




Welcome to **E-XFL.COM** 

### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

## **Applications of Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

| Details                         |                                                                          |
|---------------------------------|--------------------------------------------------------------------------|
| Product Status                  | Obsolete                                                                 |
| Core Processor                  | MPC8xx                                                                   |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Speed                           | 50MHz                                                                    |
| Co-Processors/DSP               | Communications; CPM                                                      |
| RAM Controllers                 | DRAM                                                                     |
| Graphics Acceleration           | No                                                                       |
| Display & Interface Controllers | -                                                                        |
| Ethernet                        | 10Mbps (1)                                                               |
| SATA                            | -                                                                        |
| USB                             | USB 1.x (1)                                                              |
| Voltage - I/O                   | 3.3V                                                                     |
| Operating Temperature           | -40°C ~ 95°C (TA)                                                        |
| Security Features               | -                                                                        |
| Package / Case                  | 256-BBGA                                                                 |
| Supplier Device Package         | 256-PBGA (23x23)                                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850dslcvr50bu |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Gate mode can enable/disable counting
- Interrupt can be masked on reference match and event capture

## Interrupts

- Eight external interrupt request (IRQ) lines
- Twelve port pins with interrupt capability
- Fifteen internal interrupt sources
- Programmable priority among SCCs and USB
- Programmable highest-priority request
- Single socket PCMCIA-ATA interface
  - Master (socket) interface, release 2.1 compliant
  - Single PCMCIA socket
  - Supports eight memory or I/O windows
- Communications processor module (CPM)
  - 32-bit, Harvard architecture, scalar RISC communications processor (CP)
  - Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission
    after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD
    closes the receive buffer descriptor)
  - Supports continuous mode transmission and reception on all serial channels
  - Up to 8 Kbytes of dual-port RAM
  - Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints
  - Three parallel I/O registers with open-drain capability
- Four independent baud-rate generators (BRGs)
  - Can be connected to any SCC, SMC, or USB
  - Allow changes during operation
  - Autobaud support option
- Two SCCs (serial communications controllers)
  - Ethernet/IEEE 802.3, supporting full 10-Mbps operation
  - HDLC/SDLC<sup>TM</sup> (all channels supported at 2 Mbps)
  - HDLC bus (implements an HDLC-based local area network (LAN))
  - Asynchronous HDLC to support PPP (point-to-point protocol)
  - AppleTalk<sup>®</sup>
  - Universal asynchronous receiver transmitter (UART)
  - Synchronous UART
  - Serial infrared (IrDA)
  - Totally transparent (bit streams)
  - Totally transparent (frame based with optional cyclic redundancy check (CRC))

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



#### **Features**

- QUICC multichannel controller (QMC) microcode features
  - Up to 64 independent communication channels on a single SCC
  - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
  - Supports either transparent or HDLC protocols for each channel
  - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
  - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
  - UART
  - Transparent
  - General circuit interface (GCI) controller
  - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
  - Supports master and slave modes
  - Supports multimaster operation on the same bus
- One I<sup>2</sup>C<sup>®</sup> (interprocessor-integrated circuit) port
  - Supports master and slave modes
  - Supports multimaster environment
- Time slot assigner
  - Allows SCCs and SMCs to run in multiplexed operation
  - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
  - 1- or 8-bit resolution
  - Allows independent transmit and receive routing, frame syncs, clocking
  - Allows dynamic changes
  - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
  - Full high: all units fully powered at high clock frequency
  - Full low: all units fully powered at low clock frequency
  - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
  - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
  - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
  - Low-power stop: to provide lower power dissipation



- Separate power supply input to operate internal logic at 2.2 V when operating at or below 25 MHz
- Can be dynamically shifted between high frequency (3.3 V internal) and low frequency (2.2 V internal) operation
- Debug interface
  - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data
  - The MPC850 can compare using the =,  $\neq$ , <, and > conditions to generate watchpoints
  - Each watchpoint can generate a breakpoint internally
- 3.3-V operation with 5-V TTL compatibility on all general purpose I/O pins.

# 3 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC850. Table 2 provides the maximum ratings.

**Table 2. Maximum Ratings** 

(GND = 0V)

| Rating                            | Symbol           | Value                                      | Unit |
|-----------------------------------|------------------|--------------------------------------------|------|
| Supply voltage                    | VDDH             | -0.3 to 4.0                                | V    |
|                                   | VDDL             | -0.3 to 4.0                                | V    |
|                                   | KAPWR            | -0.3 to 4.0                                | V    |
|                                   | VDDSYN           | -0.3 to 4.0                                | V    |
| Input voltage <sup>1</sup>        | V <sub>in</sub>  | GND-0.3 to VDDH + 2.5 V                    | V    |
| Junction temperature <sup>2</sup> | Тј               | 0 to 95 (standard)<br>-40 to 95 (extended) | °C   |
| Storage temperature range         | T <sub>stg</sub> | -55 to +150                                | °C   |

Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

CAUTION: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or  $V_{CC}$ ). Table 3 provides the package thermal characteristics for the MPC850.

