

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303cct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.10 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz.

3.11 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

3.12 Interrupts and events

3.12.1 Nested vectored interrupt controller (NVIC)

The STM32F303xB/STM32F303xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.16 Fast comparators (COMP)

The STM32F303xB/STM32F303xC devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pin
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to *Table 28: Embedded internal reference voltage on page 62* for the value and precision of the internal reference voltage.

All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

3.17 Timers and watchdogs

The STM32F303xB/STM32F303xC includes two advanced control timers, up to six generalpurpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare Channels	Complementary outputs
Advanced	TIM1, TIM8 16-bit Up, Down, Up/Down		Any integer between 1 and 65536	Yes	4	Yes	
General- purpose	al- TIM2 32-bit Up, Down, Any between the two sets of two sets of two sets of the two sets of two sets		Any integer between 1 and 65536	Yes	4	No	
General- purpose	TIM3, TIM4	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 5. Timer feature comparison

Note: TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.

DocID023353 Rev 13

3.25 Infrared Transmitter

The STM32F303xB/STM32F303xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

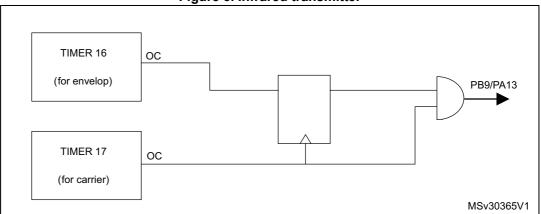


Figure 3. Infrared transmitter

3.26 Touch sensing controller (TSC)

The STM32F303xB/STM32F303xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

3.27 Development support

3.27.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.27.2 Embedded trace macrocell[™]

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F303xB/STM32F303xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

Na	me	Abbreviation	Definition						
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name						
		S	Supply pin						
Pin	type	I	Input only pin						
		I/O	Input / output pin						
		FT	5 V tolerant I/O						
		FTf	5 V tolerant I/O, FM+ capable						
I/O etr	ucture	TTa	TTa 3.3 V tolerant I/O directly connected to ADC						
i/O su	uclure	TC Standard 3.3V I/O							
		В	Dedicated BOOT0 pin						
		RST	Bidirectional reset pin with embedded weak pull-up resistor						
No	tes	Unless otherwis	e specified by a note, all I/Os are set as floating inputs during and after reset						
D'	Alternate functions	Fu	nctions selected through GPIOx_AFR registers						
Pin functions	Additional functions	Functions	directly selected/enabled through peripheral registers						

Table 12. Legend/abbreviations used in the pinout table	
Table 12. Logena/abbreviatione acea in the phieut table	

Table 13. STM32F303xB/STM32F303xC pin definitions

	Pin nı	umber						Pin fu	nctions
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
D6	1	-	-	PE2	I/O	FT	(1)	TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT	-
D7	2	-	-	PE3	I/O	FT	(1)	TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT	-
C8	3	-	-	PE4	I/O	FT	(1)	TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT	-
B9	4	-	-	PE5	I/O	FT	(1)	TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT	-
E7	5	-	-	PE6	I/O	FT	(1)	TRACED3, EVENTOUT	WKUP3, RTC_TAMP3
D8	6	1	1	V _{BAT}	S	-	-	Backup po	ower supply

5

					Tabl	le 14. A	Iternate func	tions for p	ort A (co	ntinued)					
Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF14	AF15
PA12	-	TIM16_ CH1	-	-	-	-	TIM1_CH2N	USART1_ RTS_DE	COMP2 _OUT	CAN_TX	TIM4_ CH2	TIM1_ETR	-	USB_ DP	EVENT OUT
PA13	SWDIO -JTMS	TIM16_ CH1N	-	TSC_ G4_IO3	-	IR_ OUT	-	USART3_ CTS	-	-	TIM4_ CH3	-	-	-	EVENT OUT
PA14	SWCLK -JTCK	-	-	TSC_ G4_IO4	I2C1_ SDA	TIM8_ CH2	TIM1_BKIN	USART2_ TX	-	-	-	-	-	-	EVENT OUT
PA15	JTDI	TIM2_ CH1_ ETR	TIM8_ CH1	-	I2C1_ SCL	SPI1_ NSS	SPI3_NSS, I2S3_WS	USART2_ RX	-	TIM1_ BKIN	-	-	-	-	EVENT OUT

