

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Supplier Device Package Purchase URL	48-LQFP (7x7) https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303cct6
Package / Case	48-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Oscillator Type	Internal
Data Converters	A/D 15x12b; D/A 2x12b
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
RAM Size	40K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	256КВ (256К х 8)
Number of I/O	37
Peripherals	DMA, I ² S, POR, PWM, WDT
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Speed	72MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M4
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM32F303xB/STM32F303xC block diagram	12
Figure 2.	Clock tree	18
Figure 3.	Infrared transmitter	
Figure 4.	STM32F303xB/STM32F303xC LQFP48 pinout	31
Figure 5.	STM32F303xB/STM32F303xC LQFP64 pinout	32
Figure 6.	STM32F303xB/STM32F303xC LQFP100 pinout	33
Figure 7.	STM32F303xB/STM32F303xC WLCSP100 pinout	
Figure 8.	STM32F303xB/STM32F303xC memory map	
Figure 9.	Pin loading conditions.	
Figure 10.	Pin input voltage	
Figure 11.	Power supply scheme	
Figure 12.	Current consumption measurement scheme	
Figure 13.	Typical V _{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')	
Figure 14.	High-speed external clock source AC timing diagram	
Figure 15.	Low-speed external clock source AC timing diagram	
Figure 16.	Typical application with an 8 MHz crystal.	
Figure 17.	Typical application with a 32.768 kHz crystal	
Figure 18.	HSI oscillator accuracy characterization results for soldered parts	
Figure 19.	TC and TTa I/O input characteristics - CMOS port.	
Figure 20.	TC and TTa I/O input characteristics - TTL port	
Figure 21.	Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port.	
Figure 22.	Five volt tolerant (FT and FTf) I/O input characteristics - TTL port.	
Figure 23.	I/O AC characteristics definition	
Figure 24.	Recommended NRST pin protection	
Figure 25.	I ² C bus AC waveforms and measurement circuit	
Figure 26.	SPI timing diagram - slave mode and CPHA = 0	
Figure 27.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	07
Figure 28.	SPI timing diagram - master mode ⁽¹⁾	08 08
Figure 29.	I^2S slave timing diagram (Philips protocol) ⁽¹⁾	100
Figure 30.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	100
Figure 31.	USB timings: definition of data signal rise and fall time	
Figure 32.	ADC typical current consumption on VDDA pin	
Figure 33.	ADC typical current consumption on VREF+ pin	
Figure 34.	ADC accuracy characteristics	
Figure 35.	Typical connection diagram using the ADC	
Figure 36.	12-bit buffered /non-buffered DAC	
Figure 30.	Maximum VREFINT scaler startup time from power down	
Figure 37.	OPAMP voltage noise versus frequency	
•		
Figure 39.	LQFP100 – 14 x 14 mm, low-profile quad flat package outline	
Figure 40.		
Figure 41.	LQFP100 – 14 x 14 mm, low-profile quad flat package top view example	
Figure 42.	LQFP64 – 10 x 10 mm, low-profile quad flat package outline	
Figure 43.	LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint	
Figure 44.	LQFP64 – 10 x 10 mm, low-profile quad flat package top view example	
Figure 45.	LQFP48 – 7 x 7 mm, low-profile quad flat package outline	
Figure 46.	LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint.	
Figure 47.	LQFP48 - 7 x 7 mm, low-profile quad flat package top view example	
Figure 48.	WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale	

3.17.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.5 Window watchdog (WWDG)

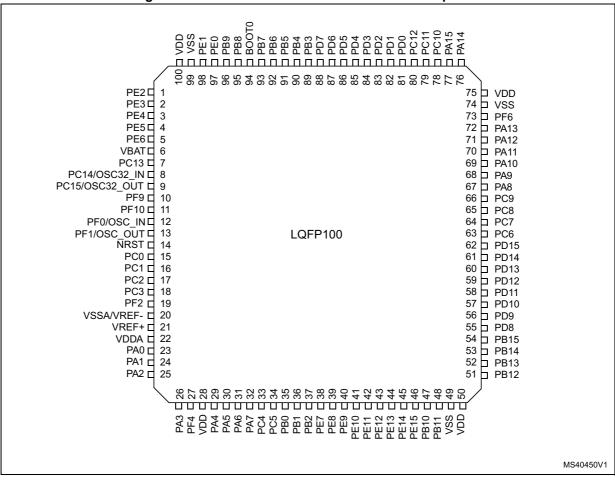
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.18 Real-time clock (RTC) and backup registers


