

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-50
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite15f1m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 PIN DESCRIPTION

Figure 2. 20-Pin SO Package Pinout

<u>ل</u>رک

Address	Block	Register Label	Register Name	Reset Status	Remarks
0037h	ITC	EICR	External Interrupt Control Register	00h	R/W
0038h	MCC	MCCSR	Main Clock Control/Status Register	00h	R/W
0039h 003Ah	Clock and Reset	RCCR SICSR	RC oscillator Control Register System Integrity Control/Status Register	FFh 0000 0XX0h	R/W R/W
003Bh			Reserved area (1 byte)		
003Ch	ITC	EISR	External Interrupt Selection Register	0Ch	R/W
003Dh to 0048h			Reserved area (12 bytes)		
0049h 004Ah	AWU	AWUPR AWUCSR	AWU Prescaler Register AWU Control/Status Register	FFh 00h	R/W R/W
004Bh 004Ch 004Dh 004Eh 004Fh 0050h	DM ³⁾	DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L	DM Control Register DM Status Register DM Breakpoint Register 1 High DM Breakpoint Register 1 Low DM Breakpoint Register 2 High DM Breakpoint Register 2 Low	00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W
0051h to 007Fh			Reserved area (47 bytes)		L

Legend: x=undefined, R/W=read/write

Notes:

57

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2. The bits associated with unavailable pins must always keep their reset value.

3. For a description of the Debug Module registers, see ICC reference manual.

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel.

The XFlash devices can be programmed off-board (plugged in a programming tool) or on-board using In-Circuit Programming or In-Application Programming.

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

- ICP (In-Circuit Programming)
- IAP (In-Application Programming)
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Sector 0 size configurable by option byte
- Read-out and write protection

4.3 PROGRAMMING MODES

The ST7 can be programmed in three different ways:

- Insertion in a programming tool. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased.
- In-Circuit Programming. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased without removing the device from the application board.
- In-Application Programming. In this mode, sector 1 and data EEPROM (if present) can be programmed or erased without removing the device from the application board and while the application is running.

4.3.1 In-Circuit Programming (ICP)

ICP uses a protocol called ICC (In-Circuit Communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps:

Switch the ST7 to ICC mode (In-Circuit Communications). This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters ICC mode, it fetches a specific RESET vector which points to the ST7 System Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes from the ICC interface.

- Download ICP Driver code in RAM from the ICCDATA pin
- Execute ICP Driver code in RAM to program the FLASH memory

Depending on the ICP Driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading).

4.3.2 In Application Programming (IAP)

This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in ICP mode).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc).

IAP mode can be used to program any memory areas except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

DATA EEPROM (Cont'd)

57

Figure 7. Data E²PROM Write Operation

Note: If a programming cycle is interrupted (by software or a reset action), the integrity of the data in memory is not guaranteed.

6 CENTRAL PROCESSING UNIT

6.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

6.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

6.3 CPU REGISTERS

The 6 CPU registers shown in Figure 9 are not present in the memory mapping and are accessed by specific instructions.

Figure 9. CPU Registers

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

CPU REGISTERS (Cont'd) STACK POINTER (SP)

Read/Write

Reset Value: 01FFh

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 10).

Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.

Figure 10. Stack Manip	oulation Example
------------------------	------------------

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 10.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

57/

7 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components.

Main features

- Clock Management
 - 1 MHz internal RC oscillator (enabled by option byte, available on ST7LITE15 and ST7LITE19 devices only)
 - 1 to 16 MHz or 32kHz External crystal/ceramic resonator (selected by option byte)
 - External Clock Input (enabled by option byte)
 - PLL for multiplying the frequency by 8 or 4 (enabled by option byte)
 - For clock ART counter only: PLL32 for multiplying the 8 MHz frequency by 4 (enabled by option byte). The 8 MHz input frequency is mandatory and can be obtained in the following ways:
 - –1 MHz RC + PLLx8
 - –16 MHz external clock (internally divided by 2)
 - –2 MHz. external clock (internally divided by 2) + PLLx8
 - -Crystal oscillator with 16 MHz output frequency (internally divided by 2)
- Reset Sequence Manager (RSM)
- System Integrity Management (SI)
 - Main supply Low voltage detection (LVD) with reset generation (enabled by option byte)
 - Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply (enabled by option byte)

7.1 INTERNAL RC OSCILLATOR ADJUSTMENT

The device contains an internal RC oscillator with an accuracy of 1% for a given device, temperature and voltage range (4.5V-5.5V). It must be calibrated to obtain the frequency required in the application. This is done by software writing a calibration value in the RCCR (RC Control Register).

Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each time the device is reset, the calibration value must be loaded in the RCCR. Predefined calibration values are stored in EEPROM for 3 and 5V V_{DD} supply voltages at 25°C, as shown in the following table.

RCCR	Conditions	ST7LITE19 Address	ST7LITE15 Address
RCCR0	V _{DD} =5V T _A =25°C f _{RC} =1MHz	1000h and FFDEh	FFDEh
RCCR1	V _{DD} =3V T _A =25°C f _{RC} =700KHz	1001h and FFDFh	FFDFh

Note:

- See "ELECTRICAL CHARACTERISTICS" on page 91. for more information on the frequency and accuracy of the RC oscillator.
- To improve clock stability, it is recommended to place a decoupling capacitor between the $\rm V_{DD}$ and $\rm V_{SS}$ pins.
- These two bytes are systematically programmed by ST, including on FASTROM devices. Consequently, customers intending to use FASTROM service must not use these two bytes.
- RCCR0 and RCCR1 calibration values will be erased if the read-out protection bit is reset after it has been set. See "Read out Protection" on page 14.

Caution: If the voltage or temperature conditions change in the application, the frequency may need to be recalibrated.

Refer to application note AN1324 for information on how to calibrate the RC frequency using an external reference signal.

7.2 PHASE LOCKED LOOP

The PLL can be used to multiply a 1MHz frequency from the RC oscillator or the external clock by 4 or 8 to obtain f_{OSC} of 4 or 8 MHz. The PLL is enabled and the multiplication factor of 4 or 8 is selected by 2 option bits.

- The x4 PLL is intended for operation with V_{DD} in the 2.4V to 3.3V range
- The x8 PLL is intended for operation with $\rm V_{DD}$ in the 3.3V to 5.5V range

Refer to Section 15.1 for the option byte description.

If the PLL is disabled and the RC oscillator is enabled, then $f_{OSC} = 1MHz$.

If both the RC oscillator and the PLL are disabled, f_{OSC} is driven by the external clock.

57

7.6 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to section 12.2.1 on page 88 for further details.

7.6.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a V_{IT-(LVD)} reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT-(LVD)} reference value for a voltage drop is lower than the V_{IT+(LVD)} reference value for poweron in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when V_{DD} is below:

 $- V_{IT+(LVD)}$ when V_{DD} is rising

 $-V_{IT-(LVD)}$ when V_{DD} is falling

The LVD function is illustrated in Figure 16.

The voltage threshold can be configured by option byte to be low, medium or high.

Provided the minimum V_{DD} value (guaranteed for the oscillator frequency) is above $V_{IT-(LVD)}$, the MCU can only be in two modes:

- under full software control

- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD allows the device to be used without any external RESET circuitry.

The LVD is an optional function which can be selected by option byte.

It is recommended to make sure that the V_{DD} supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

7.6.4 Register Description

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

Read/Write

Reset Value: 0000 0xx0 (0xh)

7							0
0	0	0	WDG RF	LOCKED	LVDRF	AVDF	AVDIE

Bit 7:5 = Reserved, must be kept cleared.

Bit 4 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

RESET Sources	LVDRF	WDGRF
External RESET pin	0	0
Watchdog	0	1
LVD	1	Х

Bit 3 = LOCKED PLL Locked Flag

This bit is set and cleared by hardware. It is set automatically when the PLL reaches its operating frequency.

- 0: PLL not locked
- 1: PLL locked

Bit 2 = **LVDRF** *LVD* reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (by reading). When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

Bit 1 = **AVDF** Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit is set. Refer to Figure 18 and to Section 7.6.2.1 for additional details.

0: V_{DD} over AVD threshold

1: V_{DD} under AVD threshold

Bit 0 = **AVDIE** Voltage Detector interrupt enable

This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag is set. The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.

