E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850srvr66bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- QUICC multichannel controller (QMC) microcode features
 - Up to 64 independent communication channels on a single SCC
 - Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
 - Supports either transparent or HDLC protocols for each channel
 - Independent TxBDs/Rx and event/interrupt reporting for each channel
- One universal serial bus controller (USB)
 - Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
- Two serial management controllers (SMCs)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division-multiplexed (TDM) channel
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C[®] (interprocessor-integrated circuit) port
 - Supports master and slave modes
 - Supports multimaster environment
- Time slot assigner
 - Allows SCCs and SMCs to run in multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame syncs, clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Low-power support
 - Full high: all units fully powered at high clock frequency
 - Full low: all units fully powered at low clock frequency
 - Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby
 - Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up
 - Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer
 - Low-power stop: to provide lower power dissipation

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ _{JC}	8	°C/W

¹ For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

² Assumes natural convection and a single layer board (no thermal vias).

³ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

 $\begin{aligned} T_J &= T_A + (P_D \bullet \theta_{JA}) \\ P_D &= (V_{DD} \bullet I_{DD}) + P_{I/O} \\ \text{where:} \end{aligned}$

 $P_{I/O}$ is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions	40	TBD	590	mW
	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

² Maximum power dissipation is measured at 3.65 V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	V
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

NP

Table 6.	Bus	Operation	Timing	1
----------	-----	-----------	--------	---

Num	Chavastavistis	50 I	MHz	66 I	MHz	80 1	80 MHz		Cap Load	l lm it
NUM	Characteristic	Min	Мах	Min	Max	Min	Мах	FFACI	50 pF)	Unit
B1	CLKOUT period	20	_	30.30	—	25	—	—		ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	—	50.00	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	_	50.00	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) 2	-0.60	0.60	-0.60	0.60	-0.60	0.60	—	50.00	ns
B1d	CLKOUT phase jitter ²	-2.00	2.00	-2.00	2.00	-2.00	2.00	—	50.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ²	—	0.50	—	0.50	_	0.50	_	50.00	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ²	—	2.00	—	2.00	_	2.00	—	50.00	%
B1g	CLKOUT frequency jitter (MF > 500) ²	_	3.00	—	3.00	_	3.00	_	50.00	%
B1h	Frequency jitter on EXTCLK ³	—	0.50	—	0.50	—	0.50	—	50.00	%
B2	CLKOUT pulse width low	8.00	_	12.12	—	10.00	_	—	50.00	ns
B3	CLKOUT width high	8.00	_	12.12	—	10.00	_	—	50.00	ns
B4	CLKOUT rise time	_	4.00	_	4.00	—	4.00	—	50.00	ns
B5	CLKOUT fall time	—	4.00	_	4.00	—	4.00	—	50.00	ns
B7	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] invalid	5.00		7.58	_	6.25	_	0.250	50.00	ns
B7a	CLKOUT to TSIZ[0–1], REG, RSV, AT[0–3], BDIP, PTR invalid	5.00		7.58	—	6.25	—	0.250	50.00	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid ⁴	5.00	_	7.58	—	6.25	—	0.250	50.00	ns
B8	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8a	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3] BDIP, PTR valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8b	CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid ⁴	5.00	11.74	7.58	14.33	6.25	13.00	0.250	50.00	ns

Num	Characteristic	50 MHz		66 MHz		80 MHz		FFACT	Cap Load	Unit
Num	Characteristic	Min	Max	Min	Мах	Min	Мах		50 pF)	onic
B42	CLKOUT rising edge to \overline{TS} valid (hold time)	2.00	—	2.00	—	2.00	—	—	50.00	ns
B43	AS negation to memory controller signals negation	—	TBD	—	TBD	TBD	—	—	50.00	ns

 Table 6. Bus Operation Timing ¹ (continued)

The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. For frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. AC parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part. The following equations should be used in these calculations.

For a frequency F, the following equations should be applied to each one of the above parameters: For minima:

$$D = \frac{FFACTOR \times 1000}{F} + (D_{50} - 20 \times FFACTOR)$$

For maxima:

$$D = \frac{FFACTOR \times 1000}{F} + \frac{(D_{50} - 20 \times FFACTOR)}{F} + \frac{1ns(CAP \text{ LOAD} - 50) / 10}{F}$$

where:

D is the parameter value to the frequency required in ns

F is the operation frequency in MHz

D₅₀ is the parameter value defined for 50 MHz

CAP LOAD is the capacitance load on the signal in question.