The RTC and the 16 backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when V_{DD} power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter.It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
- Two programmable alarms with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout

	Pin nu	umber						Pin fu	nctions	
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
C9	7	2	2	PC13 ⁽²⁾	I/O	тс	-	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	
C10	8	3	3	PC14 ⁽²⁾ OSC32_IN (PC14)	I/O	тс	-	-	OSC32_IN	
D9	9	4	4	PC15 ⁽²⁾ OSC32_ OUT (PC15)	I/O	тс	-	-	OSC32_OUT	
D10	10	-	-	PF9	I/O	FT	(1)	TIM15_CH1, SPI2_SCK, EVENTOUT	-	
E10	11	-	-	PF10	I/O	FT	(1)	TIM15_CH2, SPI2_SCK, EVENTOUT	-	
F10	12	5	5	PF0- OSC_IN (PF0)	I/O	FTf	-	TIM1_CH3N, I2C2_SDA,	OSC_IN	
F9	13	6	6	PF1- OSC_OUT (PF1)	I/O	FTf	-	I2C2_SCL	OSC_OUT	
E9	14	7	7	NRST	I/O	RS T		Device reset input / intern	al reset output (active low)	
G10	15	8	-	PC0	I/O	TTa	(1)	EVENTOUT	ADC12_IN6, COMP7_INM	
G9	16	9	1	PC1	I/O	TTa	(1)	EVENTOUT	ADC12_IN7, COMP7_INP	
G8	17	10	-	PC2	I/O	TTa	(1)	COMP7_OUT, EVENTOUT	ADC12_IN8	
H10	18	11	-	PC3		TTa		TIM1_BKIN2, EVENTOUT	ADC12_IN9	
E8	19	-	-	PF2	I/O	TTa	(1)	EVENTOUT	ADC12_IN10	
H8	20	12	8	VSSA/ VREF-	S	-	-	Analog ground/Nega	tive reference voltage	
J8	21	-	-	VREF+ ⁽³⁾	s		-	Positive reference voltage		
J10	22	-	-	VDDA	S	-	-	Analog power supply		
-	-	13	9	VDDA/ VREF+	S	-	-	Analog power supply/Positive reference voltage		
H9	23	14	10	PA0	I/O	ТТа	(4)	USART2_CTS, TIM2_CH1_ETR,TIM8_BKIN, TIM8_ETR,TSC_G1_IO1, COMP1_OUT, EVENTOUT	ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP	

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

	Pin nı	umber						Pin fur	nctions		
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
В5	90	56	40	PB4	I/O	FT	-	SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N, TSC_G5_IO2, NJTRST, EVENTOUT	-		
A6	91	57	41	PB5	I/O	FT	-	SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N, TIM17_CH1, EVENTOUT	-		
В6	92	58	42	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TIM8_CH1,TSC_G5_IO3, TIM8_ETR, TIM8_BKIN2, EVENTOUT	-		
C5	93	59	43	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN, TSC_G5_IO4, EVENTOUT	-		
A7	94	60	44	BOOT0		В	-	Boot memo	ry selection		
D5	95	61	45	PB8	I/O	FTf	-	I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3, TIM8_CH2, TIM1_BKIN, TSC_SYNC, COMP1_OUT, EVENTOUT	-		
C6	96	62	46	PB9	I/O	FTf	-	I2C1_SDA, CAN_TX, TIM17_CH1, TIM4_CH4, TIM8_CH3, IR_OUT, COMP2_OUT, EVENTOUT	-		
B7	97	-	-	PE0	I/O	FT	(1)	USART1_TX, TIM4_ETR, TIM16_CH1, EVENTOUT			
A8	98	-	-	PE1	I/O	FT	(1)	USART1_RX, TIM17_CH1, EVENTOUT	-		
C7	99	63	47	VSS	S	-	-	Gro	und		
A9, A10, B10, B8	100	64	48	VDD	S	-	-	Digital power supply			

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 8000 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7FFF	2 K	Reserved
	0x4000 7400 - 0x4000 77FF	1 K	DAC (dual)
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB SRAM 512 bytes
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
APB1	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1400 - 0x4000 17FF	1 K	TIM7
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	ТІМЗ
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses (continued)

