

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850srzt66bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Gate mode can enable/disable counting
- Interrupt can be masked on reference match and event capture

Interrupts

- Eight external interrupt request (IRQ) lines
- Twelve port pins with interrupt capability
- Fifteen internal interrupt sources
- Programmable priority among SCCs and USB
- Programmable highest-priority request
- Single socket PCMCIA-ATA interface
 - Master (socket) interface, release 2.1 compliant
 - Single PCMCIA socket
 - Supports eight memory or I/O windows
- Communications processor module (CPM)
 - 32-bit, Harvard architecture, scalar RISC communications processor (CP)
 - Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission
 after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD
 closes the receive buffer descriptor)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8 Kbytes of dual-port RAM
 - Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints
 - Three parallel I/O registers with open-drain capability
- Four independent baud-rate generators (BRGs)
 - Can be connected to any SCC, SMC, or USB
 - Allow changes during operation
 - Autobaud support option
- Two SCCs (serial communications controllers)
 - Ethernet/IEEE 802.3, supporting full 10-Mbps operation
 - HDLC/SDLCTM (all channels supported at 2 Mbps)
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk[®]
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC))

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6. Bus Operation Timing ¹

N	Oh ava atawiatia	50 I	ИНz	66 1	ИНz	1 08	ИНz	FEAGE	Cap Load	11!4
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B1	CLKOUT period	20	_	30.30	_	25	_	_	_	ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	_	50.00	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	_	50.00	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) ²	-0.60	0.60	-0.60	0.60	-0.60	0.60	_	50.00	ns
B1d	CLKOUT phase jitter ²	-2.00	2.00	-2.00	2.00	-2.00	2.00	_	50.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ²	_	0.50	_	0.50	_	0.50	_	50.00	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ²	_	2.00	_	2.00	_	2.00	_	50.00	%
B1g	CLKOUT frequency jitter (MF > 500) ²	_	3.00	_	3.00	_	3.00	_	50.00	%
B1h	Frequency jitter on EXTCLK ³	_	0.50	_	0.50	_	0.50	_	50.00	%
B2	CLKOUT pulse width low	8.00	_	12.12	_	10.00	_	_	50.00	ns
В3	CLKOUT width high	8.00	_	12.12	_	10.00	_	_	50.00	ns
B4	CLKOUT rise time	_	4.00	_	4.00	_	4.00	_	50.00	ns
B5	CLKOUT fall time	_	4.00	_	4.00	_	4.00	_	50.00	ns
В7	CLKOUT to A[6-31], RD/WR, BURST, D[0-31], DP[0-3] invalid	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
В7а	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3], BDIP, PTR invalid	5.00	_	7.58		6.25	_	0.250	50.00	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid ⁴	5.00	_	7.58	_	6.25	_	0.250	50.00	ns
B8	CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8a	CLKOUT to TSIZ[0-1], REG, RSV, AT[0-3] BDIP, PTR valid	5.00	11.75	7.58	14.33	6.25	13.00	0.250	50.00	ns
B8b	CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid ⁴	5.00	11.74	7.58	14.33	6.25	13.00	0.250	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6. Bus Operation Timing ¹ (continued)

Num	Chavastavistis	50 I	ИНz	66 I	ИНz	80 1	ИНz	FEACT	Cap Load	l lmit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B28c	CLKOUT falling edge to WE[0-3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	7.00	14.00	11.00	18.00	9.00	16.00	0.375	50.00	ns
B28d	CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	_	14.00	_	18.00	_	16.00	0.375	50.00	ns
B29	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29a	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B29b	CS negated to D[0-31], DP[0-3], high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B29c	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B29d	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B29e	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00	_	43.00	_	36.00	_	1.500	50.00	ns
B29f	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	5.00	_	9.00	_	7.00	_	0.375	50.00	ns
B29g	CS negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00	_	9.00	_	7.00	_	0.375	50.00	ns

Table 6. Bus Operation Timing ¹ (continued)

Nive	Chavastavistis	50 I	ИНz	66 1	ИHz	80 1	ИНz	FEACT	Cap Load	Hali
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B29h	WE[0-3] negated to D[0-31], DP[0-3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1	25.00	_	39.00	_	31.00	_	1.375	50.00	ns
B29i	CS negated to D[0-31], DP[0-3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF =	25.00		39.00		31.00		1.375	50.00	ns
B30	CS, WE[0-3] negated to A[6-31] invalid GPCM write access 9	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B30a	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, CS negated to A[6-31] invalid GPCM write access TRLX = 0, CSNT =1, ACS = 10 or ACS = 11, EBDF = 0	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B30b	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A[6-31] Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0	28.00		43.00	_	36.00	_	1.500	50.00	ns
B30c	WE[0-3] negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A[6-31] invalid GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	5.00	ı	8.00	1	6.00	1	0.375	50.00	ns
B30d	WE[0-3] negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6-31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1	25.00		39.00	_	31.00	_	1.375	50.00	ns