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

applies to power-up and normal operation (that is, if the MPC850 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

The MPC850, a high-frequency device in a BGA package, does not provide a guaranteed maximum ambient temperature. Only maximum junction temperature is guaranteed. It is the responsibility of the user to consider power dissipation and thermal management. Junction temperature ratings are the same regardless of frequency rating of the device.



# Table 6. Bus Operation Timing <sup>1</sup>

| N   | Oh ava atawiatia                                                                             | 50 I  | ИНz   | 66 1  | ИНz   | 1 08  | ИНz   | FEAGE | Cap Load           | 11!4 |
|-----|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------------------|------|
| Num | Characteristic                                                                               | Min   | Max   | Min   | Max   | Min   | Max   | FFACT | (default<br>50 pF) | Unit |
| B1  | CLKOUT period                                                                                | 20    | _     | 30.30 | _     | 25    | _     | _     | _                  | ns   |
| B1a | EXTCLK to CLKOUT phase<br>skew (EXTCLK > 15 MHz and<br>MF <= 2)                              | -0.90 | 0.90  | -0.90 | 0.90  | -0.90 | 0.90  | _     | 50.00              | ns   |
| B1b | EXTCLK to CLKOUT phase<br>skew (EXTCLK > 10 MHz and<br>MF < 10)                              | -2.30 | 2.30  | -2.30 | 2.30  | -2.30 | 2.30  | _     | 50.00              | ns   |
| B1c | CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) <sup>2</sup>                               | -0.60 | 0.60  | -0.60 | 0.60  | -0.60 | 0.60  | _     | 50.00              | ns   |
| B1d | CLKOUT phase jitter <sup>2</sup>                                                             | -2.00 | 2.00  | -2.00 | 2.00  | -2.00 | 2.00  | _     | 50.00              | ns   |
| B1e | CLKOUT frequency jitter (MF < 10) <sup>2</sup>                                               | _     | 0.50  | _     | 0.50  | _     | 0.50  | _     | 50.00              | %    |
| B1f | CLKOUT frequency jitter (10 < MF < 500) <sup>2</sup>                                         | _     | 2.00  | _     | 2.00  | _     | 2.00  | _     | 50.00              | %    |
| B1g | CLKOUT frequency jitter (MF > 500) <sup>2</sup>                                              | _     | 3.00  | _     | 3.00  | _     | 3.00  | _     | 50.00              | %    |
| B1h | Frequency jitter on EXTCLK <sup>3</sup>                                                      | _     | 0.50  | _     | 0.50  | _     | 0.50  | _     | 50.00              | %    |
| B2  | CLKOUT pulse width low                                                                       | 8.00  | _     | 12.12 | _     | 10.00 | _     | _     | 50.00              | ns   |
| В3  | CLKOUT width high                                                                            | 8.00  | _     | 12.12 | _     | 10.00 | _     | _     | 50.00              | ns   |
| B4  | CLKOUT rise time                                                                             | _     | 4.00  | _     | 4.00  | _     | 4.00  | _     | 50.00              | ns   |
| B5  | CLKOUT fall time                                                                             | _     | 4.00  | _     | 4.00  | _     | 4.00  | _     | 50.00              | ns   |
| В7  | CLKOUT to A[6-31],<br>RD/WR, BURST, D[0-31],<br>DP[0-3] invalid                              | 5.00  | _     | 7.58  | _     | 6.25  | _     | 0.250 | 50.00              | ns   |
| В7а | CLKOUT to TSIZ[0-1], REG,<br>RSV, AT[0-3], BDIP, PTR<br>invalid                              | 5.00  | _     | 7.58  |       | 6.25  | _     | 0.250 | 50.00              | ns   |
| B7b | CLKOUT to BR, BG, FRZ,<br>VFLS[0–1], VF[0–2] IWP[0–2],<br>LWP[0–1], STS invalid <sup>4</sup> | 5.00  | _     | 7.58  | _     | 6.25  | _     | 0.250 | 50.00              | ns   |
| B8  | CLKOUT to A[6–31],<br>RD/WR, BURST, D[0–31],<br>DP[0–3] valid                                | 5.00  | 11.75 | 7.58  | 14.33 | 6.25  | 13.00 | 0.250 | 50.00              | ns   |
| B8a | CLKOUT to TSIZ[0-1], REG,<br>RSV, AT[0-3] BDIP, PTR valid                                    | 5.00  | 11.75 | 7.58  | 14.33 | 6.25  | 13.00 | 0.250 | 50.00              | ns   |
| B8b | CLKOUT to BR, BG,<br>VFLS[0–1], VF[0–2], IWP[0–2],<br>FRZ, LWP[0–1], STS valid <sup>4</sup>  | 5.00  | 11.74 | 7.58  | 14.33 | 6.25  | 13.00 | 0.250 | 50.00              | ns   |

