E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 39x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303vbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	uction
2	Desc	ption
3	Func	onal overview
	3.1	ARM [®] Cortex [®] -M4 core with FPU with embedded Flash and SRAM \ldots 13
	3.2	Memory protection unit (MPU) 13
	3.3	Embedded Flash memory 13
	3.4	Embedded SRAM
	3.5	Boot modes
	3.6	Cyclic redundancy check (CRC) 14
	3.7	Power management
		3.7.1 Power supply schemes
		3.7.2 Power supply supervision 15
		3.7.3 Voltage regulator
		3.7.4 Low-power modes 16
	3.8	Interconnect matrix
	3.9	Clocks and startup
	3.10	General-purpose input/outputs (GPIOs)
	3.11	Direct memory access (DMA) 19
	3.12	Interrupts and events
		3.12.1 Nested vectored interrupt controller (NVIC)
	3.13	Fast analog-to-digital converter (ADC)
		3.13.1 Temperature sensor
		3.13.2 Internal voltage reference (V _{REFINT})
		3.13.3 V _{BAT} battery voltage monitoring
		3.13.4 OPAMP reference voltage (VREFOPAMP)
	3.14	Digital-to-analog converter (DAC) 21
	3.15	Operational amplifier (OPAMP) 21
	3.16	Fast comparators (COMP) 22
	3.17	Timers and watchdogs 22
		3.17.1 Advanced timers (TIM1, TIM8)

3.7 **Power management**

3.7.1 **Power supply schemes**

- V_{SS} , V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

		••••
Analog peripheral	Minimum V_{DDA} supply	Maximum V _{DDA} supply
ADC / COMP	2.0 V	3.6 V
DAC / OPAMP	2.4 V	3.6V

 Table 3. External analog supply values for analog peripherals

3.7.2 Power supply supervision

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

3.13.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN17. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.13.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4 connected to ADC4 channel 17.

3.14 Digital-to-analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Two DAC output channels
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability (for each channel)
- External triggers for conversion

3.15 Operational amplifier (OPAMP)

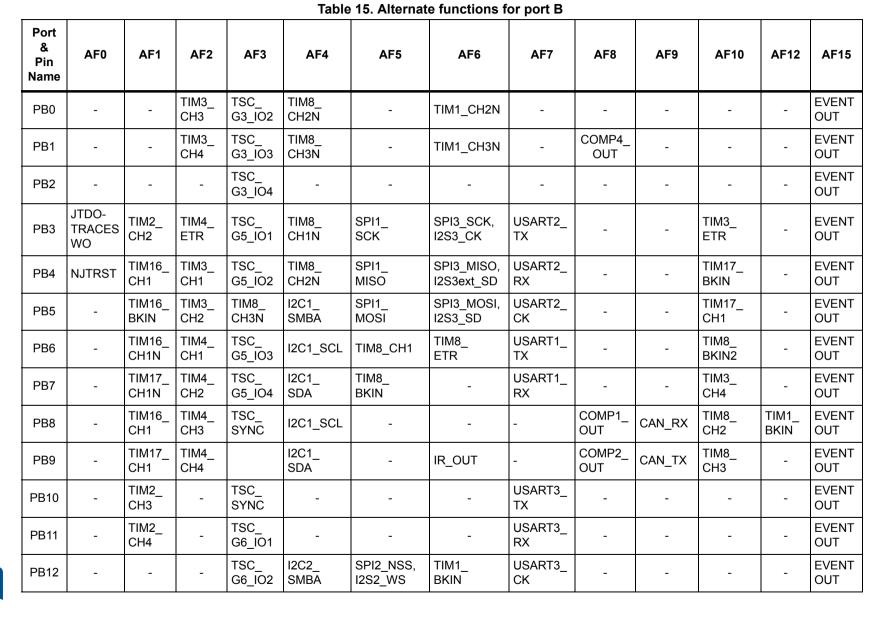
The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
I	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		up signal name name TSC_G5_I01 PB3 TSC_G5_I02 PB4 TSC_G5_I03 PB6 TSC_G5_I03 PB6 TSC_G5_I04 PB7 TSC_G6_I01 PB11 TSC_G6_I02 PB12 TSC_G6_I03 PB13 TSC_G6_I04 PB14 TSC_G6_I04 PB14 TSC_G6_I04 PB14 TSC_G7_I01 PE2 TSC_G7_I02 PE3 TSC_G7_I03 PE4 TSC_G7_I04 PE5 TSC_G8_I01 PD12 TSC_G8_I02 PD13 TSC_G8_I03 PD14	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	R	TSC_G8_IO2	PD13
-	TSC_G4_IO3	PA13	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PD15	

Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices


Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices

	Number of capacitive sensing channels										
Analog I/O group	STM32F303Vx	STM32F303Rx	STM32F303Cx								
G1	3	3	3								
G2	3	3	3								
G3	3	3	2								
G4	3	3	3								
G5	3	3	3								
G6	3	3	3								
G7	3	0	0								
G8	3	0	0								
Number of capacitive sensing channels	24	18	17								

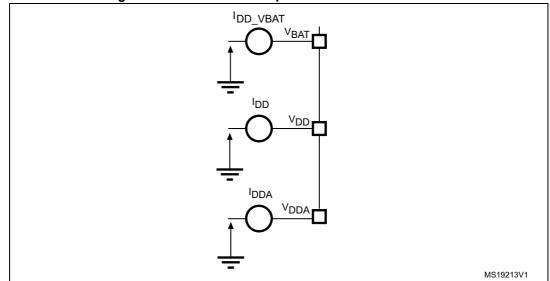
46/148

DocID023353 Rev 13

Pinouts and pin description

STM32F303xB STM32F303xC

		Та	able 17. Alterna	te functions fo	or port D		
Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PD0	EVENTOUT	-	-	-	-	-	CAN_RX
PD1	EVENTOUT	-	-	TIM8_CH4	-	TIM8_BKIN2	CAN_TX
PD2	EVENTOUT	TIM3_ETR	-	TIM8_BKIN	UART5_RX	-	-
PD3	EVENTOUT	TIM2_CH1_ETR	-	-	-	-	USART2_CTS
PD4	EVENTOUT	TIM2_CH2	-	-	-	-	USART2_RTS_DE
PD5	EVENTOUT	-	-	-	-	-	USART2_TX
PD6	EVENTOUT	TIM2_CH4	-	-	-	-	USART2_RX
PD7	EVENTOUT	TIM2_CH3	-	-	-	-	USART2_CK
PD8	EVENTOUT	-	-	-	-	-	USART3_TX
PD9	EVENTOUT	-	-	-	-	-	USART3_RX
PD10	EVENTOUT	-	-	-	-	-	USART3_CK
PD11	EVENTOUT	-	-	-	-	-	USART3_CTS
PD12	EVENTOUT	TIM4_CH1	TSC_G8_IO1	-	-	-	USART3_RTS_D
PD13	EVENTOUT	TIM4_CH2	TSC_G8_IO2	-	-	-	-
PD14	EVENTOUT	TIM4_CH3	TSC_G8_IO3	-	-	-	-
PD15	EVENTOUT	TIM4_CH4	TSC_G8_IO4	-	-	SPI2_NSS	-


DocID023353 Rev 13

5

49/148

Pinouts and pin description

6.1.7 **Current consumption measurement**

Figure 12. Current consumption measurement scheme

Absolute maximum ratings 6.2

Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics, Table 22: Current characteristics, and Table 23: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including $V_{DDA,}$ V_{BAT} and $V_{DD})$	-0.3	4.0	
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	
V _{REF+} -V _{DDA} ⁽²⁾	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	
	Input voltage on FT and FTf pins	V _{SS} –0.3	V _{DD} + 4.0	V
V _{IN} ⁽³⁾	Input voltage on TTa pins	V _{SS} -0.3 4.0		
VIN Y	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage on Boot0 pin	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	m\/
V _{SSX} –V _{SS}	Variations between all the different ground pins ⁽⁴⁾	-	50	111V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3. sensitivity charac		-

Table 21	. Voltage	characteristics ⁽¹⁾
----------	-----------	--------------------------------

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between V_{DDA} and V_{DD}: V_{DDA} must power on before or at the same time as V_{DD} in the power up sequence. V_{DDA} must be greater than or equal to V_{DD}.