FFACTOR is the one defined for each of the parameters in the table.

- ² Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value.
- ³ If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.
- ⁴ The timing for BR output is relevant when the MPC850 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter.
- ⁵ The setup times required for TA, TEA, and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drives them).
- ⁶ The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC850 is selected to work with the external bus arbiter.
- ⁷ The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁸ The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.
- ⁹ The timing B30 refers to \overline{CS} when ACS = '00' and to $\overline{WE[0:3]}$ when CSNT = '0'.
- ¹⁰ The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
- ¹¹ The $\overline{\text{AS}}$ signal is considered asynchronous to CLKOUT.

Figure 2 is the control timing diagram.

Figure 3 provides the timing for the external clock.

Figure 3. External Clock Timing

Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Characteristic	50 MHz		66 MHz		80	Unit	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx valid	_	19.00	—	19.00	—	19.00	ns
P58	HRESET negated to OPx drive ¹	18.00	—	26.00	—	22.00	—	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00	—	5.00	—	5.00	—	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00		ns

¹ OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

Figure 28. PCMCIA Input Port Timing

Bus Signal Timing

Table 10 shows the debug port timing for the MPC850.

Num	Characteristic	50 I	MHz	66 I	MHz	80	Unit	
	Characteristic	Min	Max	Min	Max	Min	Max	Unit
D61	DSCK cycle time	60.00	—	91.00	—	75.00	—	ns
D62	DSCK clock pulse width	25.00	—	38.00	—	31.00	—	ns
D63	DSCK rise and fall times	0.00	3.00	0.00	3.00	0.00	3.00	ns
D64	DSDI input data setup time	8.00	—	8.00	—	8.00	—	ns
D65	DSDI data hold time	5.00	—	5.00	—	5.00	—	ns
D66	DSCK low to DSDO data valid	0.00	15.00	0.00	15.00	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	0.00	2.00	0.00	2.00	ns

Table 10. Debug Port Timing

Figure 29 provides the input timing for the debug port clock.

Figure 29. Debug Port Clock Input Timing

Figure 30 provides the timing for the debug port.

Figure 30. Debug Port Timings

Table 11 shows the reset timing for the MPC850.

Table 11. Reset Timing

Num	Characteristic	50 I	MHz	66MHz		80 MHz		FEACTOR	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	TRETOR	Onne
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	_	20.00	—	ns
R71	RSTCONF pulse width	340.00	—	515.00	_	425.00	_	17.000	ns
R72		_	—	_	_	_	_	—	
R73	Configuration data to HRESET rising edge set up time	350.00	—	505.00	—	425.00	—	15.000	ns
R74	Configuration data to RSTCONF rising edge set up time	350.00	—	350.00	—	350.00	—	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00	-	25.00	-	25.00	—	ns
R78	RSTCONF negated to data out high impedance.	—	25.00	—	25.00	—	25.00	—	ns
R79	CLKOUT of last rising edge before chip tristates HRESET to data out high impedance.	_	25.00	_	25.00	_	25.00	_	ns
R80	DSDI, DSCK set up	60.00	_	90.00	_	75.00	_	3.000	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	160.00	—	242.00	—	200.00	—	8.000	ns

IEEE 1149.1 Electrical Specifications

Figure 34. JTAG Test Clock Input Timing

Figure 35. JTAG Test Access Port Timing Diagram

Figure 36. JTAG TRST Timing Diagram

Figure 37. Boundary Scan (JTAG) Timing Diagram

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

Table 13. Parallel I/O Timing

Num	Characteristic	All Freque	Unit	
Num	Unardetensite	Min	Max	onit
29	Data-in setup time to clock high	15	—	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num	Characteristic		All Frequencies	
Num			Мах	onit
40	DREQ setup time to clock high	7.00	_	ns
41	DREQ hold time from clock high	3.00	_	ns
42	SDACK assertion delay from clock high	_	12.00	ns
43	SDACK negation delay from clock low	_	12.00	ns
44	SDACK negation delay from TA low	_	20.00	ns
45	SDACK negation delay from clock high	_	15.00	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7.00	_	ns

