

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc850vr66bu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC850.

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance for BGA ¹	θ_{JA}	40 ²	°C/W
	θ_{JA}	31 ³	°C/W
	θ_{JA}	24 ⁴	°C/W
Thermal Resistance for BGA (junction-to-case)	θ_{JC}	8	°C/W

For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA})$$
$$P_{D} = (V_{DD} \bullet I_{DD}) + P_{I/O}$$

P_{I/O} is the power dissipation on pins

Table 4 provides power dissipation information.

Table 4. Power Dissipation (P_D)

Characteristic	Frequency (MHz)	Typical ¹	Maximum ²	Unit
Power Dissipation	33	TBD	515	mW
All Revisions (1:1) Mode	40	TBD	590	mW
(111) 111000	50	TBD	725	mW

¹ Typical power dissipation is measured at 3.3V

Table 5 provides the DC electrical characteristics for the MPC850.

Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	VDDH, VDDL, KAPWR, VDDSYN	3.0	3.6	V
Operating voltage at 40 MHz or higher	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)	VIH	2.0	3.6	٧
Input high voltage (all general purpose I/O and peripheral pins)	VIH	2.0	5.5	V

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

² Assumes natural convection and a single layer board (no thermal vias).

Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient.

⁴ Assumes natural convection, a multilayer board with thermal vias⁴, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient.

² Maximum power dissipation is measured at 3.65 V

Table 5.	DC Electrical	Specifications	(continued)
I abic 5.	DO LICCUITORI	Opcomoations	(COIILIIIGCA)

Characteristic	Symbol	Min	Max	Unit
Input low voltage	VIL	GND	0.8	V
EXTAL, EXTCLK input high voltage	VIHC	0.7*(VCC)	VCC+0.3	V
Input leakage current, Vin = 5.5 V (Except TMS, TRST, DSCK and DSDI pins)	l _{in}	_	100	μΑ
Input leakage current, Vin = 3.6V (Except TMS, TRST, DSCK and DSDI pins)	I _{In}	_	10	μΑ
Input leakage current, Vin = 0V (Except TMS, TRST, DSCK and DSDI pins)	I _{In}	_	10	μΑ
Input capacitance	C _{in}	_	20	pF
Output high voltage, IOH = -2.0 mA, VDDH = 3.0V except XTAL, XFC, and open-drain pins	VOH	2.4	_	V
Output low voltage CLKOUT ³ IOL = 3.2 mA ¹ IOL = 5.3 mA ² IOL = 7.0 mA PA[14]/USBOE, PA[12]/TXD2 IOL = 8.9 mA TS, TA, TEA, BI, BB, HRESET, SRESET	VOL	_	0.5	V

A[6:31], TSIZO/REG, TSIZ1, D[0:31], DP[0:3]/IRQ[3:6], RD/WR, BURST, RSV/IRQ2, IP_B[0:1]/IWP[0:1]/VFLS[0:1], IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, PA[15]/USBRXD, PA[13]/RXD2, PA[9]/L1TXDA/SMRXD2, PA[8]/L1RXDA/SMTXD2, PA[7]/CLK1/TIN1/L1RCLKA/BRGO1, PA[6]/CLK2/TOUT1/TIN3, PA[5]/CLK3/TIN2/L1TCLKA/BRGO2, PA[4]/CLK4/TOUT2/TIN4, PB[31]/SPISEL, PB[30]/SPICLK/TXD3, PB[29]/SPIMOSI /RXD3, PB[28]/SPIMISO/BRGO3, PB[27]/I2CSDA/BRGO1, PB[26]/I2CSCL/BRGO2, PB[25]/SMTXD1/TXD3, PB[24]/SMRXD1/RXD3, PB[23]/SMSYN1/SDACK1, PB[22]/SMSYN2/SDACK2, PB[19]/L1ST1, PB[18]/RTS2/L1ST2, PB[17]/L1ST3, PB[16]/L1RQa/L1ST4, PC[15]/DREQ0/L1ST5, PC[14]/DREQ1/RTS2/L1ST6, PC[13]/L1ST7/RTS3, PC[12]/L1RQa/L1ST8, PC[11]/USBRXP, PC[10]/TGATE1/USBRXN, PC[9]/CTS2, PC[8]/CD2/TGATE1, PC[7]/USBTXP, PC[6]/USBTXN, PC[5]/CTS3/L1TSYNCA/SDACK1, PD[4], PD[3]