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
M	PVD threshold 0	Rising edge	2.1	2.18	2.26	
V _{PVD0}		Falling edge	2	2.08	2.16	
V	PVD threshold 1	Rising edge	2.19	2.28	2.37	
V _{PVD1}		Falling edge	2.09	2.18	2.27	
V	PVD threshold 2	Rising edge	2.28	2.38	2.48	
V _{PVD2}		Falling edge	2.18	2.28	2.38	
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	
V _{PVD3}		Falling edge	2.28	2.38	2.48	V
V	PVD threshold 4	Rising edge	2.47	2.58	2.69	v
V _{PVD4}	FVD threshold 4	Falling edge	2.37	2.48	2.59	
V	PVD threshold 5	Rising edge	2.57	2.68	2.79	
V _{PVD5}	PVD Infestion 5	Falling edge	2.47	2.58	2.69	
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	
V _{PVD6}	PVD Infestion 6	Falling edge	2.56	2.68	2.8	
V	PVD threshold 7	Rising edge	2.76	2.88	3	
V _{PVD7}		Falling edge	2.66	2.78	2.9	
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
IDD(PVD)	PVD current consumption	-	-	0.15	0.26	μA

1. Guaranteed by characterization results.

2. Guaranteed by design.

					· ·		,					
		r Conditions		Тур (@v _{DD} ((V _{DD} =V						
Symbol	Parameter		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	Unit
Supply	Supply current in	Regulator in run mode, all oscillators OFF	20.05	20.33	20.42	20.50	20.67	20.80	44.2 ⁽²⁾	350	735 ⁽²⁾	
	Stop mode	Regulator in low-power mode, all oscillators OFF	7.63	7.77	7.90	8.07	8.17	8.33	30.6 ⁽²⁾	335	720 ⁽²⁾	μA
	Supply	LSI ON and IWDG ON	0.80	0.96	1.09	1.23	1.37	1.51	-	-	-	
current in Standby mode		LSI OFF and IWDG OFF	0.60	0.74	0.83	0.93	1.02	1.11	5.0 ⁽²⁾	7.8	13.3 ⁽²⁾	

Table 32. Typical and maximum V	consumption in Sto	p and Standby modes
Tuble of Typical and maximum v		p und oluniday modes

1. Guaranteed by characterization results unless otherwise specified.

2. Data based on characterization results and tested in production.

					Тур @)V _{DD} (V _{DD} =	V _{DDA})			Max ⁽¹⁾		
Symbol	Parameter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	Unit
	Supply	NO	Regulator in run mode, all oscillators OFF	1.81	1.95	2.07	2.20	2.35	2.52	3.7	5.5	8.8	
C	curront in	oring	Regulator in low-power mode, all oscillators OFF	1.81	1.95	2.07	2.20	2.35	2.52	3.7	5.5	8.8	
	Supply current in Standby mode		LSI ON and IWDG ON	2.22	2.42	2.59	2.78	3.0	3.24	-	-	-	
			LSI OFF and IWDG OFF	1.69	1.82	1.94	2.08	2.23	2.40	3.5	5.4	9.2	
IDDA	Supply	ЦЦ	Regulator in run mode, all oscillators OFF	1.05	1.08	1.10	1.15	1.22	1.29	-	-	-	μA
	current in Stop mode	Drin	Regulator in low-power mode, all oscillators OFF	1.05	1.08	1.10	1.15	1.22	1.29	-	-	-	
	Supply	-	LSI ON and IWDG ON	1.44	1.52	1.60	1.71	1.84	1.98	-	-	-	
	current in Standby mode	V _{DDA}	LSI OFF and IWDG OFF	0.93	0.95	0.98	1.02	1.08	1.15	-	-	-	

Table 33. Typical and maximum V_{DDA} consumption in Stop and Standby modes

1. Guaranteed by characterization results.

The total consumption is the sum of IDD and IDDA.