Table 14. IDMA Controller Timing

Figure 39. IDMA External Requests Timing Diagram

Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Characteristic	Characteristic All Frequencies Min Max		Unit	
Num	Undractensite				
50	BRGO rise and fall time	_	10.00	ns	
51	BRGO duty cycle	40.00	60.00	%	
52	BRGO cycle	40.00	_	ns	

Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Num	Characteristic	All Frequ	Unit	
Num		Min	Мах	Unit
61	TIN/TGATE rise and fall time	10.00	—	ns
62	TIN/TGATE low time	1.00	_	clk
63	TIN/TGATE high time	2.00	—	clk
64	TIN/TGATE cycle time	3.00	—	clk
65	CLKO high to TOUT valid	3.00	25.00	ns

Table 16. Timer Timing

Figure 44. CPM General-Purpose Timers Timing Diagram

8.5 Serial Interface AC Electrical Specifications

Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.

Num	Characteristic	All Free	Unit			
Nulli	Cildracteristic	Min Max		Min Max		Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) $^{1, 2}$	—	SYNCCLK/2. 5	MHz		
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	—	ns		
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns		
72	L1TXD, L1ST <i>n</i> , L1RQ, L1xCLKO rise/fall time	_	15.00	ns		
73	L1RSYNC, L1TSYNC valid to L1xCLK edge Edge (SYNC setup time)	20.00	_	ns		
74	L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns		
75	L1RSYNC, L1TSYNC rise/fall time	_	15.00	ns		
76	L1RXD valid to L1xCLK edge (L1RXD setup time)	17.00	—	ns		
77	L1xCLK edge to L1RXD invalid (L1RXD hold time)	13.00	—	ns		
78	L1xCLK edge to L1ST <i>n</i> valid ⁴	10.00	45.00	ns		
78A	L1SYNC valid to L1ST <i>n</i> valid	10.00	45.00	ns		
79	L1xCLK edge to L1ST <i>n</i> invalid	10.00	45.00	ns		
80	L1xCLK edge to L1TXD valid	10.00	55.00	ns		
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns		
81	L1xCLK edge to L1TXD high impedance	0.00	42.00	ns		

Table 17. SI Timing

Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)

8.6 SCC in NMSI Mode Electrical Specifications

Table 18 provides the NMSI external clock timing.

	Table 18.	NMSI	External	Clock	Timing
--	-----------	------	----------	-------	--------

Num	Characteristic	All Frequencie	Unit	
Num			Max	Onit
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	1/SYNCCLK	—	ns
101	RCLKx and TCLKx width low	1/SYNCCLK +5	—	ns
102	RCLKx and TCLKx rise/fall time	—	15.00	ns
103	TXDx active delay (from TCLKx falling edge)	0.00	50.00	ns
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	50.00	ns
105	CTSx setup time to TCLKx rising edge	5.00	—	ns
106	RXDx setup time to RCLKx rising edge	5.00	—	ns
107	RXDx hold time from RCLKx rising edge ²	5.00	—	ns
108	CDx setup time to RCLKx rising edge	5.00	—	ns

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 19 provides the NMSI internal clock timing.

Table 19. NMSI Internal Clock Timing

Num	Characteristic	All Fr	Unit	
Nulli		Min	Мах	onn
100	RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table)	0.00	SYNCCLK/3	MHz
102	RCLKx and TCLKx rise/fall time	_	—	ns
103	TXDx active delay (from TCLKx falling edge)	0.00	30.00	ns
104	RTSx active/inactive delay (from TCLKx falling edge)	0.00	30.00	ns
105	CTSx setup time to TCLKx rising edge	40.00	—	ns
106	RXDx setup time to RCLKx rising edge	40.00	—	ns
107	RXDx hold time from RCLKx rising edge ²	0.00	—	ns
108	CDx setup time to RCLKx rising edge	40.00		ns

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

CPM Electrical Characteristics

Figure 50 through Figure 52 show the NMSI timings.

Num	Characteristic		All Frequencies	
	Gharacteristic	Min	Max	Unit
134	TENA inactive delay (from TCLKx rising edge)	10.00	50.00	ns
138	CLKOUT low to SDACK asserted ²	—	20.00	ns
139	CLKOUT low to SDACK negated ²	—	20.00	ns

Table 20. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory.

Figure 53. Ethernet Collision Timing Diagram

Figure 54. Ethernet Receive Timing Diagram