

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303cbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Embedded SRAM

STM32F303xB/STM32F303xC devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from the CCM (Core Coupled Memory) RAM).

- 8 Kbytes of CCM RAM mapped on both instruction and data bus, used to execute critical routines or to access data (parity check on all of CCM RAM).
- 40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.6 Cyclic redundancy check (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.13.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN17. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.13.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4 connected to ADC4 channel 17.

3.14 Digital-to-analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Two DAC output channels
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability (for each channel)
- External triggers for conversion

3.15 Operational amplifier (OPAMP)

The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

	Pin n	umber						Pin functions				
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
C9	7	2	2	PC13 ⁽²⁾	I/O	тс	-	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT			
C10	8	3	3	PC14 ⁽²⁾ OSC32_IN (PC14)	I/O	тс	-	-	OSC32_IN			
D9	9	4	4	PC15 ⁽²⁾ OSC32_ OUT (PC15)	I/O	тс	-	-	OSC32_OUT			
D10	10	-	-	PF9	I/O	FT	(1)	TIM15_CH1, SPI2_SCK, EVENTOUT	-			
E10	11	-	-	PF10	I/O	FT	(1)	TIM15_CH2, SPI2_SCK, EVENTOUT	-			
F10	12	5	5	PF0- OSC_IN (PF0)	I/O	FTf	-	TIM1_CH3N, I2C2_SDA,	OSC_IN			
F9	13	6	6	PF1- OSC_OUT (PF1)	I/O	FTf	-	I2C2_SCL	OSC_OUT			
E9	14	7	7	NRST	I/O	RS T		Device reset input / intern	al reset output (active low)			
G10	15	8	-	PC0	I/O	TTa	(1)	EVENTOUT	ADC12_IN6, COMP7_INM			
G9	16	9	-	PC1	I/O	тта	(1)	EVENTOUT	ADC12_IN7, COMP7_INP			
G8	17	10	-	PC2	I/O	тта	(1)	COMP7_OUT, EVENTOUT	ADC12_IN8			
H10	18	11	-	PC3	I/O	TTa	(1)	TIM1_BKIN2, EVENTOUT	ADC12_IN9			
E8	19	-	-	PF2	I/O	тта	(1)	EVENTOUT	ADC12_IN10			
H8	20	12	8	VSSA/ VREF-	S	-	-	Analog ground/Nega	tive reference voltage			
J8	21	-	-	VREF+ ⁽³⁾	S	-	-	Positive refe	rence voltage			
J10	22	-	-	VDDA	S	-	-	- Analog power supply				
-	-	13	9	VDDA/ VREF+	S	-	-	Analog power supply/Positive reference voltage				
H9	23	14	10	PA0	I/O	ТТа	(4)	USART2_CTS, TIM2_CH1_ETR,TIM8_BKIN, TIM8_ETR,TSC_G1_IO1, COMP1_OUT, EVENTOUT	ADC1_IN1, COMP1_INM, RTC_TAMP2, WKUP1, COMP7_INP			

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

	Pin nu	umber						Pin functions			
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
F5	67	41	29	PA8	I/O	FT	-	I2C2_SMBA,I2S2_MCK, USART1_CK, TIM1_CH1, TIM4_ETR, MCO, COMP3_OUT, EVENTOUT	_		
E5	68	42	30	PA9	I/O	FTf	-	I2C2_SCL,I2S3_MCK, USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, COMP5_OUT, EVENTOUT	-		
E1	69	43	31	PA10	I/O	FTf	-	I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM8_BKIN, TIM17_BKIN, TSC_G4_IO2, COMP6_OUT, EVENTOUT	-		
E2	70	44	32	PA11	I/O	FT	-	USART1_CTS, USB_DM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT, EVENTOUT	-		
D1	71	45	33	PA12	I/O	FT	-	USART1_RTS_DE, USB_DP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT, EVENTOUT	-		
E3	72	46	34	PA13	I/O	FT	-	USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDIO-JTMS, EVENTOUT	-		
C1	73	-	-	PF6	I/O	FTf	(1)	I2C2_SCL, USART3_RTS_DE, TIM4_CH4, EVENTOUT	-		
A1, A2, B1	74	47	35	VSS	s	-	-	Gro	und		
D2	75	48	36	VDD	S	-	-	Digital pov	wer supply		
C2	76	49	37	PA14	I/O	FTf	-	I2C1_SDA, USART2_TX, TIM8_CH2,TIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK, EVENTOUT	-		

