STMicroelectronics - <u>STM32F303VCT6TR Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product StatusActiveCore ProcessorARM® Cortex®-M4Core Size32-Bit Single-CoreSpeed72MzConnectivityCANbus, PC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, PS, OR, PWM, WDTNumber of I/O87Program Memory Size56KB (256K x 8)Program Memory TypeFLASHEERPOM Size-Nufsze40K x 8Voltage - Supply (Vcc/Vdd)2V - 3.6VDataConvertersAD 39x12b; D/A 2x12bOperating TypeInternalMounting TypeSurface MountProgram Grape10-LQFPSupplier Percease10-LQFP (14x14)Supplier Device Package10-LQFP (14x14)		
Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O87Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPUsed Supple Cove Package100-LQFP (14x14)	Product Status	Active
Speed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O87Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Processor	ARM® Cortex®-M4
ConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O87Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Size	32-Bit Single-Core
PeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O87Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Speed	72MHz
Number of I/O87Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type500-LQFPSuppler Device Package100-LQFP (14x14)	Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSuppler Device Package100-LQFP (14x14)	Peripherals	DMA, I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Number of I/O	87
EEPROM Size-RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Program Memory Size	256КВ (256К х 8)
RAM Size40K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	EEPROM Size	<u>.</u>
Data ConvertersA/D 39x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	RAM Size	40K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14×14)	Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Data Converters	A/D 39x12b; D/A 2x12b
Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Oscillator Type	Internal
Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 100-LQFP (14x14)	Mounting Type	Surface Mount
	Package / Case	100-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303vct6tr	Supplier Device Package	100-LQFP (14x14)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303vct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	6.3.4	Embedded reference voltage62
	6.3.5	Supply current characteristics62
	6.3.6	Wakeup time from low-power mode
	6.3.7	External clock source characteristics74
	6.3.8	Internal clock source characteristics
	6.3.9	PLL characteristics
	6.3.10	Memory characteristics81
	6.3.11	EMC characteristics
	6.3.12	Electrical sensitivity characteristics83
	6.3.13	I/O current injection characteristics84
	6.3.14	I/O port characteristics
	6.3.15	NRST pin characteristics91
	6.3.16	Timer characteristics
	6.3.17	Communications interfaces94
	6.3.18	ADC characteristics
	6.3.19	DAC electrical specifications 117
	6.3.20	Comparator characteristics 119
	6.3.21	Operational amplifier characteristics
	6.3.22	Temperature sensor characteristics
	6.3.23	V _{BAT} monitoring characteristics
Pack	kage info	ormation
7.1	LQFP1	00 – 14 x 14 mm, low-profile quad flat package
	informa	ation
7.2		4 – 10 x 10 mm, low-profile quad flat package
		ation
7.3		8 – 7 x 7 mm, low-profile quad flat package
		ation
7.4	WLCSI	P100 - 0.4 mm pitch wafer level chip scale package information 134
7.5	Therma	al characteristics
	7.5.1	Reference document
	7.5.2	Selecting the product temperature range
Orde	ering inf	ormation
Davi	oion hia	140 March 140
IZGAI	21011 1112	story

8

9

7

3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Refer to *Table 9* for the features available in SPI1, SPI2 and SPI3.

SPI features ⁽¹⁾	SPI1	SPI2	SPI3
Hardware CRC calculation	Х	Х	Х
Rx/Tx FIFO	Х	Х	Х
NSS pulse mode	Х	Х	Х
I2S mode	-	Х	Х
TI mode	Х	Х	Х

Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation

1. X = supported.

3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.24 Universal serial bus (USB)

The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0	PA0	TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
I	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4		TSC_G6_IO4	PB14	
	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 TSC_G5_IO4 PB7 TSC_G6_IO1 PB12 TSC_G6_IO2 PB12 TSC_G6_IO3 PB14 TSC_G6_IO3 PB12 TSC_G6_IO3 PB14 TSC_G6_IO4 PB14 TSC_G6_IO4 PB14 TSC_G6_IO4 PB14 TSC_G7_IO1 PE2 TSC_G7_IO2 PE3 TSC_G7_IO3 PE4 TSC_G7_IO4 PE5 TSC_G8_IO1 PD12 TSC_G8_IO2 PD13 TSC_G8_IO3 PD14	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
-	TSC_G4_IO3	PA13	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14		TSC_G8_IO4	PD15

Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices

Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices

	Number of capacitive sensing channels									
Analog I/O group	STM32F303Vx	STM32F303Rx	STM32F303Cx							
G1	3	3	3							
G2	3	3	3							
G3	3	3	2							
G4	3	3	3							
G5	3	3	3							
G6	3	3	3							
G7	3	0	0							
G8	3	0	0							
Number of capacitive sensing channels	24	18	17							

3.27 Development support

3.27.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.27.2 Embedded trace macrocell[™]

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F303xB/STM32F303xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

Na	me	Abbreviation	Definition			
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf 5 V tolerant I/O, FM+ capable				
I/O etr	ucture	TTa 3.3 V tolerant I/O directly connected to ADC				
i/O su	uclure	TC Standard 3.3V I/O				
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	tes	Unless otherwis	e specified by a note, all I/Os are set as floating inputs during and after reset			
D'	Alternate functions	Fu	nctions selected through GPIOx_AFR registers			
Pin functions	Additional functions	Functions	directly selected/enabled through peripheral registers			

Table 12. Legend/abbreviations used in the pinout table	
Table 12. Logena/abbreviatione acea in the phieut table	

Table 13. STM32F303xB/STM32F303xC pin definitions

	Pin nı	umber						Pin fu	nctions
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
D6	1	-	-	PE2	I/O	FT	(1)	TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT	-
D7	2	-	-	PE3	I/O	FT	(1)	TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT	-
C8	3	-	-	PE4	I/O	FT	(1)	TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT	-
B9	4	-	-	PE5	I/O	FT ⁽¹⁾		TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT	-
E7	5	-	-	PE6	I/O	FT	(1)	TRACED3, EVENTOUT	WKUP3, RTC_TAMP3
D8	6	1	1	V _{BAT}	S	-	-	Backup po	ower supply

	Pin nı	umber						Pin functions					
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions				
В5	90	56	40	PB4	I/O	FT	-	SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N, TSC_G5_IO2, NJTRST, EVENTOUT	-				
A6	91	57	41	PB5	I/O	FT	-	SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N, TIM17_CH1, EVENTOUT	-				
В6	92	58	42	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TIM8_CH1,TSC_G5_IO3, TIM8_ETR, TIM8_BKIN2, EVENTOUT	-				
C5	93	59	43	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN, TSC_G5_IO4, EVENTOUT	-				
A7	94	60	44	BOOT0		В	-	Boot memo	ry selection				
D5	95	61	45	PB8	I/O	FTf	-	I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3, TIM8_CH2, TIM1_BKIN, TSC_SYNC, COMP1_OUT, EVENTOUT	-				
C6	96	62	46	PB9	I/O	FTf	-	I2C1_SDA, CAN_TX, TIM17_CH1, TIM4_CH4, TIM8_CH3, IR_OUT, COMP2_OUT, EVENTOUT	-				
B7	97	-	-	PE0	I/O	FT	(1)	USART1_TX, TIM4_ETR, TIM16_CH1, EVENTOUT					
A8	98	-	-	PE1	I/O	FT	(1)	USART1_RX, TIM17_CH1, EVENTOUT	-				
C7	99	63	47	VSS	S	-	-	Gro	und				
A9, A10, B10, B8	100	64	48	VDD	S	-	-	Digital pov	ver supply				

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

5

	Table 14. Alternate functions for port A (continued)														
Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF14	AF15
PA12	-	TIM16_ CH1	-	-	-	-	TIM1_CH2N	USART1_ RTS_DE	COMP2 _OUT	CAN_TX	TIM4_ CH2	TIM1_ETR	-	USB_ DP	EVENT OUT
PA13	SWDIO -JTMS	TIM16_ CH1N	-	TSC_ G4_IO3	-	IR_ OUT	-	USART3_ CTS	-	-	TIM4_ CH3	-	-	-	EVENT OUT
PA14	SWCLK -JTCK	-	-	TSC_ G4_IO4	I2C1_ SDA	TIM8_ CH2	TIM1_BKIN	USART2_ TX	-	-	-	-	-	-	EVENT OUT
PA15	JTDI	TIM2_ CH1_ ETR	TIM8_ CH1	-	I2C1_ SCL	SPI1_ NSS	SPI3_NSS, I2S3_WS	USART2_ RX	-	TIM1_ BKIN	-	-	-	-	EVENT OUT

