Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 260 | | Total RAM Bits | - | | Number of I/O | 34 | | Number of Gates | 10000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 48-VFQFN Exposed Pad | | Supplier Device Package | 48-QFN (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agln010v2-qng48i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks (AGLN060, AGLN125) Figure 1-4 • IGLOO Device Architecture Overview with Four I/O Banks (AGLN250) # 2 - IGLOO nano DC and Switching Characteristics # **General Specifications** The Z feature grade does not support the enhanced nano features of Schmitt trigger input, Flash*Freeze bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, and hot-swap I/O capability. Refer to "IGLOO nano Ordering Information" on page IV for more information. # **Operating Conditions** Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 • Absolute Maximum Ratings | Symbol | Parameter | Limits | Units | | | |-------------------------------|------------------------------|-----------------|-------|--|--| | VCC | DC core supply voltage | -0.3 to 1.65 | V | | | | VJTAG | JTAG DC voltage | -0.3 to 3.75 | V | | | | VPUMP | Programming voltage | -0.3 to 3.75 | | | | | VCCPLL | Analog power supply (PLL) | -0.3 to 1.65 | | | | | VCCI | DC I/O buffer supply voltage | -0.3 to 3.75 | | | | | VI ¹ | I/O input voltage | −0.3 V to 3.6 V | V | | | | T _{STG} ² | Storage temperature | -65 to +150 | °C | | | | T_J^2 | Junction temperature | +125 | °C | | | #### Notes: ^{1.} The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3. ^{2.} For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2. IGLOO nano DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions 1 | Symbol | P | arameter | Extended
Commercial | Industrial | Units | |---------------------|-------------------------|---|-------------------------|--------------------------|-------| | T _J | Junction temperature | | $-20 \text{ to} + 85^2$ | -40 to +100 ² | °C | | VCC | 1.5 V DC core supply vo | oltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.2 V–1.5 V wide range | core voltage ^{4,5} | 1.14 to 1.575 | 1.14 to 1.575 | V | | VJTAG | JTAG DC voltage | | 1.4 to 3.6 | 1.4 to 3.6 | V | | VPUMP ⁶ | Programming voltage | Programming mode | 3.15 to 3.45 | 3.15 to 3.45 | V | | | | Operation | 0 to 3.6 | 0 to 3.6 | V | | VCCPLL ⁷ | Analog power supply | 1.5 V DC core supply voltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | (PLL) | 1.2 V–1.5 V wide range core supply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | VCCI and | 1.2 V DC supply voltage | . 4 | 1.14 to 1.26 | 1.14 to 1.26 | V | | VMV ^{8,9} | 1.2 V DC wide range su | pply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | | 1.5 V DC supply voltage | | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.8 V DC supply voltage | | 1.7 to 1.9 | 1.7 to 1.9 | V | | | 2.5 V DC supply voltage | | 2.3 to 2.7 | 2.3 to 2.7 | V | | | 3.3 V DC supply voltage | | 3.0 to 3.6 | 3.0 to 3.6 | V | | | 3.3 V DC wide range su | pply voltage ¹⁰ | 2.7 to 3.6 | 2.7 to 3.6 | V | #### Notes: - 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. - 2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help. - 3. For IGLOO® nano V5 devices - 4. For IGLOO nano V2 devices only, operating at VCCI ≥ VCC - 5. IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to do in-system programming using 1.2 V, please contact the factory. - 6. V_{PUMP} can be left floating during operation (not programming mode). - 7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information. - 8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano FPGA Fabric User's Guide for further information. - 9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank. - 10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹ | Product