Symbol	Para meter	(4)				@V _E	Unit							
			1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C		T _A = 105°C	onne
I _{DD_VBAT}	Backup domain supply current	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
		LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μΑ

Table 34. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

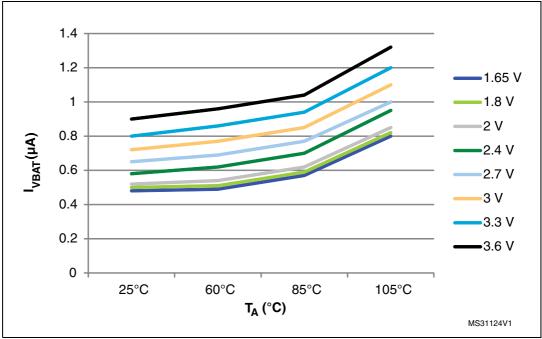
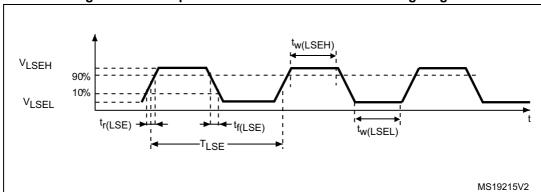


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

DocID023353 Rev 13


Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V_{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	611

 Table 41. Low-speed external user clock characteristics

1. Guaranteed by design.

Figure 15. Low-speed external clock source AC timing diagram

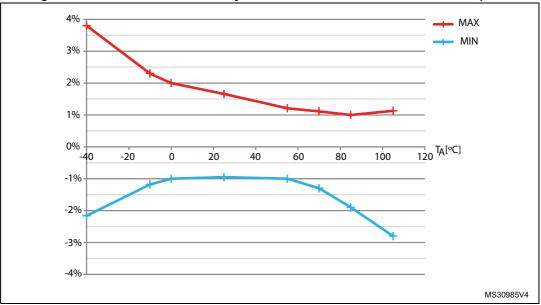


Figure 18. HSI oscillator accuracy characterization results for soldered parts

Low-speed internal (LSI) RC oscillator

Table 45. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

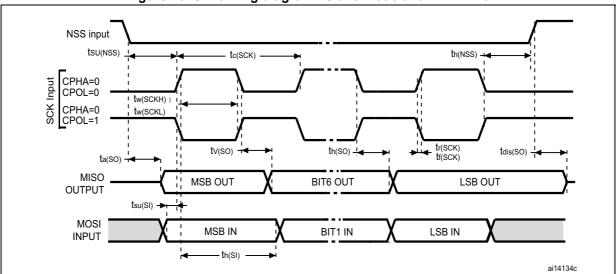
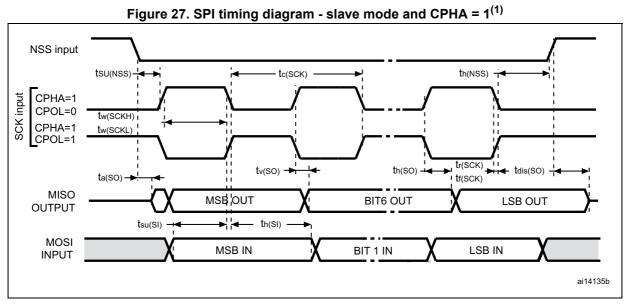



Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

USB characteristics

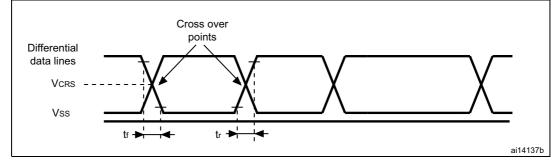
Table	65.	USB	startup	time
-------	-----	-----	---------	------

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Table	66.	USB	DC	electrical	characteristics
IUNIC	vv .	000		Ciccuitour	unu uotor istios

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit		
Input leve	els						
V_{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V		
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-			
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V		
$V_{SE}^{(4)}$	Single ended receiver threshold	-	1.3	2.0			
Output levels							
V _{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(5)}$	-	0.3	v		
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6			


1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F303xB/STM32F303xC USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design.
- 5. R_L is the load connected on the USB drivers.

Figure 31. USB timings: definition of data signal rise and fall time

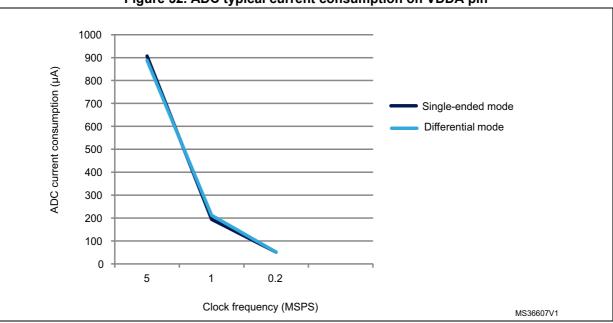
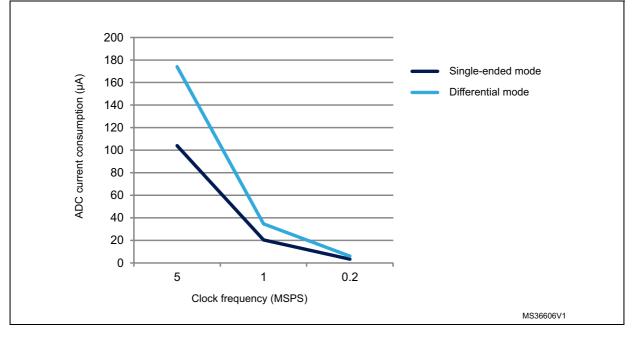



Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

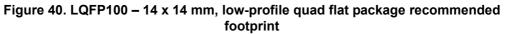
6.3.19 DAC electrical specifications

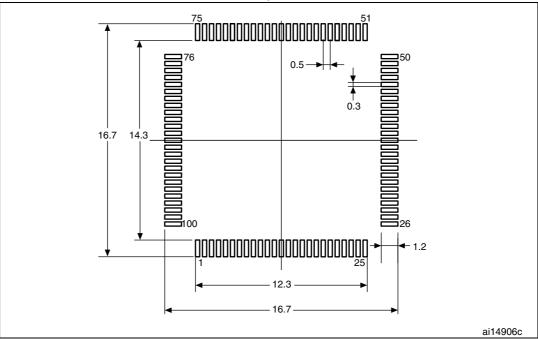
Symbol	Parameter	Parameter Conditions			Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V
R _{LOAD} ⁽¹⁾	Resistive load	DAC output Connected to V _{SSA}		5	-	-	kΩ
		buffer ON	Connected to V_{DDA}	25	-	-	K22
$R_0^{(1)}$	Output impedance	DAC output	buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output	buffer ON	-	-	50	pF
V _{DAC_OUT} ⁽¹⁾ Voltage on DAC_OUT output		code (0x0E) V _{DDA} = 3.6 and (0x155)	s to 12-bit input 0) to (0xF1C) at V and (0xEAB) at V DAC output buffer	0.2	-	V _{DDA} – 0.2	V
		DAC output	buffer OFF	-	0.5	V _{DDA} - 1LSB	mV
I _{DDA} ⁽³⁾	DAC DC current consumption in quiescent	With no load (0x800) on t	d, middle code he input.	-	-	380	μA
'DDA'	mode (Standby mode) ⁽²⁾	With no load, worst code (0xF1C) on the input.		-	-	480	μΑ
(3)	Differential non linearity	Given for a 10-bit input code		-	-	±0.5	LSB
DNL ⁽³⁾	DNL ⁽³⁾ Difference between two consecutive code-1LSB)		Given for a 12-bit input code		-	±2	LSB
	Integral non linearity	Given for a	10-bit input code	-	-	±1	LSB
INL ⁽³⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095)	Given for a 12-bit input code		-	-	±4	LSB
		-		-	-	±10	mV
Offset ⁽³⁾	Offset error (difference between measured value at Code (0x800) and the ideal	Given for a 10-bit input code at V _{DDA} = 3.6 V		-	-	±3	LSB
	value = $V_{DDA}/2$)	Given for a 12-bit input code at V _{DDA} = 3.6 V		-	-	±12	LSB
Gain error ⁽³⁾	Gain error	Given for a	12-bit input code	-	-	±0.5	%
	Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ		-	3	4	μs
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ		-	-	1	MS/s

Table 75. DAC characteristics

6.3.20 Comparator characteristics

Symbol	Parameter	Conditions			Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-		2	-	3.6	
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V
V _{BG}	Scaler input voltage	-		-	1.2	-	
V _{SC}	Scaler offset voltage	-		-	±5	±10	mV
t _{s_sc}	V _{REFINT} scaler startup time from power down	First V _{REFINT} scaler ac power		-	-	1 ⁽²⁾	s
		Next activ	rations	-	-	0.2	ms
t _{START}	Comparator startup time	Startup time to reach pr specification	opagation delay	-	-	60	μs
		Ultra-low-power mode		-	2	4.5	
	Propagation delay for	Low-power mode	-	0.7	1.5	μs	
	200 mV step with 100 mV overdrive	Medium power mode	-	0.3	0.6		
		High speed mode $\frac{V_{DDA} \ge 2.7 \text{ V}}{V_{DDA} < 2.7 \text{ V}}$	$V_{DDA} \ge 2.7 V$	-	50	100	ns
+			V _{DDA} < 2.7 V	-	100	240	115
t _D		Ultra-low-power mode		-	2	7	
	Propagation delay for full	Low-power mode	-	0.7	2.1	μs	
	range step with 100 mV	Medium power mode	-	0.3	1.2		
	overdrive	High speed mode	$V_{DDA} \ge 2.7 V$	-	90	180	ns
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	115
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	μV/° C
		Ultra-low-power mode		-	1.2	1.5	
	COMP current	Low-power mode		-	3	5	
IDD(COMP)	consumption	Medium power mode		-	10	15	μA
		High speed mode	-	75	100]	