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

44/148

5

	Table 14. Alternate functions for port A														
Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF14	AF15
PA0	-	TIM2_ CH1_ ETR	-	TSC_ G1_IO1	-	-	-	USART2_ CTS	COMP1 _OUT	TIM8_ BKIN	TIM8_ ETR	-	-	-	EVENT OUT
PA1	RTC_ REFIN	TIM2_ CH2	-	TSC_ G1_IO2	-	-	-	USART2_ RTS_DE		TIM15_ CH1N	-	-	-	-	EVENT OUT
PA2	-	TIM2_ CH3	-	TSC_ G1_IO3	-	-	-	USART2_ TX	COMP2 _OUT	TIM15_ CH1	-	-	-	-	EVENT OUT
PA3	-	TIM2_ CH4	-	TSC_ G1_IO4	-	-	-	USART2_ RX	-	TIM15_ CH2	-	-	-	-	EVENT OUT
PA4	-	-	TIM3_ CH2	TSC_ G2_IO1	-	SPI1_ NSS	SPI3_NSS, I2S3_WS	USART2_ CK	-	-	-	-	-	-	EVENT OUT
PA5	-	TIM2_ CH1_ ETR	-	TSC_ G2_IO2	-	SPI1_ SCK	-	-	-	-	-	-	-	-	EVENT OUT
PA6	-	TIM16_ CH1	TIM3_ CH1	TSC_ G2_IO3	TIM8_ BKIN	SPI1_ MISO	TIM1_BKIN	-	COMP1 _OUT	-	-	-	-	-	EVENT OUT
PA7	-	TIM17_ CH1	TIM3_ CH2	TSC_ G2_IO4	TIM8_ CH1N	SPI1_ MOSI	TIM1_CH1N	-	COMP2 _OUT	-	-	-	-	-	EVENT OUT
PA8	МСО	-	-	-	I2C2_ SMBA	I2S2_ MCK	TIM1_CH1	USART1_ CK	COMP3 _OUT	-	TIM4_ ETR	-	-	-	EVENT OUT
PA9	-	-	-	TSC_ G4_IO1	I2C2_ SCL	I2S3_ MCK	TIM1_CH2	USART1_ TX	COMP5 _OUT	TIM15_ BKIN	TIM2_ CH3	-	-	-	EVENT OUT
PA10	-	TIM17_ BKIN	-	TSC_ G4_IO2	I2C2_ SDA	-	TIM1_CH3	USART1_ RX	COMP6 _OUT	-	TIM2_ CH4	TIM8_BKIN	-	-	EVENT OUT
PA11	-	-	-	-	-	-	TIM1_CH1N	USART1_ CTS	COMP1 _OUT	CAN_RX	TIM4_ CH1	TIM1_CH4	TIM1_ BKIN2	USB_ DM	EVENT OUT

Pinouts and pin description

STM32F303xB STM32F303xC

50/148

Table 18. Alternate functions for port E											
Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF6	AF7				
PE0	-	EVENTOUT	TIM4_ETR	-	TIM16_CH1	-	USART1_TX				
PE1	-	EVENTOUT	-	-	TIM17_CH1	-	USART1_RX				
PE2	TRACECK	EVENTOUT	TIM3_CH1	TSC_G7_IO1	-	-	-				
PE3	TRACED0	EVENTOUT	TIM3_CH2	TSC_G7_IO2	-	-	-				
PE4	TRACED1	EVENTOUT	TIM3_CH3	TSC_G7_103	-	-	-				
PE5	TRACED2	EVENTOUT	TIM3_CH4	TSC_G7_IO4	-	-	-				
PE6	TRACED3	EVENTOUT		-	-	-	-				
PE7	-	EVENTOUT	TIM1_ETR	-	-	-	-				
PE8	-	EVENTOUT	TIM1_CH1N	-	-	-	-				
PE9	-	EVENTOUT	TIM1_CH1	-	-	-	-				
PE10	-	EVENTOUT	TIM1_CH2N	-	-	-	-				
PE11	-	EVENTOUT	TIM1_CH2	-	-	-	-				
PE12	-	EVENTOUT	TIM1_CH3N	-	-	-	-				
PE13	-	EVENTOUT	TIM1_CH3	-	-	-	-				
PE14	-	EVENTOUT	TIM1_CH4	-	-	TIM1_BKIN2	-				
PE15	-	EVENTOUT	TIM1_BKIN	-	-	-	USART3_RX				