5 Power Considerations

The average chip-junction temperature, T_I, in °C can be obtained from the equation:

$$T_{\rm J} = T_{\rm A} + (P_{\rm D} \bullet \theta_{\rm JA})(1)$$

where

 $T_A = Ambient temperature, °C$

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

BDIP/GPL_B5, BR, BG, FRZ/IRQ6, CS[0:5], CS6/CE1_B, CS7/CE2_B, WE0/BS_AB0/IORD, WE1/BS_AB1/IOWR, WE2/BS_AB2/PCOE, WE3/BS_AB3/PCWE, GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A[2:3]/GPL_B[2:3]/CS[2:3], UPWAITA/GPL_A4/AS, UPWAITB/GPL_B4, GPL_A5, ALE_B/DSCK/AT1, OP2/MODCK1/STS, OP3/MODCK2/DSDO

³ The MPC850 IBIS model must be used to accurately model the behavior of the Clkout output driver for the full and half drive setting. Due to the nature of the Clkout output buffer, IOH and IOL for Clkout should be extracted from the IBIS model at any output voltage level.

Table 6. Bus Operation Timing ¹ (continued)

Nivee	Characteristic	50 MHz		66 MHz		80 1	MHz	EEAOT	Cap Load	
Num		Min	Max	Min	Max	Min	Max	FFACT	(default 50 pF)	Unit
B33a	CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM	5.00	12.00	8.00	14.00	6.00	13.00	0.250	50.00	ns
B34	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B34a	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by control bit CST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B34b	A[6–31] and D[0–31] to $\overline{\text{CS}}$ valid - as requested by CST2 in the corresponding word in UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B35	A[6–31] to CS valid - as requested by control bit BST4 in the corresponding word in UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B35a	A[6–31] and D[0–31] to \overline{BS} valid - as requested by BST1 in the corresponding word in the UPM	8.00	_	13.00	_	11.00	_	0.500	50.00	ns
B35b	A[6–31] and D[0–31] to BS valid - as requested by control bit BST2 in the corresponding word in the UPM	13.00	_	21.00	_	17.00	_	0.750	50.00	ns
B36	A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM	3.00	_	6.00	_	4.00	_	0.250	50.00	ns
B37	UPWAIT valid to CLKOUT falling edge 10	6.00	_	6.00	_	6.00	_	_	50.00	ns
B38	CLKOUT falling edge to UPWAIT valid ¹⁰	1.00	_	1.00	_	1.00	_	_	50.00	ns
B39	AS valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	_	50.00	ns
B40	A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge.	7.00	_	7.00	_	7.00	_	_	50.00	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	_	7.00	_	_	50.00	ns

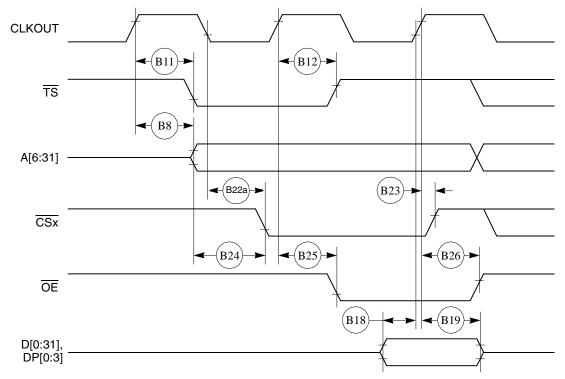


Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

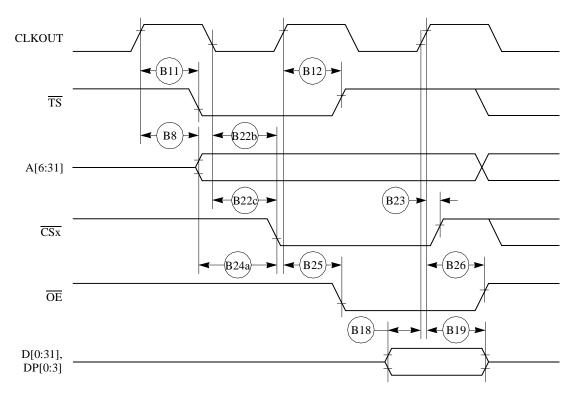


Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Bus Signal Timing

Figure 16 provides the timing for the external bus controlled by the UPM.