0: AVD interrupt disabled

1: AVD interrupt enabled

Application notes

The LVDRF flag is not cleared when another RE-SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

INTERRUPTS (Cont'd)

Table 5. Interrupt Mapping

N°	Source Block	Description	Register Label	Priority Order	Exit from HALT or AWUFH	Exit from ACTIVE -HALT	Address Vector
	RESET	Reset	N/A	Highost	yes	yes	FFFEh-FFFFh
	TRAP	Software Interrupt	11/7	Priority	no		FFFCh-FFFDh
0	AWU	Auto Wake Up Interrupt	AWUCSR		yes ¹⁾		FFFAh-FFFBh
1	ei0	External Interrupt 0					FFF8h-FFF9h
2	ei1	External Interrupt 1	N/A		1/00	no	FFF6h-FFF7h
3	ei2	External Interrupt 2	Ī		yes		FFF4h-FFF5h
4	ei3	External Interrupt 3	Ī				FFF2h-FFF3h
5	LITE TIMER	LITE TIMER RTC2 interrupt	LTCSR2		no		FFF0h-FFF1h
6		Not used					FFEEh-FFEFh
7	SI	AVD interrupt	SICSR				FFECh-FFEDh
8	AT TIMER	AT TIMER Output Compare Interrupt or Input Capture Interrupt	PWMxCSR or ATCSR			no	FFEAh-FFEBh
9		AT TIMER Overflow Interrupt	ATCSR		no	yes	FFE8h-FFE9h
10		LITE TIMER Input Capture Interrupt	LTCSR			no	FFE6h-FFE7h
11		LITE TIMER RTC1 Interrupt	LTCSR			yes	FFE4h-FFE5h
12	SPI	SPI Peripheral Interrupts	SPICSR	Lowest	yes	no	FFE2h-FFE3h
13		Not usedNot used		THOTILY			FFE0h-FFE1h

Note 1: This interrupt exits the MCU from "Auto Wake-up from Halt" mode only.

POWER SAVING MODES (Cont'd)

Figure 25. ACTIVE-HALT Timing Overview

Figure 26. ACTIVE-HALT Mode Flow-chart

Notes:

1. This delay occurs only if the MCU exits ACTIVE-HALT mode by means of a RESET.

2. Peripherals clocked with an external clock source can still be active.

3. Only the RTC1 interrupt and some specific interrupts can exit the MCU from ACTIVE-HALT mode. Refer to Table 5, "Interrupt Mapping," on page 35 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

9.6 AUTO WAKE UP FROM HALT MODE

Auto Wake Up From Halt (AWUFH) mode is similar to Halt mode with the addition of a specific internal RC oscillator for wake-up (Auto Wake Up from Halt Oscillator). Compared to ACTIVE-HALT mode, AWUFH has lower power consumption (the main clock is not kept running, but there is no accurate realtime clock available.

It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR register has been set.

Figure 27. AWUFH Mode Block Diagram

As soon as HALT mode is entered, and if the AWUEN bit has been set in the AWUCSR register, the AWU RC oscillator provides a clock signal (fAWLL BC). Its frequency is divided by a fixed divider and a programmable prescaler controlled by the AWUPR register. The output of this prescaler provides the delay time. When the delay has elapsed the AWUF flag is set by hardware and an interrupt wakes-up the MCU from Halt mode. At the same time the main oscillator is immediately turned on and a 256 or 4096 cycle delay is used to stabilize it. After this start-up delay, the CPU resumes operation by servicing the AWUFH interrupt. The AWU flag and its associated interrupt are cleared by software reading the AWUCSR register.

To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated by measuring the clock frequency fAWU RC and then calculating the right prescaler value. Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run mode. This connects fAWU BC to the input capture of the 12-bit Auto-Reload timer, allowing the fAWU BC to be measured using the main oscillator clock as a reference timebase.

11.2.3.1 Input Capture

The 12-bit ATICR register is used to latch the value of the 12-bit free running upcounter after a rising or falling edge is detected on the ATIC pin. When an input capture occurs, the ICF bit is set and the ATICR register contains the value of the free running upcounter. An IC interrupt is generated if the ICIE bit is set. The ICF bit is reset by reading the ATICR register when the ICF bit is set. The ATICR is a read only register and always contains the free running upcounter value which corresponds to the most recent input capture. Any further input capture is inhibited while the ICF bit is set.