			Typ @V _{DD} (V _{DD} =V _{DDA})							Max ⁽¹⁾			
				Тур (@v _{DD} (v _{DD} =v	DDA)			max"			
Symbol	Parameter	Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	Unit	
	Supply current in	Regulator in run mode, all oscillators OFF	20.05	20.33	20.42	20.50	20.67	20.80	44.2 ⁽²⁾	350	735 ⁽²⁾		
	Stop mode	Regulator in low-power mode, all oscillators OFF	7.63	7.77	7.90	8.07	8.17	8.33	30.6 ⁽²⁾	335	720 ⁽²⁾) µA	
	Supply	LSI ON and IWDG ON	0.80	0.96	1.09	1.23	1.37	1.51	-	-	-		
		LSI OFF and IWDG OFF	0.60	0.74	0.83	0.93	1.02	1.11	5.0 ⁽²⁾	7.8	13.3 ⁽²⁾		

Table 32. Typical and maximum V	consumption in Sto	p and Standby modes
Tuble of Typical and maximum v		p und oluniday modes

1. Guaranteed by characterization results unless otherwise specified.

2. Data based on characterization results and tested in production.

					Тур @)V _{DD} (V _{DD} =		Max ⁽¹⁾						
Symbol	Parameter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	Unit		
	Supply	NO	Regulator in run mode, all oscillators OFF	1.81	1.95	2.07	2.20	2.35	2.52	3.7	5.5	8.8			
	current in Stop mode	oring	Regulator in low-power mode, all oscillators OFF	1.81	1.95	2.07	2.20	2.35	2.52	3.7	5.5	8.8			
	Supply current in Standby mode	Juppiy	LSI ON and IWDG ON	2.22	2.42	2.59	2.78	3.0	3.24	-	-	-			
			LSI OFF and IWDG OFF	1.69	1.82	1.94	2.08	2.23	2.40	3.5	5.4	9.2			
IDDA	Supply	ЦЦ	Regulator in run mode, all oscillators OFF	1.05	1.08	1.10	1.15	1.22	1.29	-	-	-	μA		
	current in	current in		Drin	Regulator in low-power mode, all oscillators OFF	1.05	1.08	1.10	1.15	1.22	1.29	-	-	-	
	current in Standby	-	LSI ON and IWDG ON	1.44	1.52	1.60	1.71	1.84	1.98	-	-	-			
		current in Standby	current in Standby mode	~	LSI OFF and IWDG OFF	0.93	0.95	0.98	1.02	1.08	1.15	-	-	-	

Table 33. Typical and maximum V_{DDA} consumption in Stop and Standby modes

1. Guaranteed by characterization results.

The total consumption is the sum of IDD and IDDA.

Symbol	Para	(4)	Тур @V _{BAT}								Max @V _{BAT} = 3.6 V ⁽²⁾			Unit
	meter	(1)	1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C		T _A = 105°C	onne
	Backup domain	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μΑ

Table 34. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

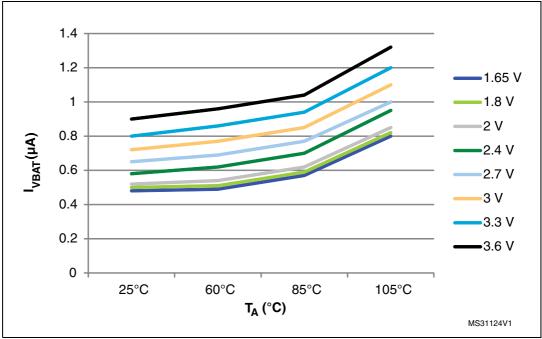


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled, $f_{APB1} = f_{AHB/2}$, $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.

Table 35. Typical current consumption in Run mode, code with data processing running from Flash

		Conditions		Ţ		
Symbol	Parameter		fhclk	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	61.3	28.0	
			64 MHz	54.8	25.4	
			48 MHz	41.9	19.3	
			32 MHz	28.5	13.3	
			24 MHz	21.8	10.4	
	Supply current in Run mode from		16 MHz	14.9	7.2	mA
I _{DD}	V _{DD} supply		8 MHz	7.7	3.9	
			4 MHz	4.5	2.5	-
			2 MHz	2.8	1.7	
			1 MHz	1.9	1.3	
		Running from HSE	500 kHz	1.4	1.1	
		crystal clock 8 MHz,	125 kHz	1.1	0.9	
		code executing from	72 MHz	240.3	239.5	
		Flash	64 MHz	210.9	210.3	
			48 MHz	155.8	155.6	
			32 MHz	105.7	105.6	
			24 MHz	82.1	82.0	
I _{DDA} ^{(1) (2)}	Supply current in Run mode from		16 MHz	58.8	58.8	μA
'DDA` / ` /	V _{DDA} supply		8 MHz	2.4	2.4	μΑ
			4 MHz	2.4	2.4	-
			2 MHz	2.4	2.4	
			1 MHz	2.4	2.4	
			500 kHz	2.4	2.4	
			125 kHz	2.4	2.4]