6.3 Operating conditions

6.3.1 General operating conditions

Table 24.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	72			
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz		
f _{PCLK2}	Internal APB2 clock frequency	-	0	72			
V _{DD}	Standard operating voltage	-	2	3.6	V		
M	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V		
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	equal to or higher than V _{DD}	2.4	3.6	V		
V _{BAT}	Backup operating voltage	-	1.65	3.6	V		
		TC I/O	-0.3	V _{DD} +0.3			
V	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3	V		
V _{IN}	I/O Input voltage	FT and FTf I/O ⁽¹⁾	-0.3	5.5	v		
		BOOT0	0	5.5			
		WLCSP100	-	500			
р	Power dissipation at $T_A =$	LQFP100	-	488	- mW		
P_{D}	105 °C for suffix $7^{(2)}$	LQFP64	-	444			
		er dissipation at $T_A =$ C for suffix 6 or $T_A =$ UQFP100 - 488	364				
	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	85	°C		
Та		Low-power dissipation ⁽³⁾	-40	105			
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	°C		
		Low-power dissipation ⁽³⁾	-40	125			
т.	lunction tomporature reaso	6 suffix version	-40	105	°C		
TJ	Junction temperature range	7 suffix version	-40	125	− °C		

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

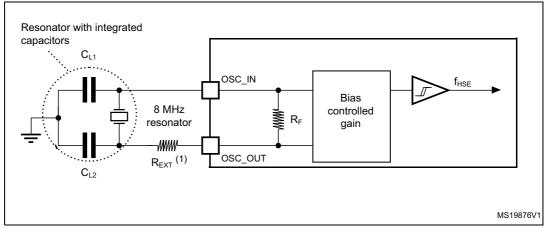
6.3.6 Wakeup time from low-power mode

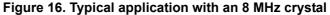
The wakeup times given in *Table 39* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Typ @Vdd, V _{DD} = V _{DDA}						Мах	Unit
Symbol	Parameter		2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	wiax	Unit
^t wustop	Wakeup from Stop mode	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	3.5	4.5	
		Regulator in low-power mode	7.9	6.7	6.1	5.7	5.4	5.2	9	μs
$t_{WUSTANDBY}^{(1)}$	Wakeup from Standby mode	LSI and IWDG OFF	69.2	60.3	56.4	53.7	51.7	50	100	
t _{WUSLEEP}	Wakeup from Sleep mode	-		6					-	CPU clock cycles


Table 39. Low-power mode wakeup timings


1. Guaranteed by characterization results.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 53.

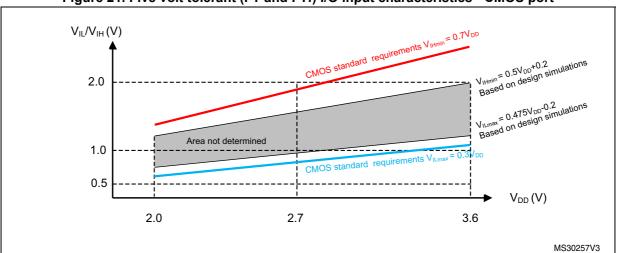
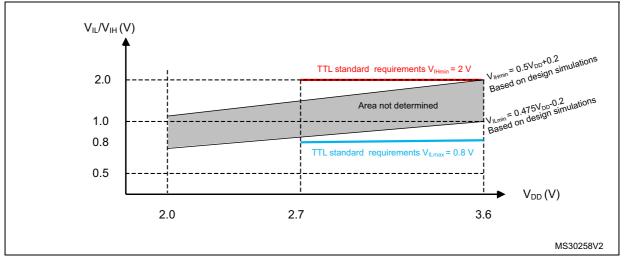



Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port

Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 56*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	2 ⁽³⁾	MHz	
x0	t _{f(IO)out}	Output high to low level fall time	-C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	125 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	-C _L - 50 μr, v _{DD} - 2 v to 3.6 v	-	125 ⁽³⁾	115	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	10 ⁽³⁾	MHz	
01	t _{f(IO)out}	Output high to low level fall time	-C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	25 ⁽³⁾		
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm L} = 50 \text{pr}, V_{\rm DD} = 2 \text{V} 10 3.6 \text{V}$	-	25 ⁽³⁾	ns	
	f _{max(IO)out}		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50 ⁽³⁾	MHz	
		Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30 ⁽³⁾	MHz	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	20 ⁽³⁾	MHz	
	t _{f(IO)out}		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
11		Output high to low level fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	- ns	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
	t _{r(IO)out}	Output low to high level rise time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2 ⁽⁴⁾	MHz	
FM+ configuration ⁽⁴⁾	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	12 ⁽⁴⁾	20	
	t _{r(IO)out}	Output low to high level rise time		-	34 ⁽⁴⁾	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	-	ns	

Table 56. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 23*.