Table 6. Bus Operation Timing ¹ (continued)

NI	Oh ava ataviatia	50 I	MHz	66 1	ИHz	80 1	ИHz	EEA OT	Cap Load	11!4
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B31	CLKOUT falling edge to CS valid - as requested by control bit CST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B31a	CLKOUT falling edge to $\overline{\text{CS}}$ valid - as requested by control bit CST1 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31b	CLKOUT rising edge to CS valid - as requested by control bit CST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	_	50.00	ns
B31c	CLKOUT rising edge to CS valid - as requested by control bit CST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B31d	CLKOUT falling edge to CS valid - as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B32	CLKOUT falling edge to BS valid - as requested by control bit BST4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns
B32a	CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32b	CLKOUT rising edge to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	1.50	8.00	1.50	8.00	1.50	8.00	_	50.00	ns
B32c	CLKOUT rising edge to BS valid - as requested by control bit BST3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B32d	CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1	9.00	14.00	13.00	18.00	11.00	16.00	0.375	50.00	ns
B33	CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	1.50	6.00	1.50	6.00	1.50	6.00	_	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 6. Bus Operation Timing ¹ (continued)

Nivee	Characteristic	50 I	ИНz	66 N	ИHz	80 1	MHz	EEAOT	Cap Load	Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by CST2 in the corresponding word in UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B35	A[6–31] to CS valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to \overline{BS} valid - as requested by BST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	_	6.00	_	6.00	_	_	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	_	1.00	_	1.00	_	_	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	_	50.00	ns
B40	A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00	_	7.00	_	7.00	_	_	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	_	7.00	_	_	50.00	ns

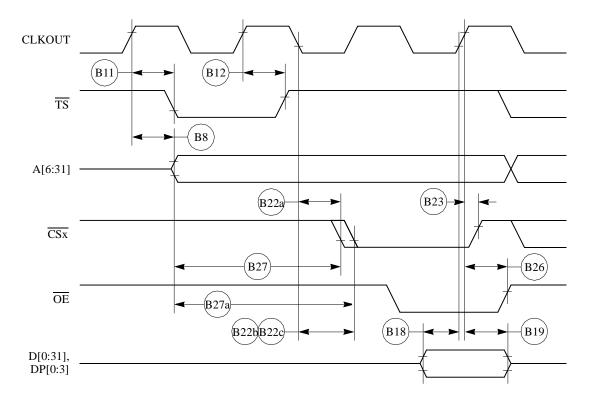


Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.

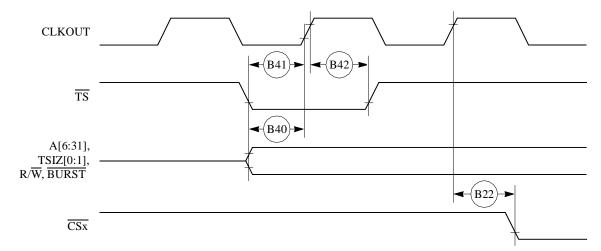


Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.

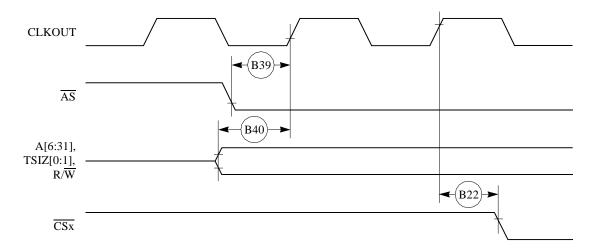


Figure 20. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)

Figure 21 provides the timing for the asynchronous external master control signals negation.

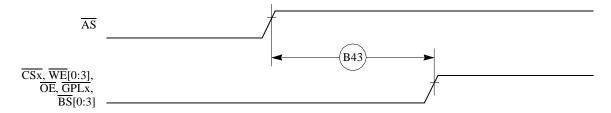


Figure 21. Asynchronous External Master—Control Signals Negation Timing

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Table 9 shows the PCMCIA port timing for the MPC850.