Grade | | Program Retention (biased/unbiased) | Maximum Storage
Temperature T _{STG} (°C) ² | Maximum Operating Junction
Temperature T _J (°C) ² | |------------------|-----|-------------------------------------|---|--| | Commercial | 500 | 20 years | 110 | 100 | | Industrial | 500 | 20 years | 110 | 100 | #### Notes: - 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. - These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits. 2-2 Revision 19 IGLOO nano DC and Switching Characteristics ### PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes LOW and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO nano FPGA Fabric User's Guide* for information on clock and lock recovery. ### Internal Power-Up Activation Sequence - Core - 2. Input buffers - 3. Output buffers, after 200 ns delay from input buffer activation To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design. Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels 2-4 Revision 19 Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V) For IGLOO nano V2, 1.2 V DC Core Supply Voltage | Array Voltage | | Junction Temperature (°C) | | | | | | | | | | | | |---------------|-------|---------------------------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | VCC (V) | -40°C | –20°C | 0°C | 25°C | 70°C | 85°C | 100°C | | | | | | | | 1.14 | 0.968 | 0.974 | 0.979 | 0.991 | 1.000 | 1.006 | 1.009 | | | | | | | | 1.2 | 0.863 | 0.868 | 0.873 | 0.884 | 0.892 | 0.898 | 0.901 | | | | | | | | 1.26 | 0.792 | 0.797 | 0.801 | 0.811 | 0.819 | 0.824 | 0.827 | | | | | | | # **Calculating Power Dissipation** # **Quiescent Supply Current** Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature. Table 2-8 • Power Supply State per Mode | | | Power Supply Configurations | | | | | | | | | | |----------------------|-----|-----------------------------|------|-------|-----------------|--|--|--|--|--|--| | Modes/Power Supplies | vcc | VCCPLL | VCCI | VJTAG | VPUMP | | | | | | | | Flash*Freeze | On | On | On | On | On/off/floating | | | | | | | | Sleep | Off | Off | On | Off | Off | | | | | | | | Shutdown | Off | Off | Off | Off | Off | | | | | | | | No Flash*Freeze | On | On | On | On | On/off/floating | | | | | | | Note: Off: Power Supply level = 0 V Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode* | | Core
Voltage | AGLN010 | AGLN015 | AGLN020 | AGLN060 | AGLN125 | AGLN250 | Units | |----------------|-----------------|---------|---------|---------|---------|---------|---------|-------| | Typical (25°C) | 1.2 V | 1.9 | 3.3 | 3.3 | 8 | 13 | 20 | μΑ | | | 1.5 V | 5.8 | 6 | 6 | 10 | 18 | 34 | μA | Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7). Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example) 2-18 Revision 19 #### **Timing Characteristics** #### Applies to 1.5 V DC Core Voltage Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 3.52 | 0.19 | 0.86 | 1.16 | 0.66 | 3.59 | 3.42 | 1.75 | 1.90 | ns | | 4 mA | STD | 0.97 | 3.52 | 0.19 | 0.86 | 1.16 | 0.66 | 3.59 | 3.42 | 1.75 | 1.90 | ns | | 6 mA | STD | 0.97 | 2.90 | 0.19 | 0.86 | 1.16 | 0.66 | 2.96 | 2.83 | 1.98 | 2.29 | ns | | 8 mA | STD | 0.97 | 2.90 | 0.19 | 0.86 | 1.16 | 0.66 | 2.96 | 2.83 | 1.98 | 2.29 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.16 | 0.19 | 0.86 | 1.16 | 0.66 | 2.20 | 1.80 | 1.75 | 1.99 | ns | | 4 mA | STD | 0.97 | 2.16 | 0.19 | 0.86 | 1.16 | 0.66 | 2.20 | 1.80 | 1.75 | 1.99 | ns | | 6 mA | STD | 0.97 | 1.79 | 0.19 | 0.86 | 1.16 | 0.66 | 1.83 | 1.45 | 1.98 | 2.38 | ns | | 8 mA | STD | 0.97 | 1.79 | 0.19 | 0.86 | 1.16 | 0.66 | 1.83 | 1.45 | 1.98 | 2.38 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ### 3.3 V LVCMOS Wide Range Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range | 3.3 V LVCMOS