3. Guaranteed by design.

4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F303x STM32F313xx reference manual RM0316 for a description of FM+ I/O mode configuration.

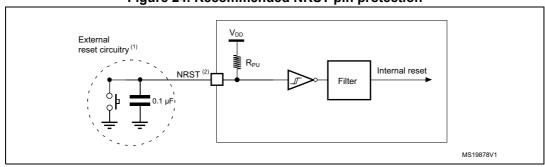


Figure 24. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 57. Otherwise the reset will not be taken into account by the device.

6.3.16 Timer characteristics

The parameters given in *Table 58* are guaranteed by design.

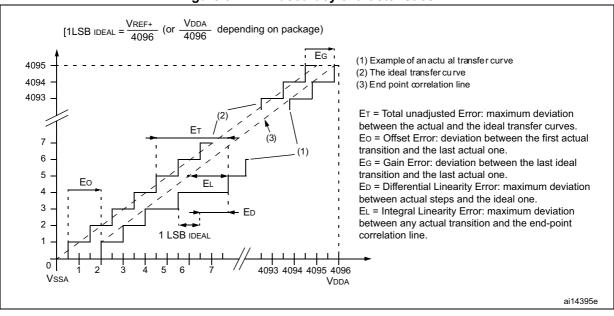
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit	
		-	1	-	t _{TIMxCLK}	
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns	
		f _{TIMxCLK} = 144 MHz x=1.8	6.95	-	ns	
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz	
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz	
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit	
TC31M		TIM2	-	32	DIL	
		-	1	65536	t _{TIMxCLK}	
t _{COUNTER}	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs	
OCONTER		f _{TIMxCLK} = 144 MHz x=1.8	0.0069	455	μs	
		-	-	65536 × 65536	t _{TIMxCLK}	
t _{MAX_COUNT}	Maximum possible count	f _{TIMxCLK} = 72 MHz	-	59.65	S	
MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 144 MHz x=1.8	-	29.825	S	

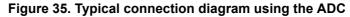
Table 58. TIMx⁽¹⁾⁽²⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design.



3. Channels available on PA2, PA6, PB1, PB12.


Symbol	Parameter	(Conditions		Min (3)	Тур	Max (3)	Unit		
			Cingle ended	Fast channel 5.1 Ms	-	±3.5	±4.5			
ET	Total		Single ended	Slow channel 4.8 Ms	-	<u>±4</u>	±4.5			
	unadjusted error		Differential	Fast channel 5.1 Ms	-	±3	±3			
			Dillerential	Slow channel 4.8 Ms	-	±3	±3			
			Single ended	Fast channel 5.1 Ms	-	±1	±1.5	1		
EO	Offset error		Single ended	Slow channel 4.8 Ms	-	±1	±2.5			
EO	Olisetenoi		Differential	Fast channel 5.1 Ms	-	±1	±1.5			
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5			
			Single ended	Fast channel 5.1 Ms	-	±3	±4	- LSB		
FC	Coin orror	ain error	Single ended	Slow channel 4.8 Ms	-	±3.5	±4			
EG	Gain error		Differential	Fast channel 5.1 Ms	-	±1.5	±2.5			
				Slow channel 4.8 Ms	-	±2	±2.5			
ED	Differential linearity error		ADC clock freq. \leq 72 MHz	Single ended	Fast channel 5.1 Ms	-	±1	±1.5	1	
		hearity $V_{DDA} = V_{REF+} = 3.3 V$	Single ended	Slow channel 4.8 Ms	-	±1	±1.5			
			Differential	Fast channel 5.1 Ms	-	±1	±1			
					1	100-pin package	Dillerential	Slow channel 4.8 Ms	-	±1
EL	Integral linearity error	linearity		Single ended	Fast channel 5.1 Ms	-	±1.5	±2		
					Slow channel 4.8 Ms	-	±1.5	±3		
			-		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
					Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
ENOB ⁽⁴⁾	Effective number of bits	number of	Single ended	Fast channel 5.1 Ms	10.7	10.8	-	- bits		
				Slow channel 4.8 Ms	10.7	10.8	-			
				Fast channel 5.1 Ms	11.2	11.3	-			
				Slow channel 4.8 Ms	11.1	11.3	-			
SINAD ⁽⁴⁾	Signal-to- noise and distortion ratio	noise and distortion	Single ended	Fast channel 5.1 Ms	66	67	-	- dB		
				Slow channel 4.8 Ms	66	67	-			
SINAD' /				Fast channel 5.1 Ms	69	70	-			
				Slow channel 4.8 Ms	69	70	-			

