

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850srcvr66bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP,

2 Features

Figure 1 is a block diagram of the MPC850, showing its major components and the relationships among those components:

Figure 1. MPC850 Microprocessor Block Diagram

The following list summarizes the main features of the MPC850:

- Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - Performs branch folding and branch prediction with conditional prefetch, but without conditional execution

Num	Chavastavistis	50 I	MHz	66 I	MHz	80 I	80 MHz		Cap Load	llmit
NUM	Characteristic	Min	Мах	Min	Max	Min	Мах	FFACI	50 pF)	Unit
B28c	CLKOUT falling edge to WE[0-3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	_	14.00	_	18.00		16.00	0.375	50.00	ns
B29	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access, CSNT = 0	3.00		6.00	—	4.00		0.250	50.00	ns
B29a	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0	8.00	_	13.00	_	11.00		0.500	50.00	ns
B29b	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3], high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29c	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	8.00	_	13.00		11.00		0.500	50.00	ns
B29d	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	28.00	_	43.00	_	36.00		1.500	50.00	ns
B29e	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00	_	43.00	_	36.00		1.500	50.00	ns
B29f	WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	5.00	_	9.00		7.00		0.375	50.00	ns
B29g	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00	_	9.00		7.00		0.375	50.00	ns

Table 6.	Bus O	peration	Timing	1	(continued)
----------	-------	----------	--------	---	-------------

Num	Charactariatia	50 I	MHz	66	ИНz	80	80 MHz		Cap Load	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACI	50 pF)	Unit
B29h	$\overline{WE[0-3]}$ negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns
B29i	$\overline{\text{CS}}$ negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B30	CS, WE[0–3] negated to A[6–31] invalid GPCM write access ⁹	3.00		6.00		4.00		0.250	50.00	ns
B30a	$\label{eq:weighted} \hline \hline WE[0-3] \mbox{ negated to } A[6-31] \mbox{ invalid } \\ GPCM \mbox{ write access, } TRLX = 0, \\ CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} CSNT = 1, \end{cmathcase} \\ A[6-31] \mbox{ invalid } GPCM \mbox{ write } \\ access \mbox{ TRLX = 0, } CSNT = 1, \\ ACS = 10 \mbox{ or } ACS = 11, \mbox{ EBDF = } \\ 0 \\ \hline \hline \end{array}$	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	$\label{eq:WE0-3} \hline WE[0-3] \ negated to \ A[6-31] \ invalid \ GPCM write access, TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \ A[6-31] \ Invalid \ GPCM write \ access \ TRLX = 1, \ CSNT = 1, \ ACS = 10 \ or \ ACS = 11, \ EBDF = 0 \ O$	28.00		43.00		36.00		1.500	50.00	ns
B30c	$\label{eq:WE[0-3]} \begin{array}{l} \mbox{WE[0-3]} \ \mbox{negated to } A[6-31] \\ \mbox{invalid} \\ \mbox{GPCM write access, TRLX = 0,} \\ \mbox{CSNT = 1. CS negated to} \\ \mbox{A[6-31] invalid GPCM write} \\ \mbox{access, TRLX = 0, CSNT = 1,} \\ \mbox{ACS = 10 or ACS = 11, EBDF =} \\ \mbox{1} \end{array}$	5.00		8.00	_	6.00	_	0.375	50.00	ns
B30d	WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00		39.00		31.00		1.375	50.00	ns

Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.

Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller

Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.

Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)

Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.

Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

Figure 16 provides the timing for the external bus controlled by the UPM.

Figure 16. External Bus Timing (UPM Controlled Signals)

Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 21 provides the timing for the asynchronous external master control signals negation.

Figure 21. Asynchronous External Master—Control Signals Negation Timing

Table 7 provides interrupt timing for the MPC850.

Num	Characteristic ¹	50 MHz		66MHz		80 N	Unit	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		6.00		6.00		ns
140	IRQx hold time after CLKOUT.	2.00	_	2.00	_	2.00	_	ns
141	IRQx pulse width low	3.00	_	3.00	_	3.00	_	ns
142	IRQx pulse width high	3.00	_	3.00	_	3.00	_	ns
143	IRQx edge-to-edge time	80.00	_	121.0	_	100.0	_	ns

 Table 7. Interrupt Timing

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support

Figure 22 provides the interrupt detection timing for the external level-sensitive lines.