57

LITE TIMER (Cont'd)

11.3.3 Functional Description

11.3.3.1 Timebase Counter 1

The 8-bit value of Counter 1 cannot be read or written by software. After an MCU reset, it starts incrementing from 0 at a frequency of $f_{OSC}/32$. An overflow event occurs when the counter rolls over from F9h to 00h. If $f_{OSC} = 8$ MHz, then the time period between two counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the LTCSR1 register.

When Counter 1 overflows, the TB1F bit is set by hardware and an interrupt request is generated if the TB1IE bit is set. The TB1F bit is cleared by software reading the LTCSR1 register.

11.3.3.2 Timebase Counter 2

Counter 2 is an 8-bit autoreload upcounter. It can be read by accessing the LTCNTR register. After an MCU reset, it increments at a frequency of $f_{OSC}/32$ starting from the value stored in the LTARR register. A counter overflow event occurs when the counter rolls over from FFh to the

Figure 40. Input Capture Timing Diagram.

LTARR reload value. Software can write a new value at anytime in the LTARR register, this value will be automatically loaded in the counter when the next overflow occurs.

When Counter 2 overflows, the TB2F bit in the LTCSR2 register is set by hardware and an interrupt request is generated if the TB2IE bit is set. The TB2F bit is cleared by software reading the LTCSR2 register.

11.3.3.3 Input Capture

The 8-bit input capture register is used to latch the free-running upcounter (Counter 1) 1 after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the ICF bit is set and the LTICR1 register contains the MSB of Counter 1. An interrupt is generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.

The LTICR is a read-only register and always contains the data from the last input capture. Input capture is inhibited if the ICF bit is set.

57/

LITE TIMER (Cont'd)

LITE TIMER COUNTER 2 (LTCNTR)

Read only Reset Value: 0000 0000 (00h)

7							0
CNT7	CNT7	CNT7	CNT7	CNT3	CNT2	CNT1	CNT0

Bits 7:0 = CNT[7:0] Counter 2 Reload Value. This register is read by software. The LTARR value is automatically loaded into Counter 2 (LTCN-TR) when an overflow occurs.

LITE TIMER CONTROL/STATUS REGISTER (LTCSR1)

Read / Write

Reset Value: 0x00 0000 (x0h)

7							0
ICIE	ICF	ТВ	TB1IE	TB1F	-	-	-

Bit 7 = ICIE Interrupt Enable.

This bit is set and cleared by software. 0: Input Capture (IC) interrupt disabled

1: Input Capture (IC) interrupt enabled

Bit 6 = **ICF** Input Capture Flag.

This bit is set by hardware and cleared by software by reading the LTICR register. Writing to this bit does not change the bit value.

0: No input capture

1: An input capture has occurred

Note: After an MCU reset, software must initialise the ICF bit by reading the LTICR register

Bit 5 = **TB** Timebase period selection.

This bit is set and cleared by software.

- 0: Timebase period = $t_{OSC} * 8000 (1ms @ 8 MHz)$ 1: Timebase period = $t_{OSC} * 16000 (2ms @ 8$
- MHz)

Bit 4 = **TB1IE** *Timebase Interrupt enable.* This bit is set and cleared by software. 0: Timebase (TB1) interrupt disabled

1: Timebase (TB1) interrupt enabled

Bit 3 = **TB1F** Timebase Interrupt Flag.

This bit is set by hardware and cleared by software reading the LTCSR register. Writing to this bit has no effect.

0: No counter overflow

1: A counter overflow has occurred

Bits 2:0 = Reserved

LITE TIMER INPUT CAPTURE REGISTER (LTICR)

Read only

Reset Value: 0000 0000 (00h)

7							0
ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICR0

Bits 7:0 = ICR[7:0] Input Capture Value

These bits are read by software and cleared by hardware after a reset. If the ICF bit in the LTCSR is cleared, the value of the 8-bit up-counter will be captured when a rising or falling edge occurs on the LTIC pin.

11.5 10-BIT A/D CONVERTER (ADC)

11.5.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 7 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 7 different sources.

The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register.

11.5.2 Main Features

10-bit conversion

57/

- Up to 7 channels with multiplexed input
- Linear successive approximation

Figure 48. ADC Block Diagram

- Data register (DR) which contains the results
- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in Figure 48.

11.5.3 Functional Description

11.5.3.1 Analog Power Supply

 V_{DDA} and V_{SSA} are the high and low level reference voltage pins. In some devices (refer to device pin out description) they are internally connected to the V_{DD} and V_{SS} pins.