1. V_{DDA} monitoring is ON.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

Table 36. Peripheral current consumption (continued)					
Peripheral	Typical consumption ⁽¹⁾	Unit			
· ···p·····	IDD				
TIM6	9.7				
TIM7	12.1				
WWDG	6.4				
SPI2	40.4				
SPI3	40.0				
USART2	41.9				
USART3	40.2				
UART4	36.5	µA/MHz			
UART5	30.8				
I2C1	10.5				
I2C2	10.4				
USB	26.2				
CAN	33.4				
PWR	5.7				
DAC	15.4				

Table 38. Peripheral current consumption (continued)

1. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).

3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in the application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 49. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	Farameter	contaitions	frequency band 8/72 MHz		Unit
			0.1 to 30 MHz	7	
6	S Poak lovel LQFP100 p	$V_{DD} = 3.6 V, T_A = 25 °C,$ LQFP100 package	30 to 130 MHz	20	dBµV
SEMI		compliant with IEC	130 MHz to 1GHz	27	
		01907-2	SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A114		2	2000	
	Electrostatic		WLCSP100 package	3	250	V
V _{ESD(CDM)}	discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	Packages except WLCSP100	4	500	

Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

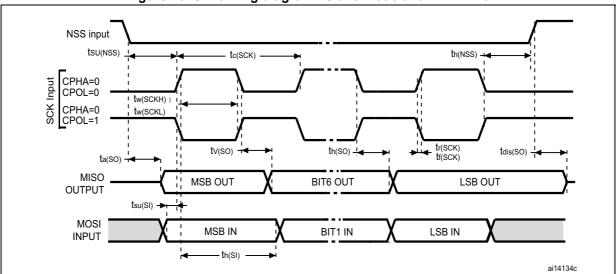
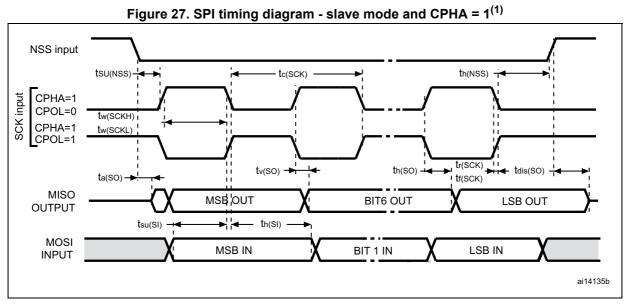



Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in *Table 68* to *Table 70* are guaranteed by design, with conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage for ADC	-	2	-	3.6	V	
		Single-ended mode, 5 MSPS	-	907	1033.0		
		Single-ended mode, 1 MSPS	-	194	285.5		
	ADC current consumption on VDDA	Single-ended mode, 200 KSPS	-	51.5	70	μΑ	
I _{DDA}	(see <i>Figure 32</i>)	Differential mode, 5 MSPS	-	887.5	1009	_ μΑ	
		Differential mode, 1 MSPS	-	212	285		
		Differential mode, 200 KSPS	-	51	69.5		
V _{REF+}	Positive reference voltage	-	2	-	V _{DDA}	V	
V _{REF-}	Negative reference voltage	-	-	0	-		
		Single-ended mode, 5 MSPS	-	104	139	-	
	ADC current consumption on VREF+ pin (see <i>Figure</i> 33)	Single-ended mode, 1 MSPS	-	20.4	37		
I		Single-ended mode, 200 KSPS	-	3.3	11.3		
I _{REF}		Differential mode, 5 MSPS	-	174	235	- μΑ	
		Differential mode, 1 MSPS	-	34.6	52.6	1	
		Differential mode, 200 KSPS	-	6	13.6		