Figure 22. Interrupt Detection Timing for External Level Sensitive Lines

Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines

Table 8 shows the PCMCIA timing for the MPC850.

Table 8. PCMCIA Timing

Num	m Characteristic		/IHz	66N	/IHz	80 I	MHz	FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FREIGH	Onit
P44	A[6–31], REG valid to PCMCIA strobe asserted. ¹	13.00		21.00	—	17.00		0.750	ns
P45	A[6–31], REG valid to ALE negation. ¹	18.00	_	28.00	—	23.00	_	1.000	ns
P46	CLKOUT to REG valid	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P47	CLKOUT to REG Invalid.	6.00	_	9.00	—	7.00	_	0.250	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated.	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time.	_	11.00	_	11.00	_	11.00	—	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time.	2.00	11.00	2.00	11.00	2.00	11.00	—	ns
P52	CLKOUT to ALE assert time	5.00	13.00	8.00	16.00	6.00	14.00	0.250	ns
P53	CLKOUT to ALE negate time	_	13.00		16.00	_	14.00	0.250	ns
P54	PCWE, IOWR negated to D[0–31] invalid. ¹	3.00	_	6.00	_	4.00	_	0.250	ns
P55	WAIT_B valid to CLKOUT rising edge.1	8.00	_	8.00	_	8.00	_	—	ns
P56	CLKOUT rising edge to WAIT_B invalid. ¹	2.00	—	2.00	—	2.00	—	_	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAIT_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC850 PowerQUICC User's Manual.

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Characteristic		50 MHz		66 MHz		80 MHz		
Num		Min	Max	Min	Max	Min	Max	Unit	
P57	CLKOUT to OPx valid	_	19.00	—	19.00	—	19.00	ns	
P58	HRESET negated to OPx drive ¹	18.00	—	26.00	—	22.00	—	ns	
P59	IP_Xx valid to CLKOUT rising edge	5.00	—	5.00	—	5.00	—	ns	
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00		ns	

¹ OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

Figure 28. PCMCIA Input Port Timing

Figure 31 shows the reset timing for the data bus configuration.

Figure 31. Reset Timing—Configuration from Data Bus

Figure 32 provides the reset timing for the data bus weak drive during configuration.

Figure 32. Reset Timing—Data Bus Weak Drive during Configuration

IEEE 1149.1 Electrical Specifications

Figure 34. JTAG Test Clock Input Timing

Figure 35. JTAG Test Access Port Timing Diagram

Figure 36. JTAG TRST Timing Diagram

Figure 37. Boundary Scan (JTAG) Timing Diagram

8 **CPM Electrical Characteristics**

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

Table 13. Parallel I/O Timing

Num	Characteristic	All Freque	ncies	Unit
Num	Unardetensite	Min	Max	onit
29	Data-in setup time to clock high	15	—	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

1. This delay is equal to an integer number of character-length clocks.

Figure 56. SMC Transparent Timing Diagram

8.9 SPI Master AC Electrical Specifications

Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58.

Num	Num Characteristic		iencies	Unit
Num	Characteristic	Min Max		Unit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50.00	_	ns
163	Master data hold time (inputs)	0.00	_	ns
164	Master data valid (after SCK edge)	—	20.00	ns
165	Master data hold time (outputs)	0.00	_	ns
166	Rise time output	—	15.00	ns
167	Fall time output	—	15.00	ns

Table 22. SPI Master Timing

8.10 SPI Slave AC Electrical Specifications

Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60.

Table 23. SPI Slave Timing

Num	Characteristic	All Frequ	uencies	Unit
Nulli	Characteristic	Min	Max	Onit
170	Slave cycle time	2	—	t _{cyc}
171	Slave enable lead time	15.00	_	ns
172	Slave enable lag time	15.00	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20.00	—	ns
176	Slave data hold time (inputs)	20.00	—	ns
177	Slave access time	_	50.00	ns
178	Slave SPI MISO disable time	_	50.00	ns
179	Slave data valid (after SPICLK edge)	_	50.00	ns
180	Slave data hold time (outputs)	0.00	_	ns
181	Rise time (input)	_	15.00	ns
182	Fall time (input)	_	15.00	ns

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26. MPC850 Family Derivativ

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

¹ Serial Communication Controller (SCC)

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Table 27 identifies the packages and operating frequencies available for the MPC850.

 Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

Mechanical Data and Ordering Information

customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document.

Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface.

Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)-non-JEDEC Standard