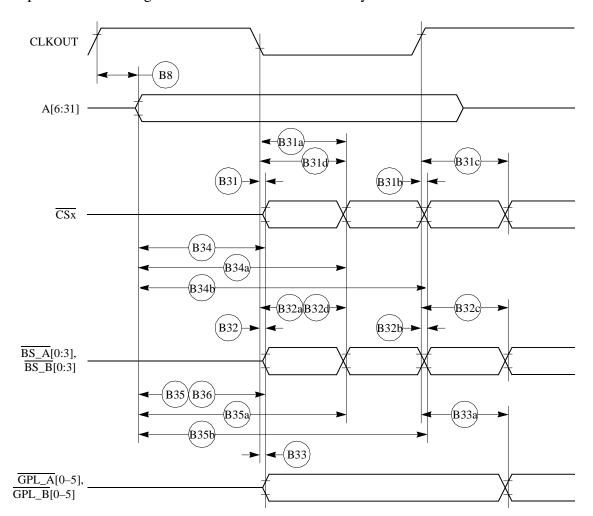


Figure 16. External Bus Timing (UPM Controlled Signals)

Figure 24 provides the PCMCIA access cycle timing for the external bus read.

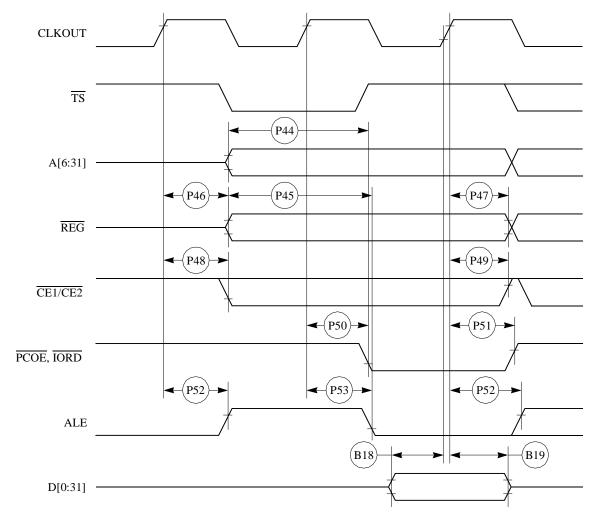


Figure 24. PCMCIA Access Cycles Timing External Bus Read

Bus Signal Timing

Table 10 shows the debug port timing for the MPC850.

Table 10. Debug Port Timing

Num	Characteristic	50 MHz		66 MHz		80 MHz		Unit
Num		Min	Max	Min	Max	Min	Max	Oilit
D61	DSCK cycle time	60.00	_	91.00	_	75.00	_	ns
D62	DSCK clock pulse width	25.00	_	38.00	_	31.00	_	ns
D63	DSCK rise and fall times	0.00	3.00	0.00	3.00	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	8.00	_	8.00	_	ns
D65	DSDI data hold time	5.00	_	5.00	_	5.00	_	ns
D66	DSCK low to DSDO data valid	0.00	15.00	0.00	15.00	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	0.00	2.00	0.00	2.00	ns

Figure 29 provides the input timing for the debug port clock.

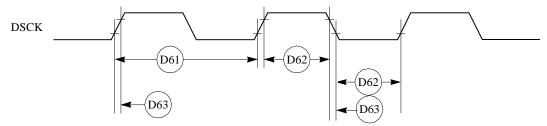


Figure 29. Debug Port Clock Input Timing

Figure 30 provides the timing for the debug port.