Wide Range ¹ | Software | | TL. | , | VIH | VOL | VOH | IOL | I _{OH} | IIL ² | IIH ³ | |---|---|-----------|-----------|-----------|-----------|-----------|------------|-----|-----------------|-------------------------|-------------------------| | Drive
Strength | Default
Drive
Strength
Option ⁴ | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | μА | μА | μ Α ⁵ | μ Α ⁵ | | 100 μΑ | 2 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 4 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 6 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | #### Notes: - 1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification. - 2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL. - 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 5. Currents are measured at 85°C junction temperature. - 6. Software default selection is highlighted in gray. # **Output Register** Figure 2-15 • Output Register Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-74 • Output Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |----------------------|--|------|-------| | t _{OCLKQ} | Clock-to-Q of the Output Data Register | 1.00 | ns | | tosup | Data Setup Time for the Output Data Register | 0.51 | ns | | t _{OHD} | Data Hold Time for the Output Data Register | 0.00 | ns | | t _{OCLR2Q} | Asynchronous Clear-to-Q of the Output Data Register | 1.34 | ns | | t _{OPRE2Q} | Asynchronous Preset-to-Q of the Output Data Register | 1.34 | ns | | t _{OREMCLR} | Asynchronous Clear Removal Time for the Output Data Register | 0.00 | ns | | t _{ORECCLR} | Asynchronous Clear Recovery Time for the Output Data Register | 0.24 | ns | | t _{OREMPRE} | Asynchronous Preset Removal Time for the Output Data Register | 0.00 | ns | | t _{ORECPRE} | Asynchronous Preset Recovery Time for the Output Data Register | 0.24 | ns | | towclr | Asynchronous Clear Minimum Pulse Width for the Output Data Register | 0.19 | ns | | t _{OWPRE} | Asynchronous Preset Minimum Pulse Width for the Output Data Register | 0.19 | ns | | t _{OCKMPWH} | Clock Minimum Pulse Width HIGH for the Output Data Register | 0.31 | ns | | t _{OCKMPWL} | Clock Minimum Pulse Width LOW for the Output Data Register | 0.28 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. # **Output DDR Module** Figure 2-19 • Output DDR Timing Model Table 2-81 • Parameter Definitions | Parameter Name | Parameter Definition | Measuring Nodes (from, to) | | | | | |-------------------------|---------------------------|----------------------------|--|--|--|--| | ^t DDROCLKQ | Clock-to-Out | B, E | | | | | | t _{DDROCLR2Q} | Asynchronous Clear-to-Out | C, E | | | | | | t _{DDROREMCLR} | Clear Removal | C, B | | | | | | t _{DDRORECCLR} | Clear Recovery | C, B | | | | | | t _{DDROSUD1} | Data Setup Data_F | A, B | | | | | | t _{DDROSUD2} | Data Setup Data_R | D, B | | | | | | t _{DDROHD1} | Data Hold Data_F | A, B | | | | | | t _{DDROHD2} | Data Hold Data_R | D, B | | | | | 2-54 Revision 19 Figure 2-22 • Timing Model and Waveforms 2-58 Revision 19 IGLOO nano DC and Switching Characteristics # VersaTile Specifications as a Sequential Module The IGLOO nano library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide for Software v10.1. Figure 2-23 • Sample of Sequential Cells 2-60 Revision 19 # Timing Waveforms Figure 2-34 • FIFO Read Figure 2-35 • FIFO Write 2-82 Revision 19 # **Timing