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



Table 6. Bus Operation Timing <sup>1</sup> (continued)

| Norma | Oh ava ataviatia                                                                                                        | 50 I  | ИНz   | 66 I  | ИНz   | 1 08  | ИНz   | FEACT | Cap Load           | 11   |
|-------|-------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------------------|------|
| Num   | Characteristic                                                                                                          | Min   | Max   | Min   | Max   | Min   | Max   | FFACT | (default<br>50 pF) | Unit |
| B28c  | CLKOUT falling edge to WE[0-3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1  | 7.00  | 14.00 | 11.00 | 18.00 | 9.00  | 16.00 | 0.375 | 50.00              | ns   |
| B28d  | CLKOUT falling edge to CS<br>negated GPCM write access<br>TRLX = 0,1 CSNT = 1, ACS =<br>10 or ACS = 11, EBDF = 1        | _     | 14.00 | _     | 18.00 | _     | 16.00 | 0.375 | 50.00              | ns   |
| B29   | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, CSNT = 0                                            | 3.00  | _     | 6.00  | _     | 4.00  | _     | 0.250 | 50.00              | ns   |
| B29a  | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, TRLX = 0 CSNT = 1,<br>EBDF = 0                      | 8.00  | _     | 13.00 | _     | 11.00 | _     | 0.500 | 50.00              | ns   |
| B29b  | CS negated to D[0-31],<br>DP[0-3], high-Z GPCM write<br>access, ACS = 00, TRLX = 0 &<br>CSNT = 0                        | 3.00  | _     | 6.00  | _     | 4.00  | _     | 0.250 | 50.00              | ns   |
| B29c  | CS negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, TRLX = 0, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>0 | 8.00  | _     | 13.00 | _     | 11.00 | _     | 0.500 | 50.00              | ns   |
| B29d  | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, TRLX = 1, CSNT = 1,<br>EBDF = 0                     | 28.00 | _     | 43.00 | _     | 36.00 | _     | 1.500 | 50.00              | ns   |
| B29e  | CS negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access, TRLX = 1, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>0 | 28.00 | _     | 43.00 | _     | 36.00 | _     | 1.500 | 50.00              | ns   |
| B29f  | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>EBDF = 1                      | 5.00  | _     | 9.00  | _     | 7.00  | _     | 0.375 | 50.00              | ns   |
| B29g  | CS negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>ACS = 10 or ACS = 11, EBDF =<br>1  | 5.00  | _     | 9.00  | _     | 7.00  | _     | 0.375 | 50.00              | ns   |



Table 6. Bus Operation Timing <sup>1</sup> (continued)

| Nive | Chavastavistis                                                                                                                                                                | 50 I  | ИНz | 66 1  | ИHz | 80 1  | ИНz | FEACT | Cap Load           | Hali |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|-----|-------|-----|-------|--------------------|------|
| Num  | Characteristic                                                                                                                                                                | Min   | Max | Min   | Max | Min   | Max | FFACT | (default<br>50 pF) | Unit |
| B29h | WE[0-3] negated to D[0-31],<br>DP[0-3] high-Z GPCM write<br>access TRLX = 0, CSNT = 1,<br>EBDF = 1                                                                            | 25.00 | _   | 39.00 | _   | 31.00 | _   | 1.375 | 50.00              | ns   |
| B29i | CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF =                                                                     | 25.00 |     | 39.00 |     | 31.00 |     | 1.375 | 50.00              | ns   |
| B30  | CS, WE[0-3] negated to A[6-31] invalid GPCM write access 9                                                                                                                    | 3.00  | _   | 6.00  | _   | 4.00  | _   | 0.250 | 50.00              | ns   |
| B30a | WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, CS negated to A[6-31] invalid GPCM write access TRLX = 0, CSNT =1, ACS = 10 or ACS = 11, EBDF = 0   | 8.00  | _   | 13.00 | _   | 11.00 | _   | 0.500 | 50.00              | ns   |
| B30b | WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A[6-31] Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0  | 28.00 |     | 43.00 | _   | 36.00 | _   | 1.500 | 50.00              | ns   |
| B30c | WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 | 5.00  | ı   | 8.00  | 1   | 6.00  | 1   | 0.375 | 50.00              | ns   |
| B30d | WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1    | 25.00 |     | 39.00 | _   | 31.00 | _   | 1.375 | 50.00              | ns   |