Conversion accuracy may therefore be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines.

ST7 ADDRESSING MODES (Cont'd)

12.1.1 Inherent

All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation.

Inherent Instruction	Function
NOP	No operation
TRAP	S/W Interrupt
WFI	Wait For Interrupt (Low Power Mode)
HALT	Halt Oscillator (Lowest Power Mode)
RET	Sub-routine Return
IRET	Interrupt Sub-routine Return
SIM	Set Interrupt Mask
RIM	Reset Interrupt Mask
SCF	Set Carry Flag
RCF	Reset Carry Flag
RSP	Reset Stack Pointer
LD	Load
CLR	Clear
PUSH/POP	Push/Pop to/from the stack
INC/DEC	Increment/Decrement
TNZ	Test Negative or Zero
CPL, NEG	1 or 2 Complement
MUL	Byte Multiplication
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations
SWAP	Swap Nibbles

12.1.2 Immediate

Immediate instructions have two bytes, the first byte contains the opcode, the second byte contains the operand value.

Immediate Instruction	Function
LD	Load
CP	Compare
BCP	Bit Compare
AND, OR, XOR	Logical Operations
ADC, ADD, SUB, SBC	Arithmetic Operations

12.1.3 Direct

In Direct instructions, the operands are referenced by their memory address.

The direct addressing mode consists of two submodes:

Direct (short)

The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space.

Direct (long)

The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode.

12.1.4 Indexed (No Offset, Short, Long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

The indirect addressing mode consists of three sub-modes:

Indexed (No Offset)

There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space.

Indexed (Short)

The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space.

Indexed (long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

12.1.5 Indirect (Short, Long)

The required data byte to do the operation is found by its memory address, located in memory (pointer).

The pointer address follows the opcode. The indirect addressing mode consists of two sub-modes:

Indirect (short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode.

Indirect (long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

I/O PORT PIN CHARACTERISTICS (Cont'd)

13.8.2 Output Driving Current

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions			Min	Max	Unit
V _{OL} ¹⁾	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 70)		I _{IO} =+5mA	T _A ≤85°C T _A ≥85°C		1.0 1.2	
			I _{IO} =+2mA	T _A ≤85°C T _A ≥85°C		0.4 0.5	
	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 72)	V _{DD} =5V	I _{IO} =+20mA	, T _A ≤85°C T _A ≥85°C		1.3 1.5	
			I _{IO} =+8mA	T _A ≤85°C T _A ≥85°C		0.75 0.85	
V _{OH} ²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 78)		I _{IO} =-5mA,	T _A ≤85°C T _A ≥85°C	V _{DD} -1.5 V _{DD} -1.6		
			I _{IO} =-2mA	T _A ≤85°C T _A ≥85°C	V _{DD} -0.8 V _{DD} -1.0		
V _{OL} ¹⁾³⁾	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 69)	3.3V	I _{IO} =+2mA	T _A ≤85°C T _A ≥85°C		0.5 0.6	v
	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time		I _{IO} =+8mA	T _A ≤85°C T _A ≥85°C		0.5 0.6	
V _{OH} ²⁾³⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	V _{DD} =	I _{IO} =-2mA	T _A ≤85°C T _A ≥85°C	V _{DD} -0.8 V _{DD} -1.0		
V _{OL} ¹⁾³⁾	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 68)	V.	I _{IO} =+2mA	T _A ≤85°C T _A ≥85°C		0.6 0.7	
	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time		I _{IO} =+8mA	T _A ≤85°C T _A ≥85°C		0.6 0.7	
V _{OH} ²⁾³⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 75)	V _{DD} =2.7	I _{IO} =-2mA	T _A ≤85°C T _A ≥85°C	V _{DD} -0.9 V _{DD} -1.0		

Notes:

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

3. Not tested in production, based on characterization results.

Figure 67. Typical V_{OL} at V_{DD}=2.4V (standard)

Figure 68. Typical V_{OL} at V_{DD}=2.7V (standard)