6.3 Operating conditions

6.3.1 General operating conditions

Table 24.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit			
f _{HCLK}	Internal AHB clock frequency	-	0	72				
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz			
f _{PCLK2}	Internal APB2 clock frequency	-	0	72				
V _{DD}	Standard operating voltage	-	2	3.6	V			
M	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V			
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	equal to or higher than V _{DD}	2.4	3.6	V			
V _{BAT}	Backup operating voltage	-	1.65	3.6	V			
		TC I/O	-0.3	V _{DD} +0.3				
V	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3	V			
V _{IN}	I/O Input voltage	FT and FTf I/O ⁽¹⁾	-0.3	5.5	v			
		BOOT0	0	5.5				
		WLCSP100	-	500				
р	Power dissipation at $T_A =$	LQFP100	-	488				
P_{D}	85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽²⁾	LQFP64	-	444	— mW			
		LQFP48	-	364				
	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	85	5 °C			
Та		Low-power dissipation ⁽³⁾	-40	105				
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	°C			
		Low-power dissipation ⁽³⁾ –40 12						
т.	lunction tomporature reaso	6 suffix version	-40	105	°C			
TJ	Junction temperature range	7 suffix version	-40	125	U			

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

Symbol	Para	Para Conditions meter ⁽¹⁾		Тур @V _{BAT}					Max @V _{BAT} = 3.6 V ⁽²⁾			Unit		
	meter		1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C		T _A = 105°C	onne
I _{DD_VBAT} do	Backup domain supply current	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
		LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μΑ

Table 34. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

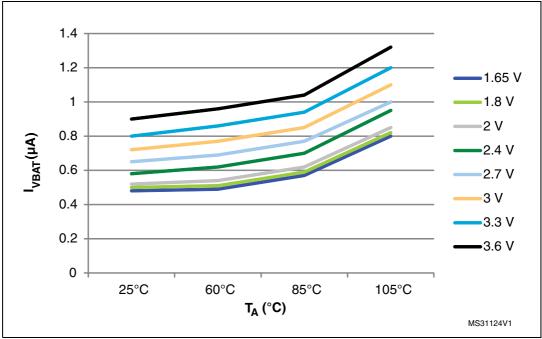
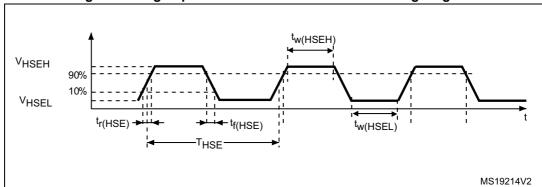


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

DocID023353 Rev 13


6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design.

Figure 14. High-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 42*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200		kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} =3.3 V, Rm= 30Ω CL=10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} =3.3 V, Rm= 45Ω CL=10 pF@8 MHz	-	0.5	-	
I _{DD}		V _{DD} =3.3 V, Rm= 30Ω CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} =3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} =3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Gymbol	Farameter	contaitions	frequency band	8/72 MHz	Unit
		V 2 6 V T 25 °C	0.1 to 30 MHz	7	
6	Dook lovel	ak level $V_{DD} = 3.6 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C},$ LQFP100 package compliant with IEC 61967-2	30 to 130 MHz	20	dBµV
S _{EMI}	reak level		130 MHz to 1GHz	27	
			SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A114		2	2000	
	Electrostatic		WLCSP100 package	3	250	V
V _{ESD(CDM)}	discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	Packages except WLCSP100	4	500	

Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 19* and *Figure 20* for standard I/Os.

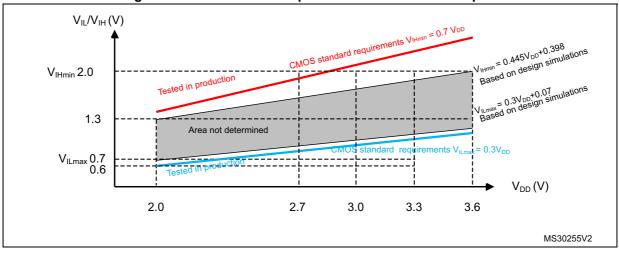
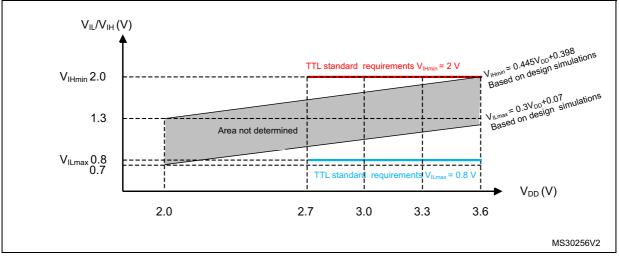



Figure 19. TC and TTa I/O input characteristics - CMOS port

Figure 20. TC and TTa I/O input characteristics - TTL port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 22*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 22*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 55.	Output voltage	e characteristics
	output voltage	

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

4. Data based on design simulation.

6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in *Table 68* to *Table 70* are guaranteed by design, with conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{DDA}	Analog supply voltage for ADC	-	2	-	3.6	V		
		Single-ended mode, 5 MSPS	-	907	1033.0			
		Single-ended mode, 1 MSPS	-	194	285.5			
	ADC current consumption on VDDA	Single-ended mode, 200 KSPS	-	51.5	70	μΑ		
I _{DDA}	(see <i>Figure 32</i>)	Differential mode, 5 MSPS	-	887.5	1009	_ μΑ		
	-		Dif	Differential mode, 1 MSPS	-	212	285	
		Differential mode, 200 KSPS	-	51	69.5			
V _{REF+}	Positive reference voltage	-	2	-	V _{DDA}	V		
V _{REF-}	Negative reference voltage	-	-	0	-	v		
		Single-ended mode, 5 MSPS	-	104	139			
		Single-ended mode, 1 MSPS	-	20.4	37			
I	ADC current consumption on VREF+	Single-ended mode, 200 KSPS	- 3.3		11.3	μΑ		
I _{REF}	pin (see <i>Figure 33</i>)	Differential mode, 5 MSPS	-	174	235			
		Differential mode, 1 MSPS	-	34.6	52.6			
		Differential mode, 200 KSPS	-	6	13.6			

Table 68. ADC characteristics

103/148

DocID023353 Rev 13

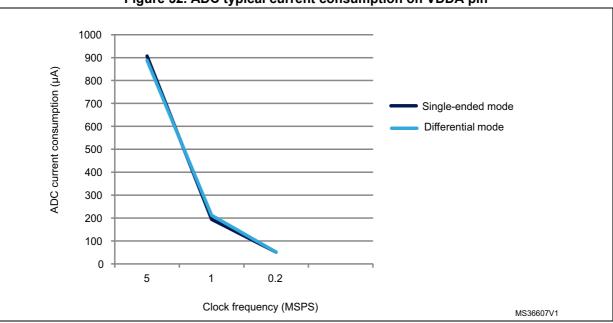
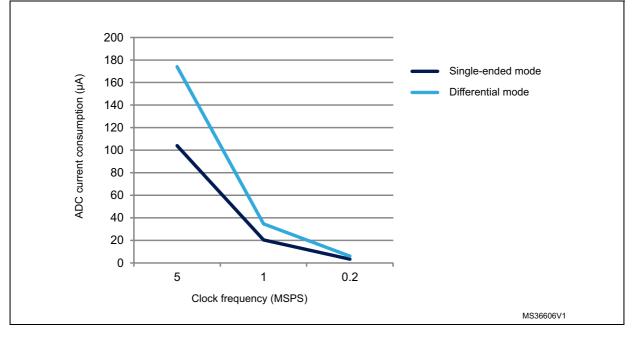



Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

Symbol	Parameter	С	onditions		Min ⁽⁴⁾	Max ⁽⁴⁾	Unit
			Single	Fast channel 5.1 Ms	-	±6.5	
	Total		Ended	Slow channel 4.8 Ms	-	±6.5	
ET	unadjusted error		Differential	Fast channel 5.1 Ms	-	<u>+</u> 4	
			Dillerential	Slow channel 4.8 Ms	-	<u>+</u> 4	
			Single	Fast channel 5.1 Ms	-	±3	
EO	Offset error		Ended	Slow channel 4.8 Ms	-	±3	
LO	Olisetenoi		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	
			Dillerential	Slow channel 4.8 Ms	-	<u>+2</u>	
			Single	Fast channel 5.1 Ms	-	±6	
EG	Gain error		Ended	Slow channel 4.8 Ms	-	±6	LSB
LG			ADC clock freq. ≤ 72 MHz,	Differential	Fast channel 5.1 Ms	-	±3
		Sampling freq. ≤ 5 Msps	Billereniadi	Slow channel 4.8 Ms	-	±3	-
		inearity -	Single	Fast channel 5.1 Ms	-	±1.5	
ED	Differential		Ended	Slow channel 4.8 Ms	-	±1.5	
	error		Differential	Fast channel 5.1 Ms	-	±1.5	1
			Differential	Slow channel 4.8 Ms	-	±1.5	
			Single	Fast channel 5.1 Ms	-	<u>+2</u>	-
EL	Integral linearity		Ended	Slow channel 4.8 Ms	-	±3	
	error		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	
			Dillerential	Slow channel 4.8 Ms	-	<u>+2</u>	
			Single	Fast channel 5.1 Ms	10.4	-	
ENOB	Effective number of		Ended	Slow channel 4.8 Ms	10.2	-	-:+-
(5)	bits		Differential	Fast channel 5.1 Ms	10.8	-	bits
			Differential	Slow channel 4.8 Ms	10.8	-	

Table 71. ADC accuracy, 100-pin packages⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
			Single ended	Fast channel 5.1 Ms	66	67	-	
SNR ⁽⁴⁾	Signal-to-		Single ended	Slow channel 4.8 Ms	66	67	-	
no	noise ratio	hoise ratio ADC clock freq. \leq 72 MHz Sampling freq \leq 5 Msps V _{DDA} = 3.3 V	Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		v _{DDA} – 3.3 v 25°C	Single ended	Fast channel 5.1 Ms	-	-80	-80	uВ
THD ⁽⁴⁾	Total harmonic	04-pill package		Slow channel 4.8 Ms	-	-78	-77	
י יעחו	distortion		Differential	Fast channel 5.1 Ms	-	-83	-82	
			Differential	Slow channel 4.8 Ms	-	-81	-80	

Table 72. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

6.3.20 Comparator characteristics

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-		2	-	3.6	
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V
V _{BG}	Scaler input voltage	-		-	1.2	-	
V _{SC}	Scaler offset voltage	-		-	±5	±10	mV
t _{S_SC}	V _{REFINT} scaler startup time from power down	First V _{REFINT} scaler activation after device power on		-	-	1 ⁽²⁾	s
		Next activations		-	-	0.2	ms
t _{START}	Comparator startup time	Startup time to reach propagation delay specification		-	-	60	μs
t _D	Propagation delay for 200 mV step with 100 mV overdrive	Ultra-low-power mode		-	2	4.5	μs
		Low-power mode		-	0.7	1.5	
		Medium power mode		-	0.3	0.6	
		High speed mode	$V_{DDA} \ge 2.7 V$	-	50	100	- ns
			V _{DDA} < 2.7 V	-	100	240	
	Propagation delay for full range step with 100 mV overdrive	Ultra-low-power mode		-	2	7	μs
		Low-power mode		-	0.7	2.1	
		Medium power mode		-	0.3	1.2	
		High speed mode	$V_{DDA} \ge 2.7 V$	-	90	180	ne
			V _{DDA} < 2.7 V	-	110	300	ns
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	μV/° C
IDD(COMP)	COMP current consumption	Ultra-low-power mode		-	1.2	1.5	- μΑ
		Low-power mode		-	3	5	
		Medium power mode		-	10	15	
		High speed mode		-	75	100	

Table 76. Comparator characteristics⁽¹⁾

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}$, maximum 9 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 9 \times 8 \text{ mA} \times 0.4 \text{ V} = 28.8 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 28.8 \text{ mW}$: $P_{Dmax} = 70 + 28.8 = 98.8 \text{ mW}$

Thus: P_{Dmax} = 98.8 mW

Using the values obtained in *Table 86* T_{Jmax} is calculated as follows:

For LQFP100, 41°C/W

This is within the range of the suffix 7 version parts ($-40 < T_J < 125$ °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*).