Table 76. Comparator characteristics⁽¹⁾



Symbol		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max		
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571		
b	0.17	0.22	0.27	0.0067	0.0087	0.0106		
С	0.09	-	0.2	0.0035	-	0.0079		
D	15.80	16.00	16.2	0.622	0.6299	0.6378		
D1	13.80	14.00	14.2	0.5433	0.5512	0.5591		
D3	-	12.00	-	-	0.4724	-		
Е	15.80	16.00	16.2	0.622	0.6299	0.6378		
E1	13.80	14.00	14.2	0.5433	0.5512	0.5591		
E3	-	12.00	-	-	0.4724	-		
е	-	0.50	-	-	0.0197	-		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295		
L1	-	1.00	-	-	0.0394	-		
К	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.08	-	-	0.0031		

Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

DocID023353 Rev 13

7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package information

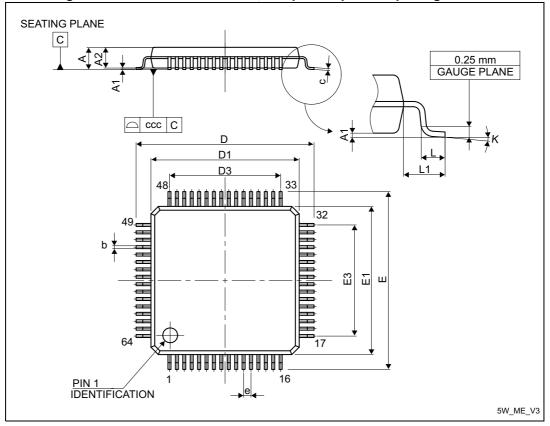


Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline

1. Drawing is not to scale.

Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical
data

			uutu				
Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	-	-	1.60	-	-	0.0630	
A1	0.05	-	0.15	0.0020	-	0.0059	
A2	1.350	1.40	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
С	0.09	-	0.20	0.0035		0.0079	
D	-	12.00	-	-	0.4724	-	
D1	-	10.00	-	-	0.3937	-	
D3	-	7.50	-	-	0.2953	-	
E	-	12.00	-	-	0.4724	-	

7.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F303xB/STM32F303xC at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 3 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 2 I/Os used at the same time in output at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 61.6 mW:

 $P_{Dmax} = 175 + 61.6 = 236.6 \text{ mW}$

Thus: $P_{Dmax} = 236.6 \text{ mW}$

Using the values obtained in *Table 86* T_{Jmax} is calculated as follows:

– For LQFP64, 45°C/W

T_{Jmax} = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C

This is within the range of the suffix 6 version parts ($-40 < T_{J} < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

	Tuble	e oo. Document revision history (continued)
Date	Revision	Changes
17-Apr-2015	11	Updated Section 7: Package information: with new package information structure adding 1 sub paragraph for each package. Updated Figure 41: LQFP100 – 14 x 14 mm, low-profile quad flat package top view example removing gate mark. Added note for all packages about the device marking orientation: "the following figure gives an example of topside marking orientation versus pin 1 identifier location". Updated Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data.
11-Dec-2015	12	 Added WLCSP100: Updated cover page. Updated Table 2: STM32F303xB/STM32F303xC family device features and peripheral counts. Added Figure 7: STM32F303xB/STM32F303xC WLCSP100 pinout. Updated Table 13: STM32F303xB/STM32F303xC pin definitions. Updated Table 24: General operating conditions. Added Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale package information. Updated Table 86: Package thermal characteristics. Updated Table 87: Ordering information scheme. Updated Figure 4, Figure 5, Figure 6, Table 13 and Table 22 removing all VDD and VSS indexes. Updated Table 68: ADC characteristics adding V_{REF-} negative voltage reference. Update Table 21: Voltage characteristics adding table note 4.

Table 88. Document revision history (continued)