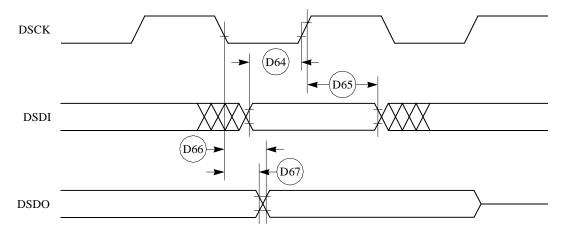


Figure 30. Debug Port Timings

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

Bus Signal Timing

Figure 31 shows the reset timing for the data bus configuration.

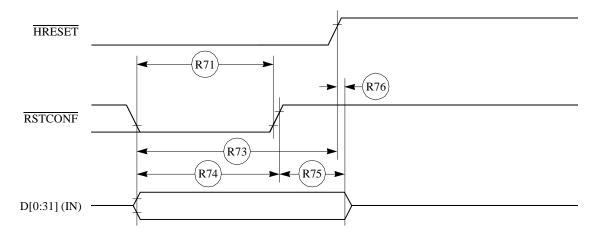


Figure 31. Reset Timing—Configuration from Data Bus

Figure 32 provides the reset timing for the data bus weak drive during configuration.

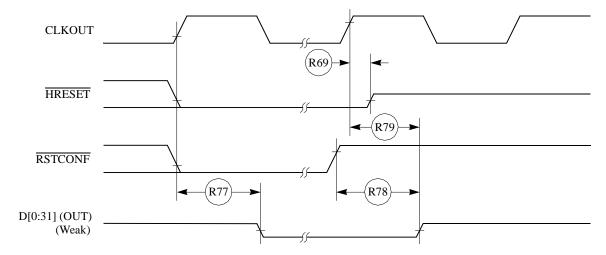


Figure 32. Reset Timing—Data Bus Weak Drive during Configuration

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

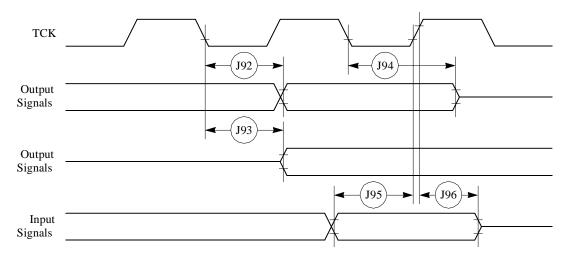


Figure 37. Boundary Scan (JTAG) Timing Diagram

8 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.

8.1 PIO AC Electrical Specifications

Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.

Table 13. Parallel I/O Timing

Num	Characteristic	All Freque	Unit	
Num	Characteristic	Min	Max	Ollit
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

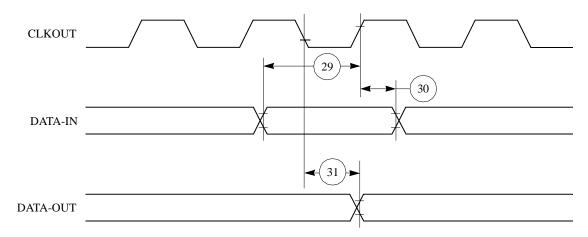


Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram

8.2 IDMA Controller AC Electrical Specifications

Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.

Num	Characteristic		All Frequencies		
Nulli			Max	Unit	
40	DREQ setup time to clock high	7.00	_	ns	
41	DREQ hold time from clock high	3.00	_	ns	
42	SDACK assertion delay from clock high	_	12.00	ns	
43	SDACK negation delay from clock low	_	12.00	ns	
44	SDACK negation delay from TA low	_	20.00	ns	
45	SDACK negation delay from clock high	_	15.00	ns	
46	TA assertion to falling edge of the clock setup time (applies to external TA)	7.00		ns	