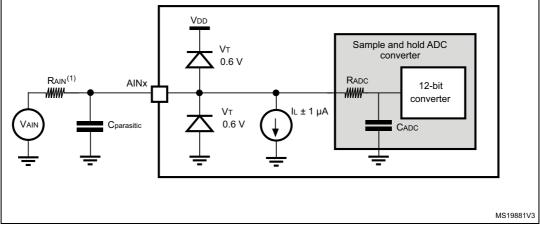

Table 10. Abc accuracy - infined lest conditions, 100-pin packages	Table 70. ADC accuracy	y - limited test condition	ıs, 100-pin packages ⁽¹⁾	(2)
--	------------------------	----------------------------	-------------------------------------	-----

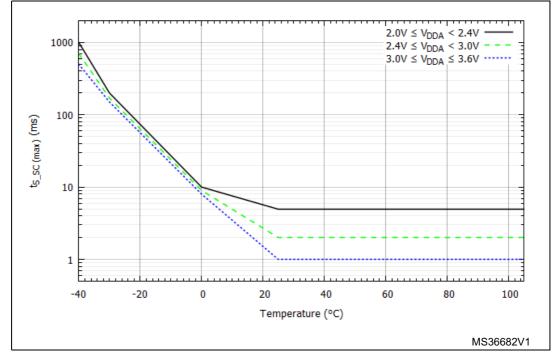
Figure 34. ADC accuracy characteristics

1. Refer to *Table 68* for the values of R_{AIN}.

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.


Electrical characteristics

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	
V _{hys}			High speed mode	3		13	
	Comparator hysteresis	Low hysteresis (COMPxHYST[1:0]=01)	All other power modes	5	8	10	m∨
		Medium hysteresis (COMPxHYST[1:0]=10)	High speed mode	7	15	26	
			All other power modes	9		19	
		High hysteresis (COMPxHYST[1:0]=11)	High speed mode	18	31	49	
			All other power modes	19		40	

Table 76. Comparator characteristics ⁽¹⁾ (co	ontinued)
---	-----------

1. Data guaranteed by design.

2. For more details and conditions, see Figure 37 Maximum V_{REFINT} scaler startup time from power down.

Figure 37. Maximum V_{REFINT} scaler startup time from power down

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package information

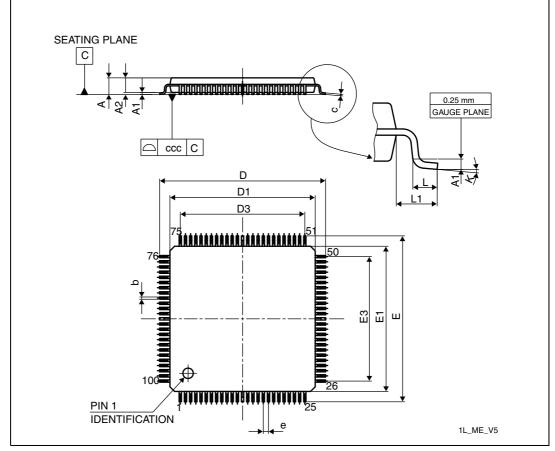


Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline

1. Drawing is not to scale.

Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.60	-	-	0.063
A1	0.05	-	0.15	0.002	-	0.0059