Characteristics** 1.5 V DC Core Voltage Table 2-106 • FIFO Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V | Parameter | Description | Std. | Units | |----------------------|---|-------|-------| | t _{ENS} | REN, WEN Setup Time | 1.66 | ns | | t _{ENH} | REN, WEN Hold Time | 0.13 | ns | | t _{BKS} | BLK Setup Time | 0.30 | ns | | t _{BKH} | BLK Hold Time | 0.00 | ns | | t _{DS} | Input Data (WD) Setup Time | 0.63 | ns | | t _{DH} | Input Data (WD) Hold Time | 0.20 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 2.77 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 1.50 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 2.94 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 2.79 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 10.71 | ns | | t _{RSTFG} | RESET Low to Empty/Full Flag Valid | 2.90 | ns | | t _{RSTAF} | RESET Low to Almost Empty/Full Flag Valid | 10.60 | ns | | t _{RSTBQ} | RESET Low to Data Out LOW on RD (flow-through) | 1.68 | ns | | | RESET Low to Data Out LOW on RD (pipelined) | 1.68 | ns | | t _{REMRSTB} | RESET Removal | 0.51 | ns | | t _{RECRSTB} | RESET Recovery | 2.68 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 0.68 | ns | | t _{CYC} | Clock Cycle Time | 6.24 | ns | | F _{MAX} | Maximum Frequency for FIFO | 160 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. IGLOO nano DC and Switching Characteristics ## 1.2 V DC Core Voltage Table 2-107 • FIFO Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V | Parameter | Description | Std. | Units | |----------------------|---|-------|-------| | t _{ENS} | REN, WEN Setup Time | 3.44 | ns | | t _{ENH} | REN, WEN Hold Time | 0.26 | ns | | t _{BKS} | BLK Setup Time | 0.30 | ns | | t _{BKH} | BLK Hold Time | 0.00 | ns | | t _{DS} | Input Data (DI) Setup Time | 1.30 | ns | | t _{DH} | Input Data (DI) Hold Time | 0.41 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 5.67 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 3.02 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 6.02 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 5.71 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 22.17 | ns | | t _{RSTFG} | RESET LOW to Empty/Full Flag Valid | 5.93 | ns | | t _{RSTAF} | RESET LOW to Almost Empty/Full Flag Valid | 21.94 | ns | | t _{RSTBQ} | RESET LOW to Data Out Low on RD (flow-through) | 3.41 | ns | | | RESET LOW to Data Out Low on RD (pipelined) | 4.09 | 3.41 | | t _{REMRSTB} | RESET Removal | 1.02 | ns | | t _{RECRSTB} | RESET Recovery | 5.48 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 1.18 | ns | | t _{CYC} | Clock Cycle Time | 10.90 | ns | | F _{MAX} | Maximum Frequency for FIFO | 92 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-86 Revision 19 ## Package Pin Assignments | | UC36 | |------------|---------------------| | Pin Number | AGLN010
Function | | A1 | IO21RSB1 | | A2 | IO18RSB1 | | A3 | IO13RSB1 | | A4 | GDC0/IO00RSB0 | | A5 | IO06RSB0 | | A6 | GDA0/IO04RSB0 | | B1 | GEC0/IO37RSB1 | | B2 | IO20RSB1 | | В3 | IO15RSB1 | | B4 | IO09RSB0 | | B5 | IO08RSB0 | | В6 | IO07RSB0 | | C1 | IO22RSB1 | | C2 | GEA0/IO34RSB1 | | C3 | GND | | C4 | GND | | C5 | VCCIB0 | | C6 | IO02RSB0 | | D1 | IO33RSB1 | | D2 | VCCIB1 | | D3 | VCC | | D4 | VCC | | D5 | IO10RSB0 | | D6 | IO11RSB0 | | E1 | IO32RSB1 | | E2 | FF/IO31RSB1 | | E3 | TCK | | E4 | VPUMP | | E5 | TRST | | E6 | VJTAG | | F1 | IO29RSB1 | | F2 | IO25RSB1 | | F3 | IO23RSB1 | | F4 | TDI | | UC36 | | |------------|---------------------| | Pin Number | AGLN010