Table 14. IDMA Controller Timing

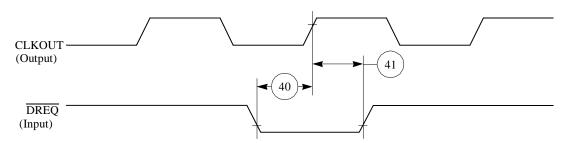


Figure 39. IDMA External Requests Timing Diagram

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

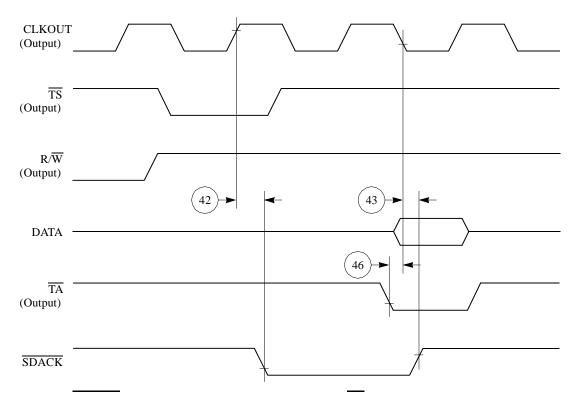


Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

CPM Electrical Characteristics

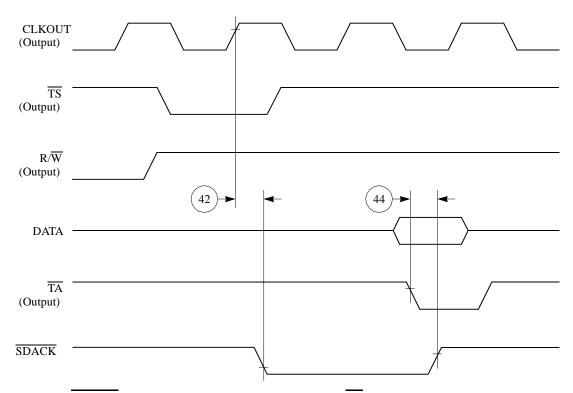


Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock

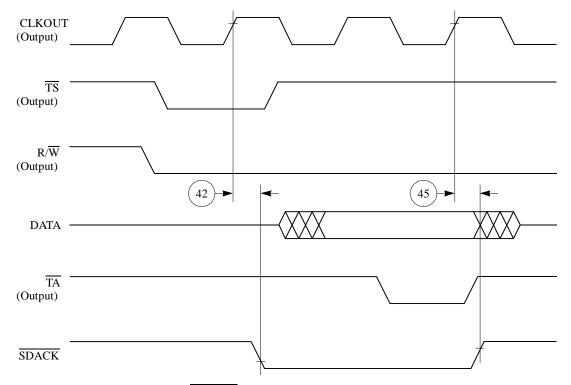


Figure 42. SDACK Timing Diagram—Peripheral Read

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

8.3 Baud Rate Generator AC Electrical Specifications

Table 15 provides the baud rate generator timings as shown in Figure 43.

Table 15. Baud Rate Generator Timing

Num	Characteristic	All Frequ	Unit	
Num	Characteristic	Min	Max	Ollit
50	BRGO rise and fall time	_	10.00	ns
51	BRGO duty cycle	40.00	60.00	%
52	BRGO cycle	40.00	_	ns

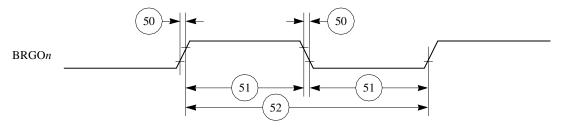


Figure 43. Baud Rate Generator Timing Diagram

8.4 Timer AC Electrical Specifications

Table 16 provides the baud rate generator timings as shown in Figure 44.