Table 68. ADC characteristics

103/148

Symbol	Parameter	Conditions				Max (4)	Unit
			Single ended	Fast channel 5.1 Ms	64	-	
SNR ⁽⁵⁾	Signal-to-		Single ended	Slow channel 4.8 Ms	64	-	
SNR	noise ratio	ADC clock freq. \leq 72 MHz, Sampling freq \leq 5 Msps,	Differential	Fast channel 5.1 Ms	67	-	
				Slow channel 4.8 Ms	67	-	dB
		$2 V \le V_{DDA} \le 3.6 V$	Single and d	Fast channel 5.1 Ms	-	-75	иБ
THD ⁽⁵⁾ Total harmonic distortion	64-pin package	Single ended	Slow channel 4.8 Ms	-	-75		
				Fast channel 5.1 Ms	-	-79	
			Differential	Slow channel 4.8 Ms	-	-78	

Table 73. ADC accuracy, 64-pin	packages ⁽¹⁾⁽²⁾⁽³⁾ (continued)
--------------------------------	---

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

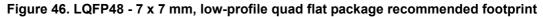
- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Guaranteed by characterization results.
- 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

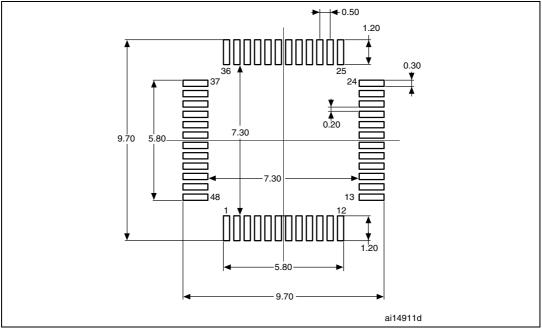
Symbol	Parameter	Test condition	IS	Тур	Max ⁽³⁾	Unit
ET	Total upadiustad arrar		Fast channel	±2.5	±5	
	Total unadjusted error		Slow channel	±3.5	±5	
EO	Offset error		Fast channel	±1	±2.5	
EO	EG Gain error		Slow channel	±1.5	±2.5	
EC		Sampling Freq ≤ 1MSPS	Fast channel	±2	±3	LSB
LG		$2.4 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le 3.6 \text{ V}$	Slow channel	±3	±4	LOD
ED	Differential linearity error	Single-ended mode	Fast channel	±0.7	±2	
	Differential linearity error		Slow channel	±0.7	±2	
EL Integral linearity error	Integral linearity error		Fast channel	±1	±3	
			Slow channel	±1.2	±3	

Table 74. ADC accuracy at 1MSPS⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC accuracy.

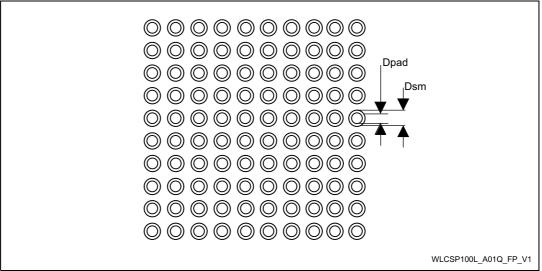

3. Guaranteed by characterization results.



	(continuou)					
0h. a.l.		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
E1	6.80	7.00	7.20	0.2677	0.2756	0.2835
E3	-	5.50	-	-	0.2165	-
е	-	0.50	-	-	0.0197	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
K	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.08	-	-	0.0031

Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are in millimeters.

Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package recommended footprint

Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm
Stencil thickness	0.1 mm

Date	Revision	Changes
06-May-2016	13	 Updated Table 43: LSE oscillator characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] bits. Updated Table 28: Embedded internal reference voltage V_{REFINT} internal reference voltage (min and typ values). Updated Figure 5: STM32F303xB/STM32F303xC LQFP64 pinout replacing VSS by PF4. Updated Table 51: ESD absolute maximum ratings ESD CDM at class 3 and 4 including WLCSP100 package information. Updated Table 13: STM32F303xB/STM32F303xC pin definitions: Adding 'digital power supply' in the Pin function column at the line corresponding to K8/28/19 pins. Adding VSS digital ground line with WLCSP100 K9 and K10 pins connected. Replacing in VDD line for WLCSP100: 'A10, B10' by 'A9, A10, B10, B8'. Updated Table 77: Operational amplifier characteristics high saturation and low saturation voltages. Updated Table 13: STM32F303xB/STM32F303xC pin definitions adding note 'Fast ADC channel' for ADCx_IN15. Updated Table 68: ADC characteristics adding CMIR parameter and modifying tSTAB parameter characteristics.

Table 88.	Document	revision	history	(continued)	١
	Document	101101011	motory	loonunaca	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