Table 6. Bus Operation Timing <sup>1</sup> (continued)

| NI   | Oh ava ataviatia                                                                                                            | 50 I | MHz   | 66 1  | ИHz   | 80 1  | ИHz   | EEA OT | Cap Load           | 11!4 |
|------|-----------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|--------|--------------------|------|
| Num  | Characteristic                                                                                                              | Min  | Max   | Min   | Max   | Min   | Max   | FFACT  | (default<br>50 pF) | Unit |
| B31  | CLKOUT falling edge to CS valid - as requested by control bit CST4 in the corresponding word in the UPM                     | 1.50 | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | _      | 50.00              | ns   |
| B31a | CLKOUT falling edge to $\overline{\text{CS}}$ valid - as requested by control bit CST1 in the corresponding word in the UPM | 5.00 | 12.00 | 8.00  | 14.00 | 6.00  | 13.00 | 0.250  | 50.00              | ns   |
| B31b | CLKOUT rising edge to CS valid<br>- as requested by control bit<br>CST2 in the corresponding<br>word in the UPM             | 1.50 | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | _      | 50.00              | ns   |
| B31c | CLKOUT rising edge to CS valid - as requested by control bit CST3 in the corresponding word in the UPM                      | 5.00 | 12.00 | 8.00  | 14.00 | 6.00  | 13.00 | 0.250  | 50.00              | ns   |
| B31d | CLKOUT falling edge to CS valid - as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1            | 9.00 | 14.00 | 13.00 | 18.00 | 11.00 | 16.00 | 0.375  | 50.00              | ns   |
| B32  | CLKOUT falling edge to BS valid - as requested by control bit BST4 in the corresponding word in the UPM                     | 1.50 | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | _      | 50.00              | ns   |
| B32a | CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0           | 5.00 | 12.00 | 8.00  | 14.00 | 6.00  | 13.00 | 0.250  | 50.00              | ns   |
| B32b | CLKOUT rising edge to BS valid<br>- as requested by control bit<br>BST2 in the corresponding<br>word in the UPM             | 1.50 | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | _      | 50.00              | ns   |
| B32c | CLKOUT rising edge to BS valid<br>- as requested by control bit<br>BST3 in the corresponding<br>word in the UPM             | 5.00 | 12.00 | 8.00  | 14.00 | 6.00  | 13.00 | 0.250  | 50.00              | ns   |
| B32d | CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1           | 9.00 | 14.00 | 13.00 | 18.00 | 11.00 | 16.00 | 0.375  | 50.00              | ns   |
| B33  | CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM                    | 1.50 | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | _      | 50.00              | ns   |

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



| Table 6. | Bus O | peration | Timing <sup>1</sup> | 1 ( | (continued) |
|----------|-------|----------|---------------------|-----|-------------|
|----------|-------|----------|---------------------|-----|-------------|

| Num | Characteristic                                    | 50 MHz 66 MHz 80 MHz |     | FFACT | Cap Load<br>(default | Unit |     |       |        |      |
|-----|---------------------------------------------------|----------------------|-----|-------|----------------------|------|-----|-------|--------|------|
| Num | Ontaracteristic                                   | Min                  | Max | Min   | Max                  | Min  | Max | IIAOI | 50 pF) | Omit |
| B42 | CLKOUT rising edge to TS valid (hold time)        | 2.00                 | _   | 2.00  | _                    | 2.00 | _   | _     | 50.00  | ns   |
| B43 | AS negation to memory controller signals negation | _                    | TBD | _     | TBD                  | TBD  | _   | _     | 50.00  | ns   |

The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. For frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. AC parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part. The following equations should be used in these calculations.

For a frequency F, the following equations should be applied to each one of the above parameters: For minima:

$$D = \frac{FFACTOR \times 1000}{F} + (D_{50} - 20 \times FFACTOR)$$

For maxima:

$$D = \frac{FFACTOR \times 1000}{F} + \frac{(D_{50} - 20 \times FFACTOR)}{F} + \frac{1 ns(CAP LOAD - 50) / 10}{F}$$

where:

D is the parameter value to the frequency required in ns

F is the operation frequency in MHz

 $D_{50}$  is the parameter value defined for 50 MHz

CAP LOAD is the capacitance load on the signal in question.