<u>ل</u>رک

14 PACKAGE CHARACTERISTICS

14.1 PACKAGE MECHANICAL DATA

Figure 90. 20-Pin Plastic Small Outline Package, 300-mil Width

Table 26. ST7 Application Notes

IDENTIFICATION	DESCRIPTION				
AN1476	LOW COST POWER SUPPLY FOR HOME APPLIANCES				
AN1526	ST7FLITE0 QUICK REFERENCE NOTE				
AN1709	EMC DESIGN FOR ST MICROCONTROLLERS				
AN1752	ST72324 QUICK REFERENCE NOTE				
PRODUCT EVALUATION					
AN 910	PERFORMANCE BENCHMARKING				
AN 990	ST7 BENEFITS VERSUS INDUSTRY STANDARD				
AN1077	OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS				
AN1086	U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING				
AN1103	IMPROVED B-EMF DETECTION FOR LOW SPEED, LOW VOLTAGE WITH ST72141				
AN1150	BENCHMARK ST72 VS PC16				
AN1151	PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876				
AN1278	LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS				
PRODUCT MIGRATION					
AN1131	MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324				
AN1322	MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B				
AN1365	GUIDELINES FOR MIGRATING ST72C254 APPLICATIONS TO ST72F264				
AN1604	HOW TO USE ST7MDT1-TRAIN WITH ST72F264				
PRODUCT OPTIM	IZATION				
AN 982	USING ST7 WITH CERAMIC RENATOR				
AN1014	HOW TO MINIMIZE THE ST7 POWER CONSUMPTION				
AN1015	SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE				
AN1040	MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES				
AN1070	ST7 CHECKSUM SELF-CHECKING CAPABILITY				
AN1181	ELECTROSTATIC DISCHARGE SENSITIVE MEASUREMENT				
AN1324	CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS				
AN1502	EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY				
AN1529	EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY				
AN1530	ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILLA- TOR				
AN1605	USING AN ACTIVE RC TO WAKEUP THE ST7LITE0 FROM POWER SAVING MODE				
AN1636	UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS				
AN1828	PIR (PASSIVE INFRARED) DETECTOR USING THE ST7FLITE05/09/SUPERLITE				
AN1971	ST7LITE0 MICROCONTROLLED BALLAST				
PROGRAMMING AND TOOLS					
AN 978	ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES				
AN 983	KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE				
AN 985	EXECUTING CODE IN ST7 RAM				
AN 986	USING THE INDIRECT ADDRESSING MODE WITH ST7				
AN 987	ST7 SERIAL TEST CONTROLLER PROGRAMMING				
AN 988	STARTING WITH ST7 ASSEMBLY TOOL CHAIN				
AN 989	GETTING STARTED WITH THE ST7 HIWARE C TOOLCHAIN				
AN1039	ST7 MATH UTILITY ROUTINES				
AN1064	WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7				
AN1071	HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER				
AN1106	TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7				

Table 26. ST7 Application Notes

57

IDENTIFICATION	DESCRIPTION			
AN1179	PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PRO-			
	GRAMMING)			
AN1446	USING THE ST72521 EMULATOR TO DEBUG A ST72324 TARGET APPLICATION			
AN1477	EMULATED DATA EEPROM WITH XFLASH MEMORY			
AN1478	PORTING AN ST7 PANTA PROJECT TO CODEWARRIOR IDE			
AN1527	DEVELOPING A USB SMARTCARD READER WITH ST7SCR			
AN1575	ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS			
AN1576	IN-APPLICATION PROGRAMMING (IAP) DRIVERS FOR ST7 HDFLASH OR XFLASH MCUS			
AN1577	DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION FOR ST7 USB APPLICATIONS			
AN1601	SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL			
AN1603	USING THE ST7 USB DEVICE FIRMWARE UPGRADE DEVELOPMENT KIT (DFU-DK)			
AN1635	ST7 CUSTOMER ROM CODE RELEASE INFORMATION			
AN1754	DATA LOGGING PROGRAM FOR TESTING ST7 APPLICATIONS VIA ICC			
AN1796	FIELD UPDATES FOR FLASH BASED ST7 APPLICATIONS USING A PC COMM PORT			
AN1900	HARDWARE IMPLEMENTATION FOR ST7DALI-EVAL			
AN1904	ST7MC THREE-PHASE AC INDUCTION MOTOR CONTROL SOFTWARE LIBRARY			
SYSTEM OPTIMIZATION				
AN1711	SOFTWARE TECHNIQUES FOR COMPENSATING ST7 ADC ERRORS			
AN1827	IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09			