If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.
- ⁴ The timing for BR output is relevant when the MPC850 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter.
- ⁵ The setup times required for TA, TEA, and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drives them).
- ⁶ The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC850 is selected to work with the external bus arbiter.
- ⁷ The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁸ The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.
- ⁹ The timing B30 refers to \overline{CS} when ACS = '00' and to $\overline{WE[0:3]}$ when CSNT = '0'.
- ¹⁰ The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
- ¹¹ The $\overline{\text{AS}}$ signal is considered asynchronous to CLKOUT.

Bus Signal Timing

Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

Bus Signal Timing

Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	n Characteristic		50 MHz		66MHz		MHz	FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	TRETOR	Onne
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R71	RSTCONF pulse width	340.00	—	515.00	—	425.00	_	17.000	ns
R72		_	—	_	—	_	_	—	
R73	Configuration data to HRESET rising edge set up time	350.00	—	505.00	—	425.00	—	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	—	350.00	—	350.00	—	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00	-	25.00	-	25.00	—	ns
R78	RSTCONF negated to data out high impedance.	—	25.00	—	25.00	—	25.00	—	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	—	242.00	—	200.00	—	8.000	ns

Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num		All Free	luencies	Unit
Num	Characteristic	Min		
40	DREQ setup time to clock high	7.00	_	ns
41	DREQ hold time from clock high		_	ns
42	SDACK assertion delay from clock high		12.00	ns
43	SDACK negation delay from clock low		12.00	ns
44	SDACK negation delay from TA low		20.00	ns
45	SDACK negation delay from clock high		15.00	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})		_	ns

Table 14. IDMA Controller Timing

Figure 39. IDMA External Requests Timing Diagram

	Table 17. SI Timing (cont	inued)		
	Oh ann a thurin tha	All Fre	quencies	11
NUM	Characteristic	Min	Мах	Unit
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	—	ns
83A	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	—	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)		30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	—	L1TCLK
86	L1GR setup time ²	42.00	—	ns
87	L1GR hold time	42.00	—	ns
88	L1xCLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

- 2 These specs are valid for IDL mode only.
- ³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)

8.6 SCC in NMSI Mode Electrical Specifications

Table 18 provides the NMSI external clock timing.

	Table 18.	NMSI	External	Clock	Timing
--	-----------	------	----------	-------	--------

Num	Characteristic	All Frequencies		Unit	
Num	Characteristic	Min	Max		
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	1/SYNCCLK	—	ns	
101	RCLKx and TCLKx width low	1/SYNCCLK +5	—	ns	
102	RCLKx and TCLKx rise/fall time	_	15.00	ns	
103	TXDx active delay (from TCLKx falling edge)	0.00	50.00	ns	
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	50.00	ns	
105	CTSx setup time to TCLKx rising edge	5.00	—	ns	
106	RXDx setup time to RCLKx rising edge	5.00	—	ns	
107	RXDx hold time from RCLKx rising edge ²	5.00	—	ns	
108	CDx setup time to RCLKx rising edge	5.00	—	ns	

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 19 provides the NMSI internal clock timing.

Table 19. NMSI Internal Clock Timing

Num	Charactoristic	All Fr	equencies	Unit
Nulli	Characteristic	Min	Мах	onn
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	0.00	SYNCCLK/3	MHz
102	RCLKx and TCLKx rise/fall time		—	ns
103	TXDx active delay (from TCLKx falling edge)	0.00	30.00	ns
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	30.00	ns
105	CTSx setup time to TCLKx rising edge	40.00	—	ns
106	RXDx setup time to RCLKx rising edge	40.00	—	ns
107	RXDx hold time from RCLKx rising edge ²	0.00	—	ns
108	CDx setup time to RCLKx rising edge	40.00		ns

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Niumo	Chavastavistis	All Frequencies		llusit	
Num	Characteristic	Min	Max	onit	
120	CLSN width high	40.00	_	ns	
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)		15.00	ns	
122	RCLKx width low			ns	
123	RCLKx clock period ¹	80.00	120.00	ns	
124	RXDx setup time	20.00	_	ns	
125	RXDx hold time	5.00	_	ns	
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns	
127	RENA width low	100.00	_	ns	
128	TCLKx rise/fall time	—	15.00	ns	
129	TCLKx width low	40.00	_	ns	
130	TCLKx clock period ¹	99.00	101.00	ns	
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns	
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns	
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns	

CPM Electrical Characteristics

Figure 60. SPI Slave (CP = 1) Timing Diagram

8.11 I²C AC Electrical Specifications

Table 24 provides the I^2C (SCL < 100 KHz) timings.

Table 24.	I ² C Timing	(SCL < 100 KHz)
-----------	-------------------------	-----------------

Num	Characteristic	All Frequencies		Unit
		Min	Max	Unit
200	SCL clock frequency (slave)	0.00	100.00	KHz
200	SCL clock frequency (master) ¹	1.50	100.00	KHz
202	Bus free time between transmissions	4.70	—	μs
203	Low period of SCL	4.70	—	μs
204	High period of SCL	4.00	—	μs
205	Start condition setup time	4.70	—	μs
206	Start condition hold time	4.00	—	μs
207	Data hold time	0.00	—	μs
208	Data setup time	250.00	_	ns
209	SDL/SCL rise time	—	1.00	μs

Num	Characteristic	All Frequencies		Unit
		Min	Мах	Unit
210	SDL/SCL fall time	—	300.00	ns
211	Stop condition setup time	4.70		μs

Table 24. I²C Timing (SCL < 100 KHz) (CONTINUED)

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 25 provides the I^2C (SCL > 100 KHz) timings.

Table 25. I^2C Timing (SCL > 100 KHz)

Num	Characteristic	Expression	All Frequencies		Unit
			Min	Max	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	_	S
203	Low period of SCL		1/(2.2 * fSCL)	_	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	_	s
206	Start condition hold time		1/(2.2 * fSCL)	_	s
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		—	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	_	s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 61 shows the I^2C bus timing.

Figure 61. I²C Bus Timing Diagram

Mechanical Data and Ordering Information

customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document.

Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface.

Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)-non-JEDEC Standard

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK