

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I²S, POR, PWM, WDT
Number of I/O	77
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA, WLCSP
Supplier Device Package	100-WLCSP (4.2x4.7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303vcy6tr

3.17.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when V_{DD} power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
- Two programmable alarms with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Refer to *Table 9* for the features available in SPI1, SPI2 and SPI3.

SPI features⁽¹⁾ SPI1 SPI2 SPI3 Hardware CRC calculation Χ Х Х Rx/Tx FIFO Χ Χ Χ Χ NSS pulse mode Χ Х I2S mode Χ Χ TI mode Χ Х Х

Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation

3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.24 Universal serial bus (USB)

The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.

^{1.} X = supported.

Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
'	TSC_G1_IO3	PA2	3	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
3	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
7	TSC_G4_IO3	PA13		TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14		TSC_G8_IO4	PD15

Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices

Analog I/O group	Number	of capacitive sensing c	hannels
Analog I/O group	STM32F303Vx	STM32F303Rx	STM32F303Cx
G1	3	3	3
G2	3	3	3
G3	3	3	2
G4	3	3	3
G5	3	3	3
G6	3	3	3
G7	3	0	0
G8	3	0	0
Number of capacitive sensing channels	24	18	17

3.27 Development support

3.27.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.27.2 Embedded trace macrocell™

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F303xB/STM32F303xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

	Pin nu	umber		13. 3114132				Pin functions				
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
С9	7	2	2	PC13 ⁽²⁾	I/O	TC	-	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT			
C10	8	3	3	PC14 ⁽²⁾ OSC32_IN (PC14)	I/O	тс	1	-	OSC32_IN			
D9	9	4	4	PC15 ⁽²⁾ OSC32_ OUT (PC15)	I/O	тс	-	-	OSC32_OUT			
D10	10	-	-	PF9	I/O	FT	(1)	TIM15_CH1, SPI2_SCK, EVENTOUT	-			
E10	11	-	-	PF10	I/O	FT	(1)	TIM15_CH2, SPI2_SCK, EVENTOUT	-			
F10	12	5	5	PF0- OSC_IN (PF0)	I/O	FTf	-	TIM1_CH3N, I2C2_SDA,	OSC_IN			
F9	13	6	6	PF1- OSC_OUT (PF1)	I/O	FTf	1	12C2_SCL	OSC_OUT			
E9	14	7	7	NRST	I/O	RS T		Device reset input / intern	al reset output (active low)			
G10	15	8	-	PC0	I/O	TTa	(1)	EVENTOUT	ADC12_IN6, COMP7_INM			
G9	16	9	-	PC1	I/O	TTa	(1)	EVENTOUT	ADC12_IN7, COMP7_INP			
G8	17	10	-	PC2	I/O	TTa	(1)	COMP7_OUT, EVENTOUT	ADC12_IN8			
H10	18	11	-	PC3	I/O	TTa		TIM1_BKIN2, EVENTOUT	ADC12_IN9			
E8	19	-	-	PF2	I/O	TTa	(1)	EVENTOUT	ADC12_IN10			
H8	20	12	8	VSSA/ VREF-	S	-	-	Analog ground/Nega	tive reference voltage			
J8	21	-	-	VREF+ ⁽³⁾	S	-	-	Positive refe	rence voltage			
J10	22	-	-	VDDA	S	-	-	Analog po	wer supply			
_	-	13	9	VDDA/ VREF+	S	-	_	Analog power supply/Positive reference voltage				
H9	23	14	10	PA0	I/O	TTa	(4)	USART2_CTS, TIM2_CH1_ETR,TIM8_BKIN, TIM8_ETR,TSC_G1_IO1, COMP1_OUT, EVENTOUT	ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP			

- Function availability depends on the chosen device. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode.
- PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0316 reference manual.

- The VREF+ functionality is available only on the 100 pin package. On the 64-pin and 48-pin packages, the VREF+ is internally connected to VDDA.
- 5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.

Table 19. Alternate functions for port F

Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF0	-	-	-	I2C2_SDA	-	TIM1_CH3N	-
PF1	-	-	-	I2C2_SCL	-	-	-
PF2	EVENTOUT	-	-	-	-	-	-
PF4	EVENTOUT	COMP1_OUT	-	-	-	-	-
PF6	EVENTOUT	TIM4_CH4	-	I2C2_SCL	-	-	USART3_RTS_DE
PF9	EVENTOUT	-	TIM15_CH1	-	SPI2_SCK	-	-
PF10	EVENTOUT	-	TIM15_CH2	-	SPI2_SCK	-	-

Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 8000 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7FFF	2 K	Reserved
	0x4000 7400 - 0x4000 77FF	1 K	DAC (dual)
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB SRAM 512 bytes
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
APB1	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1400 - 0x4000 17FF	1 K	TIM7
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

6.1.6 Power supply scheme

Backup circuitry Power (LSE, RTC, switch Wakeup logic, Backup registers) OUT GP I/Os I/O logic Kernel logic (CPU, digital & memories) $4\;x\;V_{DD}$ Regulator 4 x 100 nF $4 \times V_{SS}$ + 1 x 4.7 µF V_{DDA} V_{DDA} V_{REF+} Analog: RCs, 10 nF ADC/DAC PLL,comparators, OPAMP, + 1 µF V_{REF} MS19875V5

Figure 11. Power supply scheme

 Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

577

6.1.7 Current consumption measurement

JDD_VBAT
VBAT
VDD
VDD
VDD
VDD

MS19213V1

Figure 12. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics*, and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 21. Voltage characterist	ics ⁽¹⁾
Datings	

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including $V_{DDA,}$ V_{BAT} and V_{DD})	-0.3	4.0	
V _{DD} –V _{DDA}	Allowed voltage difference for V _{DD} > V _{DDA}	-	0.4	
V _{REF+} -V _{DDA} ⁽²⁾	Allowed voltage difference for V _{REF+} > V _{DDA}	-	0.4	
	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DD} + 4.0	V
V _{IN} ⁽³⁾	Input voltage on TTa pins	V _{SS} -0.3	4.0	
VIN.	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage on Boot0 pin	0	9	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all the different ground pins ⁽⁴⁾	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model) see Section 6.3.12: Electrical sensitivity characteristics			

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between V_{DDA} and V_{DD}: V_{DDA} must power on before or at the same time as V_{DD} in the power up sequence. V_{DDA} must be greater than or equal to V_{DD}.

The parameters given in *Table 30* to *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

Table 30. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6V

					periphe		abled		periphe				
Symbol	Parameter	Conditions	f _{HCLK}	T	Max @ T _A ⁽¹⁾					/lax @ T _A ⁽¹⁾		Unit	
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
			72 MHz	61.2	65.8	67.6	68.5	27.8	30.3	30.7	31.5		
			64 MHz	54.7	59.1	60.2	61.1	24.6	27.2	27.6	28.3		
		External	48 MHz	41.7	45.1	46.2	47.2	19.2	21.1	21.4	21.8		
		clock (HSE	32 MHz	28.1	31.5	32.5	32.7	12.9	14.6	14.8	15.3		
	Supply	bypass)	24 MHz	21.4	23.7	24.4	25.2	10.0	11.4	11.4	12.1		
	current in Run mode,		8 MHz	7.4	8.4	8.6	9.4	3.6	4.1	4.4	5.0		
	executing		1 MHz	1.3	1.6	1.8	2.6	0.8	1.0	1.2	2.1		
	from Flash		64 MHz	49.7	54.4	55.4	56.3	24.5	27.2	27.4	28.1		
		Internal clock (HSI)		48 MHz	37.9	42.2	43.0	43.5	18.9	21.4	21.5	21.6	
			32 MHz	25.8	29.2	29.2	30.0	12.7	14.2	14.6	15.2		
			24 MHz	19.7	22.3	22.6	23.2	6.7	7.7	7.9	8.5		
			8 MHz	6.9	7.8	8.3	8.8	3.5	4.0	4.4	5.0	mA	
I _{DD}			72 MHz	60.8	66.2 ⁽²⁾	69.7	70.4 ⁽²⁾	27.4	31.7 ⁽²⁾	32.2	32.5 ⁽²⁾	IIIA	
			64 MHz	54.3	59.1	62.2	63.3	24.3	28.3	28.7	28.8		
		External	48 MHz	41.0	45.6	47.3	47.9	18.3	21.6	21.9	22.1		
		clock (HSE	32 MHz	27.6	32.4	32.4	32.9	12.3	15.0	15.2	15.4		
	Supply	bypass)	24 MHz	20.8	23.9	24.3	25.0	9.3	11.3	11.4	12.0		
	current in Run mode,		8 MHz	6.9	7.8	8.7	9.0	3.1	3.7	4.2	4.9		
	executing		1 MHz	0.9	1.2	1.5	2.3	0.4	0.6	1.0	1.8		
	from RAM		64 MHz	49.2	53.9	55.2	57.4	23.9	27.8	28.2	28.4		
			48 MHz	37.3	40.8	41.4	44.1	18.2	21.0	21.6	21.9		
		Internal clock (HSI)	32 MHz	25.1	27.6	29.1	30.1	12.0	14.0	14.5	15.1		
			24 MHz	19.0	21.6	22.1	22.9	6.3	7.2	7.7	8.1		
			8 MHz	6.4	7.3	7.9	8.4	3.0	3.5	4.0	4.7		

Table 37. Switching output I/O current consumption

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.90	
			4 MHz	0.93	
		$V_{DD} = 3.3 V$ $C_{ext} = 0 pF$	8 MHz	1.16	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	1.60	
			36 MHz	2.51	
			48 MHz	2.97	
		2 MHz 0.93	0.93		
			4 MHz	1.06	
		V_{DD} = 3.3 V C_{ext} = 10 pF	8 MHz	1.47	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	2.26	mA
			36 MHz	3.39	
			48 MHz	5.99	
			2 MHz	1.03	
I _{SW}	I/O current consumption	V _{DD} = 3.3 V	4 MHz	1.30	
	·	C_{ext} = 22 pF	8 MHz	1.79	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	3.01	
			36 MHz	5.99	
			2 MHz	1.10	
		V _{DD} = 3.3 V	4 MHz	1.31	7
		C _{ext} = 33 pF	8 MHz	2.06	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	3.47	
			36 MHz 8.35		
			2 MHz	1.20	
		V _{DD} = 3.3 V	4 MHz	1.54	
		$C_{ext} = 47 pF$	8 MHz	2.46	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	4.51	
			36 MHz	9.98	

^{1.} CS = 5 pF (estimated value).

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and V_{DD} = V_{DDA} = 3.3 V.

Table 38. Peripheral current consumption

	Typical consumption ⁽¹⁾	l lmi4
Peripheral	I _{DD}	Unit
BusMatrix (2)	12.6	
DMA1	7.6	
DMA2	6.1	
CRC	2.1	
GPIOA	10.0	
GPIOB	10.3	
GPIOC	2.2	
GPIOD	8.8	
GPIOE	3.3	
GPIOF	3.0	
TSC	5.5	
ADC1&2	17.3	
ADC3&4	18.8	μΑ/MHz
APB2-Bridge (3)	3.6	μΑνινιπΣ
SYSCFG	7.3	
TIM1	40.0	
SPI1	8.8	
TIM8	36.4	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge (3)	6.1	
TIM2	49.1	
TIM3	38.8	
TIM4	38.3	

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 39* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 39. Low-power mode wakeup timings

Symbol	Baramatar	Parameter Conditions		Typ @VDD, V _{DD} = V _{DDA}					Max	Unit
	Parameter	ter Conditions	2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	IVIAX	Oill
	Wakeup from	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	3.5	4.5	
t _{WUSTOP}	Stop mode	Regulator in low-power mode	7.9	6.7	6.1	5.7	5.4	5.2	9	μs
t _{WUSTANDBY} (1)	Wakeup from Standby mode	LSI and IWDG OFF	69.2	60.3	56.4	53.7	51.7	50	100	
t _{WUSLEEP}	Wakeup from Sleep mode	-		6						CPU clock cycles

^{1.} Guaranteed by characterization results.

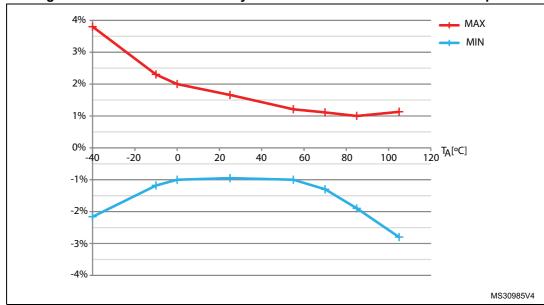


Figure 18. HSI oscillator accuracy characterization results for soldered parts

Low-speed internal (LSI) RC oscillator

Table 45. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

^{1.} V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

5//

^{2.} Guaranteed by design.

3. Channels available on PA2, PA6, PB1, PB12.

Table 70. ADC accuracy - limited test conditions, 100-pin packages (1)(2)

Symbol	Parameter	Conditions				Тур	Max (3)	Unit
Total ET unadiusted		Cinale anded	Fast channel 5.1 Ms	-	±3.5	±4.5		
		ed	Single ended	Slow channel 4.8 Ms	-	<u>±</u> 4	±4.5	- LSB
E1	unadjusted error		Differential	Fast channel 5.1 Ms	-	±3	±3	
				Slow channel 4.8 Ms	-	±3	±3	
			Oire alse and ad	Fast channel 5.1 Ms	-	±1	±1.5	
EO	Offset error		Single ended	Slow channel 4.8 Ms	-	±1	±2.5	
EO	Oliset elloi		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
		error	Single anded	Fast channel 5.1 Ms	-	±3	±4	
EG	Gain error		Single ended	Slow channel 4.8 Ms	-	±3.5	<u>±4</u>	
EG	Gairrenoi		Differential	Fast channel 5.1 Ms	-	±1.5	±2.5	
				Slow channel 4.8 Ms	-	<u>+2</u>	±2.5	
		ADC clock freq. ≤ 72 MHz Sampling freq. ≤ 5 Msps V _{DDA} = V _{REF+} = 3.3 V 25°C 100-pin package	Single ended	Fast channel 5.1 Ms	-	±1	±1.5	
ED	Differential linearity			Slow channel 4.8 Ms	-	±1	±1.5	
ED	error		Differential	Fast channel 5.1 Ms	-	±1	±1	
				Slow channel 4.8 Ms	-	±1	±1	
			Single ended	Fast channel 5.1 Ms	-	±1.5	±2	
EL	Integral linearity			Slow channel 4.8 Ms	-	±1.5	±3	
EL	error		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
				Slow channel 4.8 Ms	-	±1	±1.5	
			Single ended	Fast channel 5.1 Ms	10.7	10.8	-	- bits
ENOB ⁽⁴⁾ Effective number of bits				Slow channel 4.8 Ms	10.7	10.8	-	
		gnal-to- sise and stortion	Differential	Fast channel 5.1 Ms	11.2	11.3	-	
				Slow channel 4.8 Ms	11.1	11.3	-	
	Cianal to		Single ended	Fast channel 5.1 Ms	66	67	-	- dB
	noise and			Slow channel 4.8 Ms	66	67	-	
SINAD	distortion		Differential	Fast channel 5.1 Ms	69	70	-	
rat	ratio			Slow channel 4.8 Ms	69	70	-	

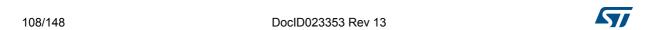


Table 72. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
			Single ended	Fast channel 5.1 Ms	66	67	-	- dB
SNR ⁽⁴⁾ Signal-to- noise ratio	Signal-to-		Single ended	Slow channel 4.8 Ms	66	67	-	
	noise ratio	ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps	Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	
		otal 64-pin package armonic –	Single ended Differential	Fast channel 5.1 Ms	-	-80	-80	uБ
THD ⁽⁴⁾ Total harmon distortion				Slow channel 4.8 Ms	-	-78	-77	
	distortion			Fast channel 5.1 Ms	-	-83	-82	
				Slow channel 4.8 Ms	-	-81	-80	

^{1.} ADC DC accuracy values are measured after internal calibration.

^{2.} ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

^{3.} Guaranteed by characterization results.

^{4.} Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package mechanical data

Cumbal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Тур	Min	Max	
Α	0.525	0.555	0.585	0.0207	0.0219	0.0230	
A1	-	0.17	-	-	0.0067	-	
A2	-	0.38	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
Ø b ⁽³⁾	0.22	0.25	0.28	-	0.0098	0.0110	
D	4.166	4.201	4.236	-	0.1654	0.1668	
E	4.628	4.663	4.698	-	0.1836	0.1850	
е	-	0.4	-	-	0.0157	-	
e1	-	3.6	-	-	0.1417	-	
e2	-	3.6	-	-	0.1417	-	
F	-	0.3005	-	-	0.0118	-	
G	-	0.5315	-	-	0.0209	-	
N	-	100	-	-	3.9370	-	
aaa	-	0.1	-	-	0.0039	-	
bbb	-	0.1	-	-	0.0039	-	
ccc	-	0.1	-	-	0.0039	-	
ddd	-	0.05	-	-	0.0020	-	
eee	-	0.05	-	-	0.0020	-	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

^{2.} Back side coating.

^{3.} Dimension is measured at the maximum bump diameter parallel to primary datum ${\sf Z}$.

9 Revision history

Table 88. Document revision history

Date	Revision	Changes
22-Jun-2012	1	Initial release
07-Sep-2012	2	Modified Features on cover page. Modified Table 2: STM32F301xx family device features and peripheral counts Added clock tree to Section 3.9: Clocks and startup Added Table 10: STM32F302xB/STM32F302xC I2C implementation Added Table 11: USART features Added Table 12: STM32F302xB/STM32F302xC SPI/I2S implementation Modified Table 13: Capacitive sensing GPIOs available on STM32F302xB/STM32F302xC devices Modified Figure 7, Figure 8 and Figure 9: STM32F302xB/STM32F302xC LQFP100 pinout Modified Table 16: STM32F302xB/STM32F302xC pin definitions Modified Table 16: STM32F302xB/STM32F302xC pin definitions Modified Table 21: Voltage characteristics Modified Table 22: Current characteristics Modified Table 25: Operating conditions at power-up / power-down Added footnote to Table 31: Typical and maximum current consumption from the VDDA supply Added footnote to Table 35 and Table 36: Typical current consumption in Sleep mode, code running from Flash or RAM Removed table "Switching output I/O current consumption" and table "Peripheral current consumption" Added note under Figure 17: Typical application with a 32.768 kHz crystal Updated Table 49: HSI oscillator characteristics Updated Wakeup time from low-power mode and Table 39: Low-power mode wakeup timings Updated Table 52: Electrical sensitivities Updated Table 53: I/O current injection susceptibility Updated Table 55: Output voltage characteristics Updated Table 55: Output voltage characteristics Updated Table 56: SPI characteristics Updated Table 64: I/S characteristics Corrected LQFP100 in Section 7.2.3: Selecting the product temperature range
21-Sep-2012	3	Updated Table 63: SPI characteristics

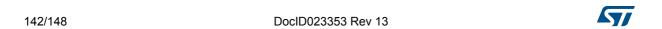


Table 88. Document revision history (continued)

Date	Revision	Changes		
06-May-2016	13	Updated <i>Table 43: LSE oscillator characteristics (fLSE</i> = 32.768 kHz) LSEDRV[1:0] bits. Updated <i>Table 28: Embedded internal reference voltage</i> V _{REFINT} internal reference voltage (min and typ values). Updated <i>Figure 5: STM32F303xB/STM32F303xC LQFP64 pinout</i> replacing VSS by PF4. Updated <i>Table 51: ESD absolute maximum ratings</i> ESD CDM at class 3 and 4 including WLCSP100 package information. Updated <i>Table 13: STM32F303xB/STM32F303xC pin definitions:</i> – Adding 'digital power supply' in the Pin function column at the line corresponding to K8/28/19 pins. – Adding VSS digital ground line with WLCSP100 K9 and K10 pins connected. – Replacing in VDD line for WLCSP100: 'A10, B10' by 'A9, A10, B10, B8'. Updated <i>Figure 21: Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port.</i> Updated <i>Table 77: Operational amplifier characteristics</i> high saturation and low saturation voltages. Updated <i>Table 13: STM32F303xB/STM32F303xC pin definitions</i> adding note 'Fast ADC channel' for ADCx_IN15. Updated <i>Table 68: ADC characteristics</i> resistive load. Updated <i>Table 68: ADC characteristics</i> adding CMIR parameter and modifying tSTAB parameter characteristics.		