Table 9. PCMCIA Port Timing

Num	Characteristic	50 MHz		66 MHz		80 MHz		Unit
Num	Gilai acteristic	Min	Max	Min	Max	Min	Max	Oiiit
P57	CLKOUT to OPx valid	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹	18.00	_	26.00	_	22.00	_	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00	_	ns

OP2 and OP3 only.

Figure 27 provides the PCMCIA output port timing for the MPC850.

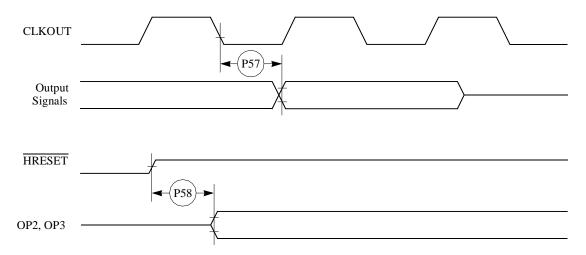


Figure 27. PCMCIA Output Port Timing

Figure 28 provides the PCMCIA output port timing for the MPC850.

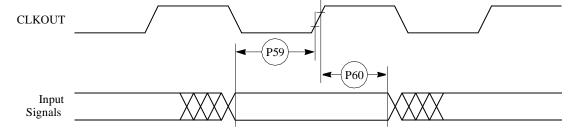


Figure 28. PCMCIA Input Port Timing

Figure 31 shows the reset timing for the data bus configuration.

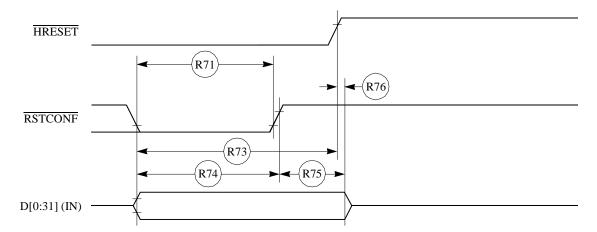


Figure 31. Reset Timing—Configuration from Data Bus

Figure 32 provides the reset timing for the data bus weak drive during configuration.