FFACTOR is the one defined for each of the parameters in the table.

- <sup>2</sup> Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value.
- <sup>3</sup> If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.
- The timing for BR output is relevant when the MPC850 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter.
- The setup times required for TA, TEA, and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drives them).
- The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC850 is selected to work with the external bus arbiter.
- The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.
- <sup>9</sup> The timing B30 refers to  $\overline{CS}$  when ACS = '00' and to  $\overline{WE[0:3]}$  when CSNT = '0'.
- The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
- <sup>11</sup> The  $\overline{AS}$  signal is considered asynchronous to CLKOUT.

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



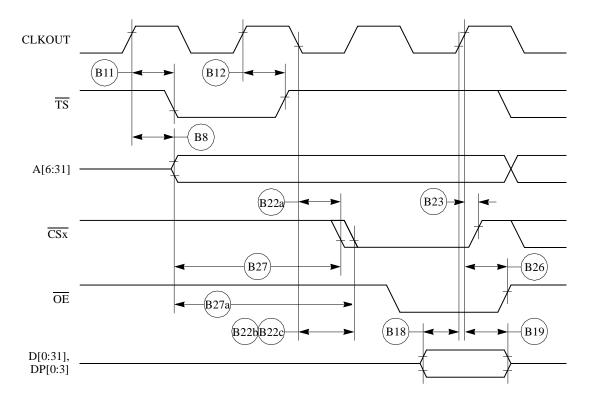



Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)



Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

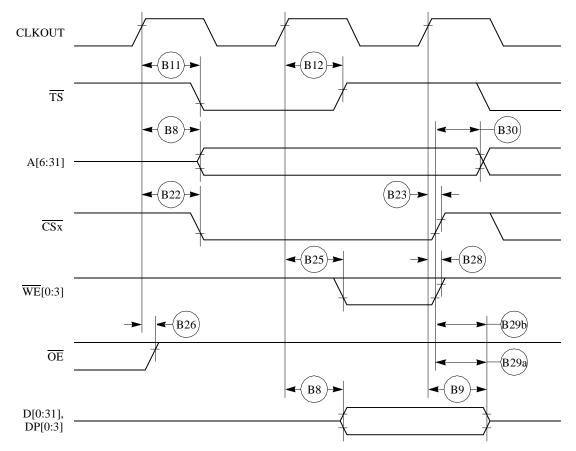



Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)



Table 7 provides interrupt timing for the MPC850.

**Table 7. Interrupt Timing** 

| Num | Characteristic <sup>1</sup>                    | 50 I  | ИНz | 66N   | 1Hz | 80 N  | Unit |     |
|-----|------------------------------------------------|-------|-----|-------|-----|-------|------|-----|
|     | Shalastonesis                                  |       | Max | Min   | Max | Min   |      | Max |
| 139 | IRQx valid to CLKOUT rising edge (set up time) | 6.00  | _   | 6.00  | _   | 6.00  | _    | ns  |
| 140 | IRQx hold time after CLKOUT.                   | 2.00  | _   | 2.00  | _   | 2.00  | _    | ns  |
| 141 | IRQx pulse width low                           | 3.00  | _   | 3.00  | _   | 3.00  | _    | ns  |
| 142 | IRQx pulse width high                          | 3.00  | _   | 3.00  | _   | 3.00  | _    | ns  |
| 143 | IRQx edge-to-edge time                         | 80.00 | _   | 121.0 | _   | 100.0 | _    | ns  |

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

Figure 22 provides the interrupt detection timing for the external level-sensitive lines.

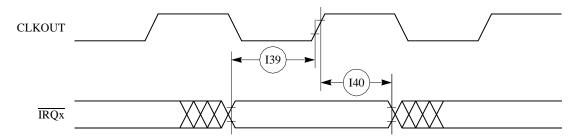



Figure 22. Interrupt Detection Timing for External Level Sensitive Lines

Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.

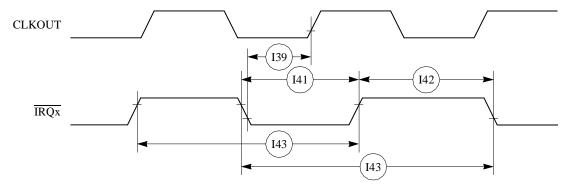



Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines

The timings I41, I42, and I43 are specified to allow the correct function of the  $\overline{IRQ}$  lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support



Figure 24 provides the PCMCIA access cycle timing for the external bus read.