Function | | F5 | TMS | | F6 | TDO | 4-2 Revision 19 Package Pin Assignments | VQ100 | | VQ100 | | |------------|------------------|------------|------------------| | Pin Number | AGLN060 Function | Pin Number | AGLN060 Function | | 1 | GND | 36 | IO61RSB1 | | 2 | GAA2/IO51RSB1 | 37 | VCC | | 3 | IO52RSB1 | 38 | GND | | 4 | GAB2/IO53RSB1 | 39 | VCCIB1 | | 5 | IO95RSB1 | 40 | IO60RSB1 | | 6 | GAC2/IO94RSB1 | 41 | IO59RSB1 | | 7 | IO93RSB1 | 42 | IO58RSB1 | | 8 | IO92RSB1 | 43 | IO57RSB1 | | 9 | GND | 44 | GDC2/IO56RSB1 | | 10 | GFB1/IO87RSB1 | 45* | GDB2/IO55RSB1 | | 11 | GFB0/IO86RSB1 | 46 | GDA2/IO54RSB1 | | 12 | VCOMPLF | 47 | TCK | | 13 | GFA0/IO85RSB1 | 48 | TDI | | 14 | VCCPLF | 49 | TMS | | 15 | GFA1/IO84RSB1 | 50 | VMV1 | | 16 | GFA2/IO83RSB1 | 51 | GND | | 17 | VCC | 52 | VPUMP | | 18 | VCCIB1 | 53 | NC | | 19 | GEC1/IO77RSB1 | 54 | TDO | | 20 | GEB1/IO75RSB1 | 55 | TRST | | 21 | GEB0/IO74RSB1 | 56 | VJTAG | | 22 | GEA1/IO73RSB1 | 57 | GDA1/IO49RSB0 | | 23 | GEA0/IO72RSB1 | 58 | GDC0/IO46RSB0 | | 24 | VMV1 | 59 | GDC1/IO45RSB0 | | 25 | GNDQ | 60 | GCC2/IO43RSB0 | | 26 | GEA2/IO71RSB1 | 61 | GCB2/IO42RSB0 | | 27 | FF/GEB2/IO70RSB1 | 62 | GCA0/IO40RSB0 | | 28 | GEC2/IO69RSB1 | 63 | GCA1/IO39RSB0 | | 29 | IO68RSB1 | 64 | GCC0/IO36RSB0 | | 30 | IO67RSB1 | 65 | GCC1/IO35RSB0 | | 31 | IO66RSB1 | 66 | VCCIB0 | | 32 | IO65RSB1 | 67 | GND | | 33 | IO64RSB1 | 68 | VCC | | 34 | IO63RSB1 | 69 | IO31RSB0 | | 35 | IO62RSB1 | 70 | GBC2/IO29RSB0 | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN060 Function | | | 71 | GBB2/IO27RSB0 | | | 72 | IO26RSB0 | | | 73 | GBA2/IO25RSB0 | | | 74 | VMV0 | | | 75 | GNDQ | | | 76 | GBA1/IO24RSB0 | | | 77 | GBA0/IO23RSB0 | | | 78 | GBB1/IO22RSB0 | | | 79 | GBB0/IO21RSB0 | | | 80 | GBC1/IO20RSB0 | | | 81 | GBC0/IO19RSB0 | | | 82 | IO18RSB0 | | | 83 | IO17RSB0 | | | 84 | IO15RSB0 | | | 85 | IO13RSB0 | | | 86 | IO11RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO10RSB0 | | | 91 | IO09RSB0 | | | 92 | IO08RSB0 | | | 93 | GAC1/IO07RSB0 | | | 94 | GAC0/IO06RSB0 | | | 95 | GAB1/IO05RSB0 | | | 96 | GAB0/IO04RSB0 | | | 97 | GAA1/IO03RSB0 | | | 98 | GAA0/IO02RSB0 | | | 99 | IO01RSB0 | | | 100 | IO00RSB0 | | Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-VQ100. 4-24 Revision 19 Package Pin Assignments | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN250 Function | | | 1 | GND | | | 2 | GAA2/IO67RSB3 | | | 3 | IO66RSB3 | | | 4 | GAB2/IO65RSB3 | | | 5 | IO64RSB3 | | | 6 | GAC2/IO63RSB3 | | | 7 | IO62RSB3 | | | 8 | IO61RSB3 | | | 9 | GND | | | 10 | GFB1/IO60RSB3 | | | 11 | GFB0/IO59RSB3 | | | 12 | VCOMPLF | | | 13 | GFA0/IO57RSB3 | | | 14 | VCCPLF | | | 15 | GFA1/IO58RSB3 | | | 16 | GFA2/IO56RSB3 | | | 17 | VCC | | | 18 | VCCIB3 | | | 19 | GFC2/IO55RSB3 | | | 20 | GEC1/IO54RSB3 | | | 21 | GEC0/IO53RSB3 | | | 22 | GEA1/IO52RSB3 | | | 23 | GEA0/IO51RSB3 | | | 24 | VMV3 | | | 25 | GNDQ | | | 26 | GEA2/IO50RSB2 | | | 27 | FF/GEB2/IO49RSB2 | | | 28 | GEC2/IO48RSB2 | | | 29 | IO47RSB2 | | | 30 | IO46RSB2 | | | 31 | IO45RSB2 | | | 32 | IO44RSB2 | | | 33 | IO43RSB2 | | | 34 | IO42RSB2 | | | 35 | IO41RSB2 | | | 36 | IO40RSB2 | | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN250 Function | | | 37 | VCC | | | 38 | GND | | | 39 | VCCIB2 | | | 40 | IO39RSB2 | | | 41 | IO38RSB2 | | | 42 | IO37RSB2 | | | 43 | GDC2/IO36RSB2 | | | 44 | GDB2/IO35RSB2 | | | 45 | GDA2/IO34RSB2 | | | 46 | GNDQ | | | 47 | TCK | | | 48 | TDI | | | 49 | TMS | | | 50 | VMV2 | | | 51 | GND | | | 52 | VPUMP | | | 53 | NC | | | 54 | TDO | | | 55 | TRST | | | 56 | VJTAG | | | 57 | GDA1/IO33RSB1 | | | 58 | GDC0/IO32RSB1 | | | 59 | GDC1/IO31RSB1 | | | 60 | IO30RSB1 | | | 61 | GCB2/IO29RSB1 | | | 62 | GCA1/IO27RSB1 | | | 63 | GCA0/IO28RSB1 | | | 64 | GCC0/IO26RSB1 | | | 65 | GCC1/IO25RSB1 | | | 