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Table 88. Document revision history (continued)				
Date	Revision	Changes		
		Updated first page Removed references to VDDSDx and VSSSD		
		Added reference to PM0214 in Section 1		
		Moved Temp. sensor calibartion values to Table 79 and VREF calibration		
		values to Table 29		
		Updated Table 3: STM32F303xx family device features and peripheral		
		counts		
		Updated Section 3.4: Embedded SRAM		
		Updated Section 3.2: Memory protection unit (MPU)		
		Updated Section 3.24: Universal serial bus (USB)		
		Modified Section 3.26: Touch sensing controller (TSC)		
		Updated heading of Table 11: USART features		
		Updated Table 16: STM32F302xB/STM32F302xC pin definitions		
		Added notes to PC13, PC14 and PC15 in <i>Table 16:</i>		
		STM32F302xB/STM32F302xC pin definitions		
		Updated Figure 11: Power supply scheme		
		Modified Table 21: Voltage characteristics Modified Table 22: Current characteristics		
		Modified Table 22: Current characteristics Modified Table 24: General operating conditions		
		Modified Figure 13: Typical VBAT current consumption (LSE and RTC		
		ON/LSEDRV[1:0] = '00')		
		Updated Section 6.3.14: I/O port characteristics		
		Updated Table 30: Typical and maximum current consumption from VDD		
		supply at VDD = 3.6V and Table 31: Typical and maximum current		
		consumption from the VDDA supply		
		Updated Table 32: Typical and maximum VDD consumption in Stop and		
05-Dec-2012	4	Standby modes and Table 33: Typical and maximum VDDA consumption		
		in Stop and Standby modes		
		Updated Table 34: Typical and maximum current consumption from		
		VBAT supply		
		Added Figure 13: Typical VBAT current consumption (LSE and RTC		
		ON/LSEDRV[1:0] = '00')		
		Updated Table 35: Typical current consumption in Run mode, code with		
		data processing running from Flash and Table 36: Typical current consumption in Sleep mode, code running from Flash or RAM		
		Added Table 38: Peripheral current consumption		
		Added Table 37: Switching output I/O current consumption		
		Updated Section 6.3.6: Wakeup time from low-power mode		
		Modified ESD absolute maximum ratings		
		Modified Table 55: Output voltage characteristics		
		Updated EMI characteristics		
		Updated Table 56: I/O AC characteristics		
		Updated Table 53: I/O current injection susceptibility		
		Updated Table 58: TIMx characteristics		
		Updated Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale		
		package information		
		Added Table 69: Maximum ADC RAIN		
		Added Table 70: ADC accuracy - limited test conditions, 100-pin		
		packages		
		Updated Table 64: ADC accuracy - limited test conditions 2)		
		Updated Table 75: DAC characteristics		
		Updated Table 77: Operational amplifier characteristics Updated figures and tables in Section 7: Package information		

Date	Revision	Changes		
		Updated <i>Table 50: EMI characteristics</i> conditions :3.3v replaced by 3.6V. Updated <i>Section 6.3.17: Communications interfaces</i> I ² C interface. Updated <i>Table 77: Operational amplifier characteristics</i> adding TS_OPAMP_VOUT row. Updated <i>Section 3.13: Fast analog-to-digital converter (ADC).</i> updated ARM and Cortex trademark. Updated <i>Table 32: Typical and maximum VDD consumption in Stop and</i>		
18-Apr-2014	8	Standby modes with Max value at 85°C and 105°C. Updated Table 70: ADC accuracy - limited test conditions, 100-pin packages and Table 71: ADC accuracy, 100-pin packages for 100-pin package. Added Table 72: ADC accuracy - limited test conditions, 64-pin packages and Table 73: ADC accuracy, 64-pin packagesfor 64-pin package. Added Table 74: ADC accuracy at 1MSPS for 1MSPS sampling frequency. Updated Table 63: SPI characteristics. Updated Table 75: DAC characteristics.		
09-Dec-2014	9	Updated core description in cover page. Updated HSI characteristics <i>Table 44: HSI oscillator characteristics</i> and <i>Figure 18: HSI oscillator accuracy characterization results for soldered</i> <i>parts.</i> Updated <i>Table 58: TIMx characteristics.</i> Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> adding note for I/Os featuring an analog output function (DAC_OUT,OPAMP_OUT). Updated <i>Table 68: ADC characteristics</i> adding IDDA & IREF consumptions. Added <i>Figure 32: ADC typical current consumption on VDDA pin</i> and <i>Figure 33: ADC typical current consumption on VDDA pin</i> and <i>Figure 33: ADC typical current consumption on VREF+ pin.</i> Added Section 3.8: Interconnect matrix. Updated <i>Figure 5: Clock tree.</i> Added note after <i>Table 32: Typical and maximum VDD consumption in</i> <i>Stop and Standby modes.</i> Updated Section : In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: <i>www.st.com. ECOPACK® is an ST trademark.</i> with new LQFP100, LQFP64, LQFP48 package marking. Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> and alternate functions tables replacing usart_rts by usart_rts_de.		
29-Jan-2015	10	Updated Section 6.3.20: Comparator characteristics modifying ts_sc characteristics in Table 76 and adding Figure 37: Maximum VREFINT scaler startup time from power down. Updated I _{DD} data in Table 42: HSE oscillator characteristics.		

Table 88. D	Ocument revision	history	(continued)
-------------	------------------	---------	-------------