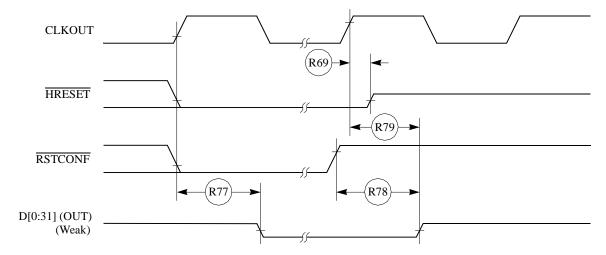


Figure 32. Reset Timing—Data Bus Weak Drive during Configuration

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

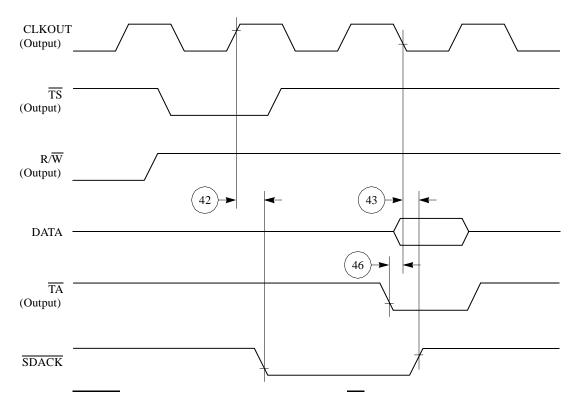


Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

CPM Electrical Characteristics

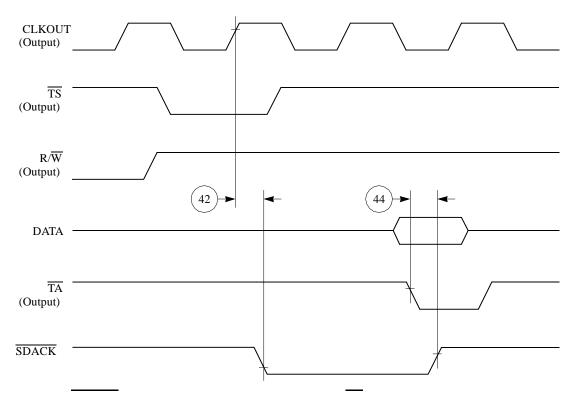


Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

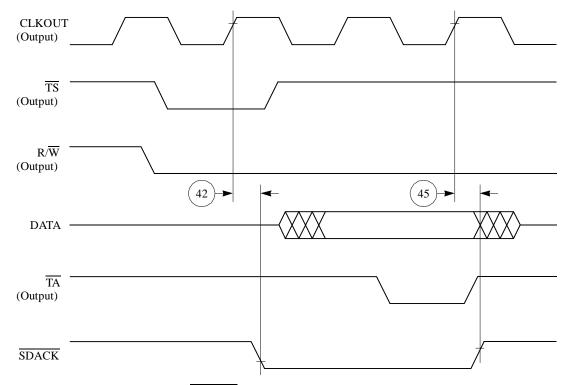


Figure 42. SDACK Timing Diagram—Peripheral Read

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Num	Characteristic	All Free	quencies	Unit
Nulli	Characteristic	Min	Max	Oliit
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	_	ns
83A	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	_	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	_	L1TCLK
86	L1GR setup time ²	42.00	_	ns
87	L1GR hold time	42.00	_	ns
88	L1xCLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

¹ The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

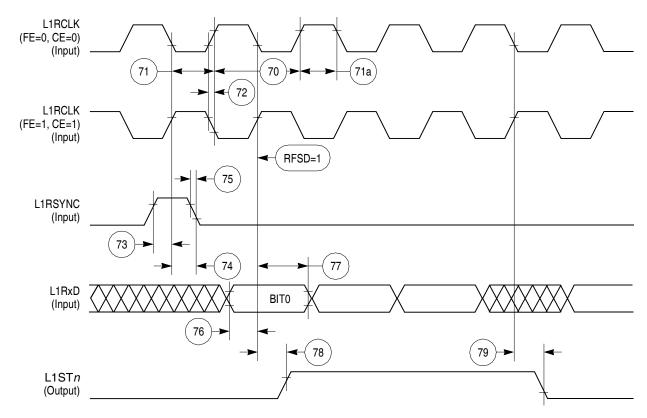


Figure 45. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

² These specs are valid for IDL mode only.

 $^{^{3}}$ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

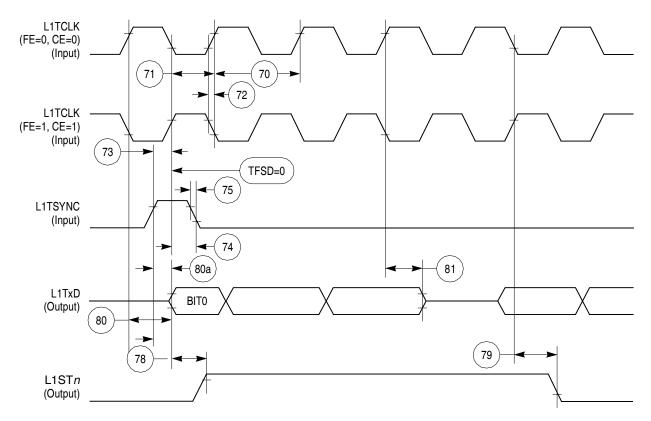


Figure 47. SI Transmit Timing Diagram

Figure 50 through Figure 52 show the NMSI timings.