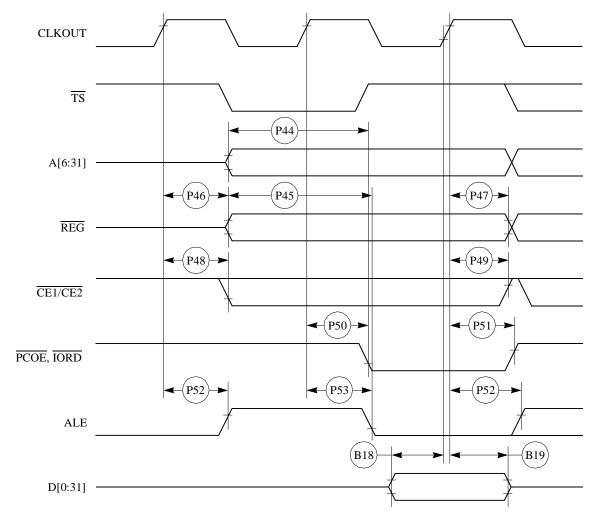



Figure 24. PCMCIA Access Cycles Timing External Bus Read



Table 9 shows the PCMCIA port timing for the MPC850.

**Table 9. PCMCIA Port Timing** 

| Num | Characteristic                           | 50 I  | ИНz   | 66 1  | ИНz   | 80 1  | Unit  |       |
|-----|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Num | Gilai acteristic                         | Min   | Max   | Min   | Max   | Min   | Max   | Oiiit |
| P57 | CLKOUT to OPx valid                      | _     | 19.00 | _     | 19.00 | _     | 19.00 | ns    |
| P58 | HRESET negated to OPx drive <sup>1</sup> | 18.00 | _     | 26.00 | _     | 22.00 | _     | ns    |
| P59 | IP_Xx valid to CLKOUT rising edge        | 5.00  | _     | 5.00  | _     | 5.00  | _     | ns    |
| P60 | CLKOUT rising edge to IP_Xx invalid      | 1.00  | _     | 1.00  | _     | 1.00  | _     | ns    |

OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

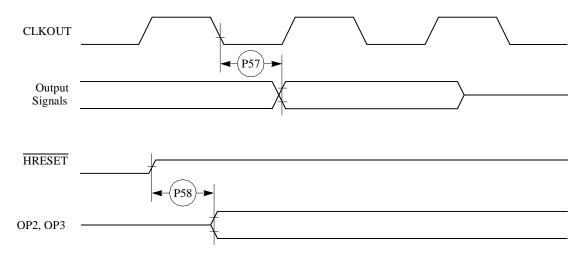



Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

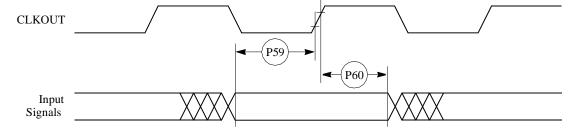



Figure 28. PCMCIA Input Port Timing



Figure 31 shows the reset timing for the data bus configuration.

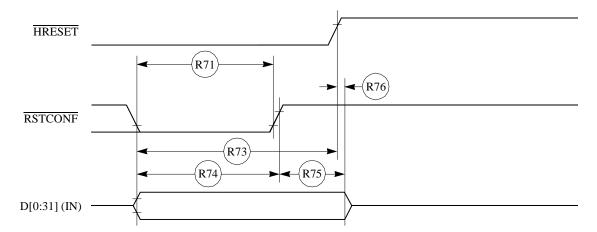



Figure 31. Reset Timing—Configuration from Data Bus

Figure 32 provides the reset timing for the data bus weak drive during configuration.