DocID023353 Rev 13

5

Pinouts and pin description

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 8000 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7FFF	2 K	Reserved
	0x4000 7400 - 0x4000 77FF	1 K	DAC (dual)
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB SRAM 512 bytes
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1400 - 0x4000 17FF	1 K	TIM7
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses (continued)

The parameters given in *Table 30* to *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

				All	periphe	erals en	abled	All	periphe	erals dis	abled	
Symbol	Parameter	Conditions	f _{HCLK}	-	М	ax @ T,	4 ⁽¹⁾	-	м	ах @ Т _/	A ⁽¹⁾	Unit
				тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	61.2	65.8	67.6	68.5	27.8	30.3	30.7	31.5	
			64 MHz	54.7	59.1	60.2	61.1	24.6	27.2	27.6	28.3	
		External	48 MHz	41.7	45.1	46.2	47.2	19.2	21.1	21.4	21.8	
		clock (HSE	32 MHz	28.1	31.5	32.5	32.7	12.9	14.6	14.8	15.3	
	Supply	bypass)	24 MHz	21.4	23.7	24.4	25.2	10.0	11.4	11.4	12.1	
	current in		8 MHz	7.4	8.4	8.6	9.4	3.6	4.1	4.4	5.0	
	executing		1 MHz	1.3	1.6	1.8	2.6	0.8	1.0	1.2	2.1	
	from Flash		64 MHz	49.7	54.4	55.4	56.3	24.5	27.2	27.4	28.1	
		Internal clock (HSI)	48 MHz	37.9	42.2	43.0	43.5	18.9	21.4	21.5	21.6	mA
			32 MHz	25.8	29.2	29.2	30.0	12.7	14.2	14.6	15.2	
			24 MHz	19.7	22.3	22.6	23.2	6.7	7.7	7.9	8.5	
			8 MHz	6.9	7.8	8.3	8.8	3.5	4.0	4.4	5.0	
'DD			72 MHz	60.8	66.2 ⁽²⁾	69.7	70.4 ⁽²⁾	27.4	31.7 ⁽²⁾	32.2	32.5 ⁽²⁾	
			64 MHz	54.3	59.1	62.2	63.3	24.3	28.3	28.7	28.8	
		External	48 MHz	41.0	45.6	47.3	47.9	18.3	21.6	21.9	22.1	
		clock (HSE	32 MHz	27.6	32.4	32.4	32.9	12.3	15.0	15.2	15.4	
	Supply	bypass)	24 MHz	20.8	23.9	24.3	25.0	9.3	11.3	11.4	12.0	
	current in		8 MHz	6.9	7.8	8.7	9.0	3.1	3.7	4.2	4.9	
	executing		1 MHz	0.9	1.2	1.5	2.3	0.4	0.6	1.0	1.8	
	from RAM		64 MHz	49.2	53.9	55.2	57.4	23.9	27.8	28.2	28.4	
			48 MHz	37.3	40.8	41.4	44.1	18.2	21.0	21.6	21.9	
		Internal clock (HSI)	32 MHz	25.1	27.6	29.1	30.1	12.0	14.0	14.5	15.1	
			24 MHz	19.0	21.6	22.1	22.9	6.3	7.2	7.7	8.1	
			8 MHz	6.4	7.3	7.9	8.4	3.0	3.5	4.0	4.7	