Table 16. Timer Timing

Num	Characteristic	All Frequ	Unit	
Nulli	Characteristic	Min	Max	Ollit
61	TIN/TGATE rise and fall time	10.00	_	ns
62	TIN/TGATE low time	1.00	_	clk
63	TIN/TGATE high time	2.00	_	clk
64	TIN/TGATE cycle time	3.00	_	clk
65	CLKO high to TOUT valid	3.00	25.00	ns

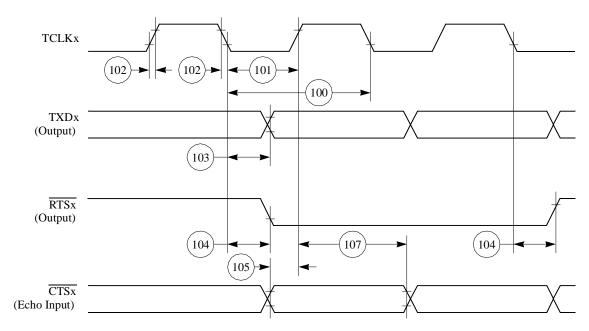


Figure 52. HDLC Bus Timing Diagram

8.7 Ethernet Electrical Specifications

Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.

Table 20. Ethernet Timing

Num	Characteristic	All Frequencies		Unit
	Characteristic		Max	
120	CLSN width high	40.00	_	ns
121	RCLKx rise/fall time (x = 2, 3 for all specs in this table)	_	15.00	ns
122	RCLKx width low	40.00	_	ns
123	RCLKx clock period ¹	80.00	120.00	ns
124	RXDx setup time	20.00	_	ns
125	RXDx hold time	5.00	_	ns
126	RENA active delay (from RCLKx rising edge of the last data bit)	10.00	_	ns
127	RENA width low	100.00	_	ns
128	TCLKx rise/fall time	_	15.00	ns
129	TCLKx width low	40.00	_	ns
130	TCLKx clock period ¹	99.00	101.00	ns
131	TXDx active delay (from TCLKx rising edge)	10.00	50.00	ns
132	TXDx inactive delay (from TCLKx rising edge)	10.00	50.00	ns
133	TENA active delay (from TCLKx rising edge)	10.00	50.00	ns

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

CPM Electrical Characteristics

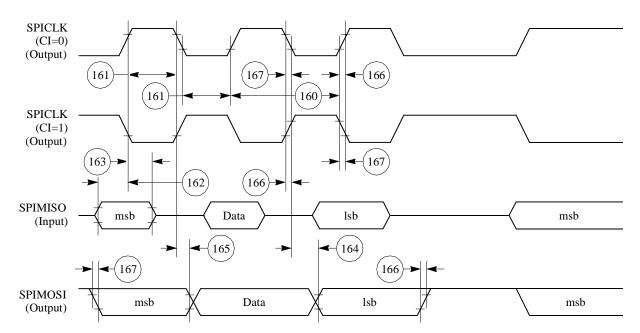


Figure 57. SPI Master (CP = 0) Timing Diagram

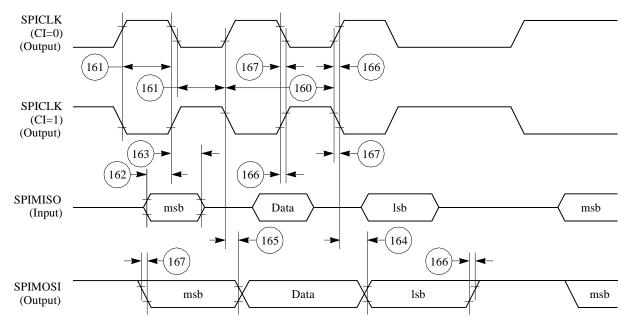


Figure 58. SPI Master (CP = 1) Timing Diagram

CPM Electrical Characteristics

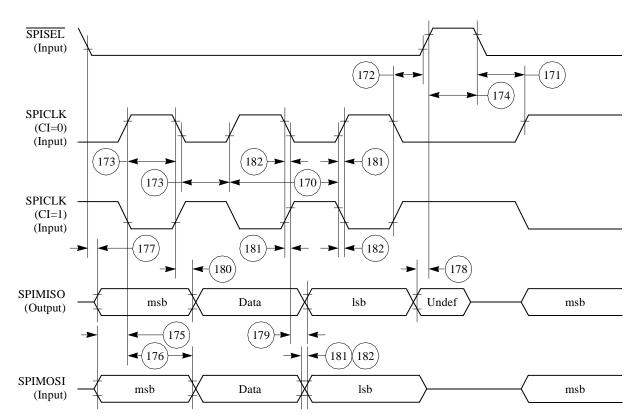


Figure 59. SPI Slave (CP = 0) Timing Diagram

9 Mechanical Data and Ordering Information

Table 26 provides information on the MPC850 derivative devices.