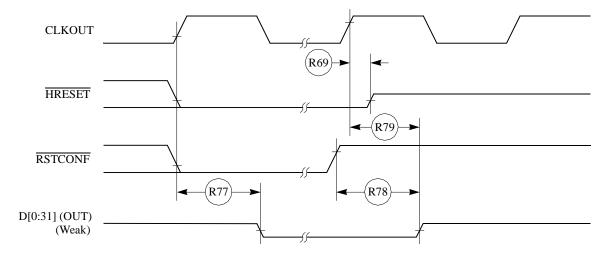



Figure 32. Reset Timing—Data Bus Weak Drive during Configuration

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

### **CPM Electrical Characteristics**

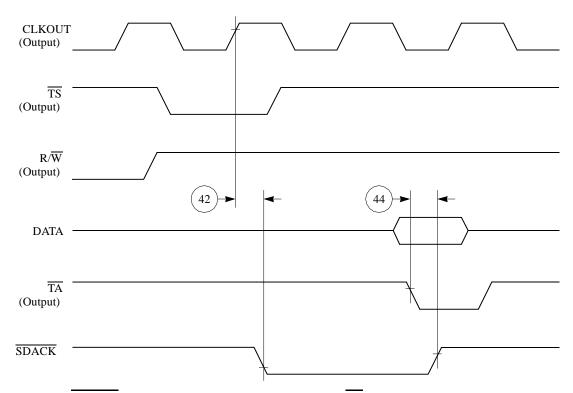



Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

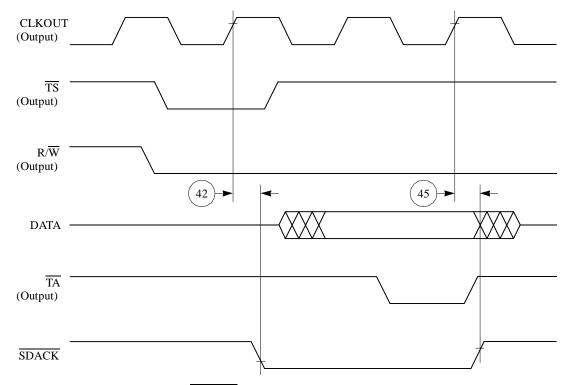



Figure 42. SDACK Timing Diagram—Peripheral Read

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



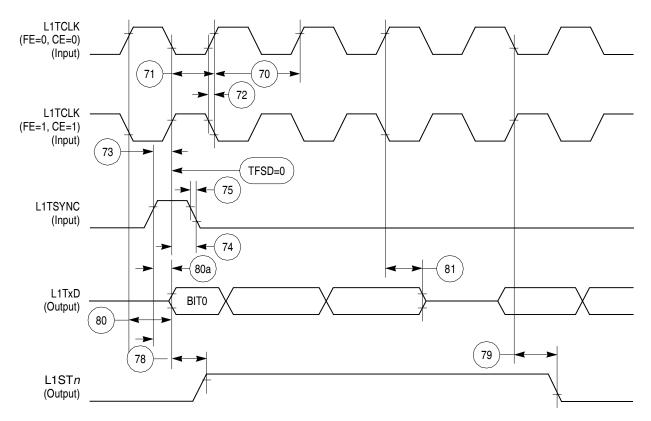



Figure 47. SI Transmit Timing Diagram

**CPM Electrical Characteristics** 

# 8.6 SCC in NMSI Mode Electrical Specifications

Table 18 provides the NMSI external clock timing.

**Table 18. NMSI External Clock Timing** 

| Num | Characteristic                                                        | All Frequencie | es    | Unit |
|-----|-----------------------------------------------------------------------|----------------|-------|------|
| Num | Characteristic                                                        | Min            | Max   | Unit |
| 100 | RCLKx and TCLKx frequency $^1$ (x = 2, 3 for all specs in this table) | 1/SYNCCLK      | _     | ns   |
| 101 | RCLKx and TCLKx width low                                             | 1/SYNCCLK +5   | _     | ns   |
| 102 | RCLKx and TCLKx rise/fall time                                        | _              | 15.00 | ns   |
| 103 | TXDx active delay (from TCLKx falling edge)                           | 0.00           | 50.00 | ns   |
| 104 | RTSx active/inactive delay (from TCLKx falling edge)                  | 0.00           | 50.00 | ns   |
| 105 | CTSx setup time to TCLKx rising edge                                  | 5.00           | _     | ns   |
| 106 | RXDx setup time to RCLKx rising edge                                  | 5.00           | _     | ns   |
| 107 | RXDx hold time from RCLKx rising edge <sup>2</sup>                    | 5.00           | _     | ns   |
| 108 | CDx setup time to RCLKx rising edge                                   | 5.00           | _     | ns   |

<sup>&</sup>lt;sup>1</sup> The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.

Table 19 provides the NMSI internal clock timing.

**Table 19. NMSI Internal Clock Timing** 

| Nive | Characteristic                                                        | All Fr | equencies | Unit |
|------|-----------------------------------------------------------------------|--------|-----------|------|
| Num  | Characteristic                                                        | Min    | Max       | Unit |
| 100  | RCLKx and TCLKx frequency $^1$ (x = 2, 3 for all specs in this table) | 0.00   | SYNCCLK/3 | MHz  |
| 102  | RCLKx and TCLKx rise/fall time                                        | _      | _         | ns   |
| 103  | TXDx active delay (from TCLKx falling edge)                           | 0.00   | 30.00     | ns   |
| 104  | RTSx active/inactive delay (from TCLKx falling edge)                  | 0.00   | 30.00     | ns   |
| 105  | CTSx setup time to TCLKx rising edge                                  | 40.00  | _         | ns   |
| 106  | RXDx setup time to RCLKx rising edge                                  | 40.00  | _         | ns   |
| 107  | RXDx hold time from RCLKx rising edge <sup>2</sup>                    | 0.00   | _         | ns   |
| 108  | CDx setup time to RCLKx rising edge                                   | 40.00  | _         | ns   |

The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.