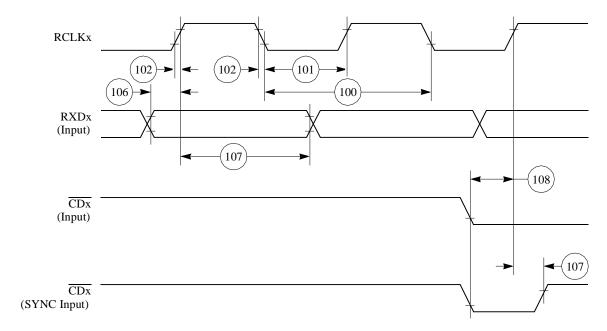


Figure 50. SCC NMSI Receive Timing Diagram

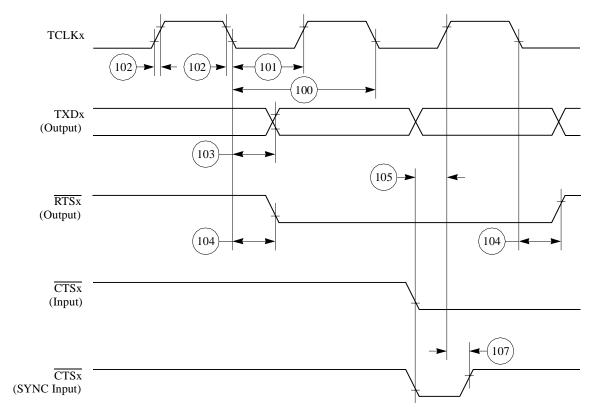


Figure 51. SCC NMSI Transmit Timing Diagram

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

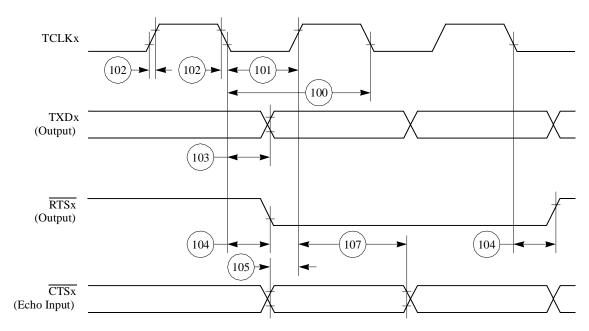


Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

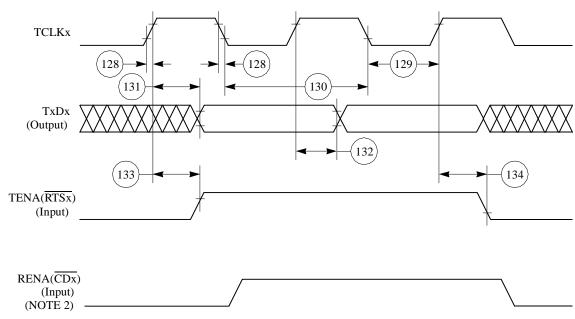

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Table 20. Ethernet Timing

Num	Characteristic	All Fred	luencies	Unit
Num	Characteristic	Min	Max	Unit
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	_	15.00	ns
122	RCLKx width low	40.00	_	ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00	_	ns
125	RXDx hold time	5.00	_	ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	_	15.00	ns
129	TCLKx width low	40.00	_	ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

CPM Electrical Characteristics

- NOTES:
 - 1. Transmit clock invert (TCI) bit in GSMR is set.
 - If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission.

Figure 55. Ethernet Transmit Timing Diagram

8.8 SMC Transparent AC Electrical Specifications

Figure 21 provides the SMC transparent timings as shown in Figure 56.

Table 21. Serial Management Controller Timing

Num	Characteristic	All Frequ	encies	Unit
Num	Characteristic	Min	Max	Oilit
150	SMCLKx clock period ¹	100.00	_	ns
151	SMCLKx width low	50.00	_	ns
151a	SMCLKx width high	50.00	_	ns
152	SMCLKx rise/fall time	_	15.00	ns
153	SMTXDx active delay (from SMCLKx falling edge)	10.00	50.00	ns
154	SMRXDx/SMSYNx setup time	20.00	_	ns
155	SMRXDx/SMSYNx hold time	5.00	_	ns

¹ The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26. MPC850 Family Derivatives

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

Serial Communication Controller (SCC)

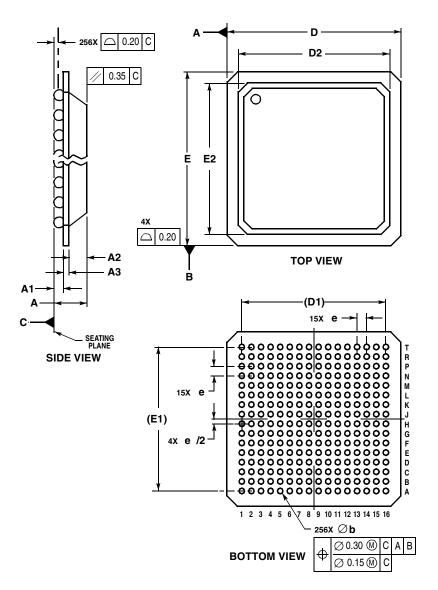
Table 27 identifies the packages and operating frequencies available for the MPC850.

Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support


MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Mechanical Data and Ordering Information

Figure 64 shows the non-JEDEC package dimensions of the PBGA.

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.91	2.35	
A 1	0.50	0.70	
A2	1.12	1.22	
A3	0.29	0.43	
b	0.60	0.90	
D	23.00 BSC		
D1	19.05 REF		
D2	19.00	20.00	
Е	23.00 BSC		
E1	19.05 REF		
E2	19.00	20.00	
е	1.27 BSC		

Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)—non-JEDEC Standard

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Document Revision History

10 Document Revision History

Table 28 lists significant changes between revisions of this document.

Table 28. Document Revision History

Revision	Date	Change
2	7/2005	Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit.
1	10/2002	Added MPC850DSL. Corrected Figure 25 on page 34.
0.2	04/2002	Updated power numbers and added Rev. C
0.1	11/2001	Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table.