Table 30. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6V

				Ţ	/p	
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	44.1	7.0	
			64 MHz	39.7	6.3	
			48 MHz	30.3	4.9	
			32 MHz	20.5	3.5	
			24 MHz	15.4	2.8	
	Supply current in		16 MHz	10.6	2.0	m۸
'DD	V _{DD} supply		8 MHz	5.4	1.1	IIIA
			4 MHz	3.2	1.0	
			2 MHz	2.1	0.9	
			1 MHz	1.5	0.8	
		Running from HSE crystal clock 8 MHz,	500 kHz	1.2	0.8	
			125 kHz	1.0	0.8	
		code executing from	72 MHz	239.7	238.5	
		Flash of RAM	64 MHz	210.5	209.6	-
			48 MHz	155.0	155.6	
			32 MHz	105.3	105.2	
			24 MHz	81.9	81.8	
ı (1)(2)	Supply current in		16 MHz	58.7	58.6	
'DDA`´``	V _{DDA} supply		8 MHz	2.4	2.4	μΑ
			4 MHz	2.4	2.4	
			2 MHz	2.4	2.4	
			1 MHz	2.4	2.4	
			500 kHz	2.4	2.4	1
			125 kHz	2.4	2.4	

Table 36, Typical	current consum	ption in Sleer	o mode, code	running from	Flash or RAM
Tuble oo. Typical	ourrent consum		, moac, coac	ranning nom	

1. V_{DDA} monitoring is ON.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 39* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

			-		-					
Symbol	Baramotor	Conditions	Typ @Vdd, V _{DD} = V _{DDA}							Unit
Symbol	Falameter	Conditions	2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	Max	Onit
twustop	Wakoup from	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	3.5	4.5	
	Stop mode	Regulator in low-power mode	7.9	6.7	6.1	5.7	5.4	5.2	9	μs
t _{WUSTANDBY} ⁽¹⁾	Wakeup from Standby mode	LSI and IWDG OFF	69.2	60.3	56.4	53.7	51.7	50	100	
^t wusleep	Wakeup from Sleep mode	-			6	6			-	CPU clock cycles

Table 39. Low-power mode wakeup timings

1. Guaranteed by characterization results.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V_{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115

 Table 41. Low-speed external user clock characteristics

1. Guaranteed by design.

Figure 15. Low-speed external clock source AC timing diagram

		Functional s	usceptibility			
Symbol	Description	Negative Positive injection injection				
	Injected current on BOOT0	- 0	NA			
I _{INJ}	Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2 with induced leakage current on other pins from this group less than -50 μ A	- 5	-			
	Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA	- 5	-	mA		
	Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than 400 μ A	-	+5			
	Injected current on any other FT and FTf pins	- 5	NA			
	Injected current on any other pins	- 5	+5			

Table 53.	I/O	current	injection	susceptibility
-----------	-----	---------	-----------	----------------

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 56*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions		Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	2 ⁽³⁾	MHz	
x0	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 3 6 V	-	125 ⁽³⁾	ne	
	t _{r(IO)out}	Output low to high level rise time	οL = 30 μr, v _{DD} = 2 v to 3.0 v	-	125 ⁽³⁾	115	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	10 ⁽³⁾	MHz	
01	t _{f(IO)out}	Output high to low level fall time		-	25 ⁽³⁾		
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm L} = 50 \ \text{pr}, \ V_{\rm DD} = 2 \ \text{v} \ 10 \ 3.0 \ \text{v}$	-	25 ⁽³⁾	ns	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50 ⁽³⁾	MHz	
	f _{max(IO)} out	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	30 ⁽³⁾	MHz	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V		20 ⁽³⁾	MHz	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
11	t _{f(IO)} out	fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	ns	
	t _{r(IO)out}		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
		rise time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2 ⁽⁴⁾	MHz	
FM+ configuration ⁽⁴⁾	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		12 ⁽⁴⁾	20	
Configuration	t _{r(IO)out}	Output low to high level rise time		-	34 ⁽⁴⁾	115	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	-	ns	

Table 56. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure* 23.

3. Guaranteed by design.

 The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F303x STM32F313xx reference manual RM0316 for a description of FM+ I/O mode configuration.

Figure 29. I²S slave timing diagram (Philips protocol)⁽¹⁾

- Measurement points are done at $0.5V_{DD}$ and with external CL=30 pF. 1.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

Figure 30. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 2. byte.