Table 26. MPC850 Family Derivatives

Device	Ethernet Support	Number of SCCs ¹	32-Channel HDLC Support	64-Channel HDLC Support ²
MPC850	N/A	One	N/A	N/A
MPC850DE	Yes	Two	N/A	N/A
MPC850SR	Yes	Two	N/A	Yes
MPC850DSL	Yes	Two	No	No

Serial Communication Controller (SCC)

Table 27 identifies the packages and operating frequencies available for the MPC850.

Table 27. MPC850 Package/Frequency/Availability

Package Type	Frequency (MHz)	Temperature (Tj)	Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)	50	0°C to 95°C	XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU
	66	0°C to 95°C	XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU
	80	0°C to 95°C	XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU
256-Lead Plastic Ball Grid Array (CZT suffix)	50	-40°C to 95°C	XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU
	66		XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU
	80		XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B

9.1 Pin Assignments and Mechanical Dimensions of the PBGA

The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support

MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2

² 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC

Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.

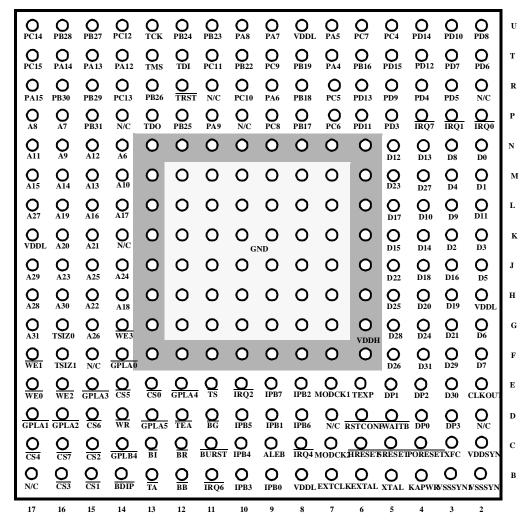
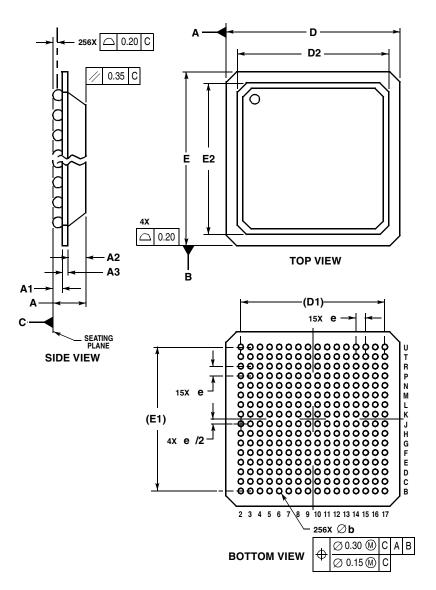



Figure 63. Pin Assignments for the PBGA (Top View)—JEDEC Standard

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office.

Figure 65 shows the JEDEC package dimensions of the PBGA.

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. DIMENSIONS IN MILLIMETERS.
- DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. PRIMARY DATUM C AND THE SEATING PLANE ARE

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.91	2.35	
A1	0.50	0.70	
A2	1.12	1.22	
A3	0.29	0.43	
b	0.60	0.90	
D	23.00 BSC		
D1	19.05 REF		
D2	19.00	20.00	
Е	23.00 BSC		
E1	19.05 REF		
E2	19.00	20.00	
е	1.27 BSC		

CASE 1130-01 ISSUE B

Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard

How to Reach Us:

Home Page:

www.freescale.com

email

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice any products herein. Freescale Semiconductor makes no warranty, representation

implementers to use Freescale Semiconductor products. There are no express or

Information in this document is provided solely to enable system and software

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005.

Document Number: MPC850EC

Rev. 2 07/2005