66 | VCCIB1 | | | 67 | GND | | | 68 | VCC | | | 69 | IO24RSB1 | | | 70 | GBC2/IO23RSB1 | | | 71 | GBB2/IO22RSB1 | | | 72 | IO21RSB1 | | | | VQ100 | |------------|------------------| | Pin Number | AGLN250 Function | | 73 | GBA2/IO20RSB1 | | 74 | VMV1 | | 75 | GNDQ | | 76 | GBA1/IO19RSB0 | | 77 | GBA0/IO18RSB0 | | 78 | GBB1/IO17RSB0 | | 79 | GBB0/IO16RSB0 | | 80 | GBC1/IO15RSB0 | | 81 | GBC0/IO14RSB0 | | 82 | IO13RSB0 | | 83 | IO12RSB0 | | 84 | IO11RSB0 | | 85 | IO10RSB0 | | 86 | IO09RSB0 | | 87 | VCCIB0 | | 88 | GND | | 89 | VCC | | 90 | IO08RSB0 | | 91 | IO07RSB0 | | 92 | IO06RSB0 | | 93 | GAC1/IO05RSB0 | | 94 | GAC0/IO04RSB0 | | 95 | GAB1/IO03RSB0 | | 96 | GAB0/IO02RSB0 | | 97 | GAA1/IO01RSB0 | | 98 | GAA0/IO00RSB0 | | 99 | GNDQ | | 100 | VMV0 | 4-28 Revision 19 ### Datasheet Information | Revision / Version | Changes | Page | |--|--|------------| | Revision 2 (Dec 2008) Product Brief Advance v0.4 | The second table note in "IGLOO nano Devices" table was revised to state, "AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. AGLN030 and smaller devices do not support this feature." | II | | | The I/Os per package for CS81 were revised to 60 for AGLN060, AGLN125, and AGLN250 in the "I/Os Per Package"table. | II | | Packaging Advance
v0.3 | The "UC36" pin table is new. | 4-2 | | Revision 1 (Nov 2008)
Product Brief Advance
v0.3 | The "Advanced I/Os" section was updated to include wide power supply voltage support for 1.14 V to 1.575 V. | I | | | The AGLN030 device was added to product tables and replaces AGL030 entries that were formerly in the tables. | VI | | | The "I/Os Per Package"table was updated for the CS81 package to change the number of I/Os for AGLN060, AGLN125, and AGLN250 from 66 to 64. | II | | | The "Wide Range I/O Support" section is new. | 1-8 | | | The table notes and references were revised in Table 2-2 • Recommended Operating Conditions ¹ . VMV was included with VCCI and a table note was added stating, "VMV pins must be connected to the corresponding VCCI pins. See <i>Pin Descriptions</i> for further information." Please review carefully. | 2-2 | | | VJTAG was added to the list in the table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*. Values were added for AGLN010, AGLN015, and AGLN030 for 1.5 V. | 2-7 | | | VCCI was removed from the list in the table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*. | 2-8 | | | Values for I _{CCA} current were updated for AGLN010, AGLN015, and AGLN030 in Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ . | 2-8 | | | Values for PAC1 and PAC2 were added to Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices and Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices. | 2-10, 2-11 | | | Table notes regarding wide range support were added to Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels. | 2-19 | | | 1.2 V LVCMOS wide range values were added to Table 2-22 • Summary of Maximum and Minimum DC Input Levels and Table 2-23 • Summary of AC Measuring Points. | 2-19, 2-20 | | | The following table note was added to Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings and Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings: "All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification." | 2-21 | | | 3.3 V LVCMOS Wide Range and 1.2 V Wide Range were added to Table 2-28 • I/O Output Buffer Maximum Resistances ¹ and Table 2-30 • I/O Short Currents IOSH/IOSL. | 2-23, 2-24 | 5-6 Revision 19 **Microsemi Corporate Headquarters** One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 #### E-mail: sales.support@microsemi.com © 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.