<sup>&</sup>lt;sup>2</sup> Also applies to  $\overline{\text{CD}}$  and  $\overline{\text{CTS}}$  hold time when they are used as an external sync signal.

<sup>&</sup>lt;sup>2</sup> Also applies to  $\overline{\text{CD}}$  and  $\overline{\text{CTS}}$  hold time when they are used as an external sync signals.



# **CPM Electrical Characteristics**

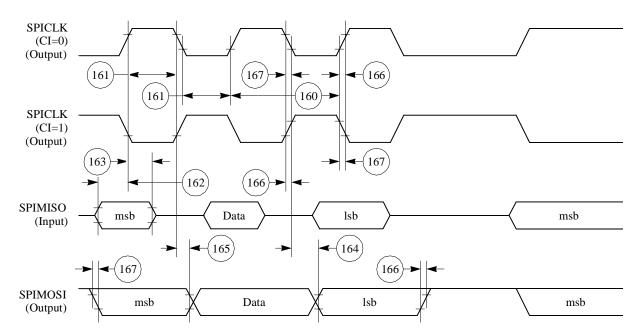



Figure 57. SPI Master (CP = 0) Timing Diagram

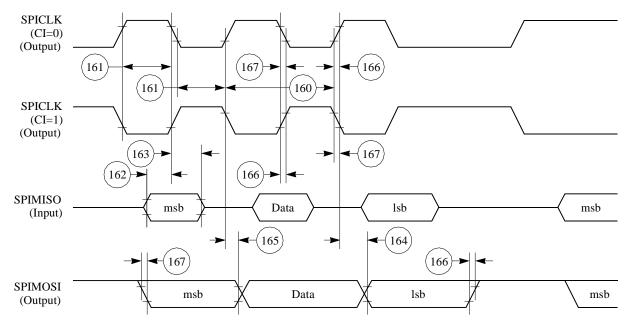



Figure 58. SPI Master (CP = 1) Timing Diagram



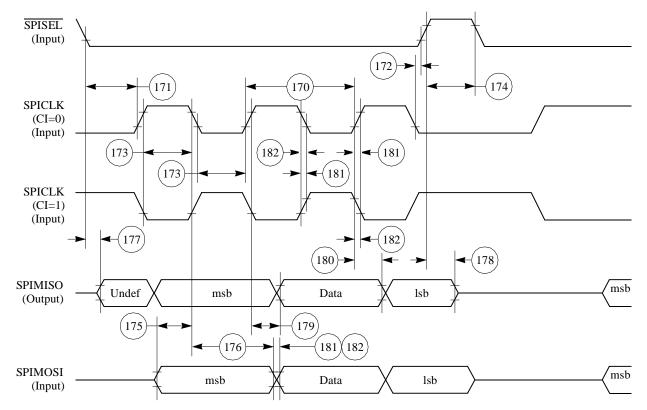



Figure 60. SPI Slave (CP = 1) Timing Diagram

# 8.11 I<sup>2</sup>C AC Electrical Specifications

Table 24 provides the  $I^2C$  (SCL < 100 KHz) timings.

Table 24. I<sup>2</sup>C Timing (SCL < 100 KHz)

| Num | Characteristic                            | All Frequencies |        | Unit |
|-----|-------------------------------------------|-----------------|--------|------|
|     |                                           | Min             | Max    | Onit |
| 200 | SCL clock frequency (slave)               | 0.00            | 100.00 | KHz  |
| 200 | SCL clock frequency (master) <sup>1</sup> | 1.50            | 100.00 | KHz  |
| 202 | Bus free time between transmissions       | 4.70            | _      | μs   |
| 203 | Low period of SCL                         | 4.70            | _      | μs   |
| 204 | High period of SCL                        | 4.00            |        | μs   |
| 205 | Start condition setup time                | 4.70            | _      | μs   |
| 206 | Start condition hold time                 | 4.00            | _      | μs   |
| 207 | Data hold time                            | 0.00            | _      | μs   |
| 208 | Data setup time                           | 250.00          | _      | ns   |
| 209 | SDL/SCL rise time                         | _               | 1.00   | μs   |

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2



### How to Reach Us:

### Home Page:

www.freescale.com

#### email

support@freescale.com

### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

### For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Document Number: MPC850EC

Rev. 2 07/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005.