3. Channels available on PA2, PA6, PB1, PB12.

Symbol	Parameter	Conditions			Min (3)	Тур	Max (3)	Unit
			Single ended	Fast channel 5.1 Ms	-	±3.5	±4.5	
ст	Total		Single ended	Slow channel 4.8 Ms	-	±4	±4.5	
	error		Differential	Fast channel 5.1 Ms	-	±3	±3	
			Dillerential	Slow channel 4.8 Ms	-	±3	±3	
			Single ended	Fast channel 5.1 Ms	-	±1	±1.5	
ГО	Offect error		Single ended	Slow channel 4.8 Ms	-	±1	±2.5	
EO	Oliset entor		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
			Cingle and d	Fast channel 5.1 Ms	-	±3	±4	
50			Single ended	Slow channel 4.8 Ms	-	±3.5	±4	LSB
EG	Gain error		Differential	Fast channel 5.1 Ms	-	±1.5	±2.5	
				Slow channel 4.8 Ms	-	±2	±2.5	
	ADC cloc	ADC clock freq. ≤72 MHz	Single ended	Fast channel 5.1 Ms	-	±1	±1.5	
Differential	Sampling freq. ≤ 5 Msps	Single ended	Slow channel 4.8 Ms	-	±1	±1.5	1	
ED	error	$\begin{array}{c c} a_{\text{III}} & v_{\text{DDA}} - v_{\text{REF}+} - 3.5 v \\ \hline \\ Dr & 25^{\circ} C \\ \hline \\ \end{array}$	Fast channel 5.1 Ms	-	±1	±1		
		100-pin package	Differential	Slow channel 4.8 Ms	-	±1	±1	
		Single ended	Cingle and d	Fast channel 5.1 Ms	-	±1.5	±2	
-	Integral		Slow channel 4.8 Ms	-	±1.5	±3		
	error		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
			Cingle and d	Fast channel 5.1 Ms	10.7	10.8	-	
	Effective		Single ended	Slow channel 4.8 Ms	10.7	10.8	-	hita
ENOB ^(*) number of bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	bits	
		Differential	Slow channel 4.8 Ms	11.1	11.3	-		
	0		Oin als sudad	Fast channel 5.1 Ms	66	67	-	
	noise and		Single ended	Slow channel 4.8 Ms	66	67	-	
SINAD	distortion		Differential	Fast channel 5.1 Ms	69	70	-	αв
	ralio		Dillerential	Slow channel 4.8 Ms	69	70	-	

	Table 70.	. ADC accuracy	y - limited test	conditions,	100-pin	packages	(1)(2)
--	-----------	----------------	------------------	-------------	---------	----------	------	----

Symbol	Parameter	Conditions			Min (3)	Тур	Max (3)	Unit
			Single ended	Fast channel 5.1 Ms	66	67	-	
SND ⁽⁴⁾	Signal-to-		Single ended	Slow channel 4.8 Ms	66	67	-	
SINK	noise ratio	bise ratio ADC clock freq. \leq 72 MHz Sampling freq \leq 5 Msps	Differential Single ended	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		v _{DDA} – v _{REF+} – 3.3 v 25°C		Fast channel 5.1 Ms	-	-76	-76	uВ
тuр(4)	Total	100-pin package		Slow channel 4.8 Ms	-	-76	-76	
	distortion	Differential	Fast channel 5.1 Ms	-	-80	-80		
			Dillerential	Slow channel 4.8 Ms	-	-80	-80	

Table 70. ADC accuracy - limited test conditions, 100-pin packages ⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package information

Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline

1. Drawing is not to scale.

Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Cymbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.60	-	-	0.063
A1	0.05	-	0.15	0.002	_	0.0059

7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package information

Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline

1. Drawing is not to scale.

Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanic	al
data	

Gumbal	millimeters			nillimeters inches ⁽¹⁾		
Зутрої	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.60	-	-	0.0630
A1	0.05	-	0.15	0.0020	-	0.0059
A2	1.350	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	-	0.20	0.0035		0.0079
D	-	12.00	-	-	0.4724	-
D1	-	10.00	-	-	0.3937	-
D3	-	7.50	-	-	0.2953	-
E	-	12.00	-	-	0.4724	-

Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package recommended footprint

Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm
Stencil thickness	0.1 mm

