

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXFl

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	520
Total RAM Bits	-
Number of I/O	52
Number of Gates	20000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-20°C ~ 85°C (TJ)
Package / Case	81-WFBGA, CSBGA
Supplier Device Package	81-CSP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln020v5-csg81

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Devices	AGLN010	AGLN015 ¹	AGLN020		AGLN060	AGLN125	AGLN250
IGLOO nano-Z Devices ¹				AGLN030Z ¹	AGLN060Z ¹	AGLN125Z ¹	AGLN250Z ¹
Package Pins							
UC/CS	UC36		UC81,	UC81, CS81	CS81	CS81	CS81
QFN	QN48	QN68	CS81	QN48, QN68			
VQFP			QN68	VQ100	VQ100	VQ100	VQ100

Notes:

Not recommended for new designs. Few devices/packages are obsoleted. For more information on obsoleted devices/packages, refer to the PDN 1503 - IGLOO nano Z and ProASIC3 nano Z Families.

AGLN030 and smaller devices do not support this feature.

3.

AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. For higher densities and support of additional features, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOOe 4. Low-Power Flash FPGAs Datasheet .

I/Os Per Package

IGLOO nano Devices	AGLN010	AGLN015 ¹	AGLN020		AGLN060	AGLN125	AGLN250
IGLOO nano-Z Devices ¹				AGLN030Z ¹	AGLN060Z ¹	AGLN125Z ¹	AGLN250Z ¹
Known Good Die	34	-	52	83	71	71	68
UC36	23	-	-	_	-	-	-
QN48	34	-	-	34	-	-	-
QN68	-	49	49	49	-	-	-
UC81	-	-	52	66	-	-	-
CS81	-	-	52	66	60	60	60
VQ100	_	_	_	77	71	71	68

Notes:

Not recommended for new designs.

2. When considering migrating your design to a lower- or higher-density device, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOO FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

4. "G" indicates RoHS-compliant packages. Refer to "IGLOO nano Ordering Information" on page IV for the location of the "G" in the part number. For nano devices, the VQ100 package is offered in both leaded and RoHS-compliant versions. All other packages are RoHS-compliant only.

Table 1 • IGLOO nano FPGAs Package Sizes Dimensions

Packages	UC36	UC81	CS81	QN48	QN68	VQ100
Length × Width (mm\mm)	3 x 3	4 x 4	5 x 5	6 x 6	8 x 8	14 x 14
Nominal Area (mm ²)	9	16	25	36	64	196
Pitch (mm)	0.4	0.4	0.5	0.4	0.4	0.5
Height (mm)	0.80	0.80	0.80	0.90	0.90	1.20

Flash Advantages

Low Power

Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO nano devices also have low dynamic power consumption to further maximize power savings; power is reduced even further by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO nano devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 μ s) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

vcci	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

 The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO nano device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO nano I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)

Array Voltage	Junction Temperature (°C)										
VCC (V)	–40°C	–20°C	0°C	25°C	70°C	85°C	100°C				
1.14	0.968	0.974	0.979	0.991	1.000	1.006	1.009				
1.2	0.863	0.868	0.873	0.884	0.892	0.898	0.901				
1.26	0.792	0.797	0.801	0.811	0.819	0.824	0.827				

For IGLOO nano V2, 1.2 V DC Core Supply Voltage

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Po	ower Supply	State per	Mode
----------------	-------------	-----------	------

	Power Supply Configurations									
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP					
Flash*Freeze	On	On	On	On	On/off/floating					
Sleep	Off	Off	On	Off	Off					
Shutdown	Off	Off	Off	Off	Off					
No Flash*Freeze	On	On	On	On	On/off/floating					

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
Typical (25°C)	1.2 V	1.9	3.3	3.3	8	13	20	μA
	1.5 V	5.8	6	6	10	18	34	μA

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7).

IGLOO nano DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5

 N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL}* PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

Detailed I/O DC Characteristics

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-27 • Input Capacitance

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³	
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300	
	4 mA	100	300	
	6 mA	50	150	
	8 mA	50	150	
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive	
2.5 V LVCMOS	2 mA	100	200	
	4 mA	100	200	
	6 mA	50	100	
	8 mA	50	100	
1.8 V LVCMOS	2 mA	200	225	
	4 mA	100	112	
1.5 V LVCMOS	2 mA	200	224	
1.2 V LVCMOS ⁴	1 mA	315	315	
1.2 V LVCMOS Wide Range ⁴	100 µA	315	315	

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	3.52	0.19	0.86	1.16	0.66	3.59	3.42	1.75	1.90	ns
4 mA	STD	0.97	3.52	0.19	0.86	1.16	0.66	3.59	3.42	1.75	1.90	ns
6 mA	STD	0.97	2.90	0.19	0.86	1.16	0.66	2.96	2.83	1.98	2.29	ns
8 mA	STD	0.97	2.90	0.19	0.86	1.16	0.66	2.96	2.83	1.98	2.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.16	0.19	0.86	1.16	0.66	2.20	1.80	1.75	1.99	ns
4 mA	STD	0.97	2.16	0.19	0.86	1.16	0.66	2.20	1.80	1.75	1.99	ns
6 mA	STD	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns
8 mA	STD	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-47 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	4.13	0.19	1.10	1.24	0.66	4.01	4.13	1.73	1.74	ns
4 mA	STD	0.97	4.13	0.19	1.10	1.24	0.66	4.01	4.13	1.73	1.74	ns
8 mA	STD	0.97	3.39	0.19	1.10	1.24	0.66	3.31	3.39	1.98	2.19	ns
8 mA	STD	0.97	3.39	0.19	1.10	1.24	0.66	3.31	3.39	1.98	2.19	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-48 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.19	0.19	1.10	1.24	0.66	2.23	2.11	1.72	1.80	ns
4 mA	STD	0.97	2.19	0.19	1.10	1.24	0.66	2.23	2.11	1.72	1.80	ns
6 mA	STD	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns
8 mA	STD	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-74 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-75 • Output Data Register Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.52	ns
tosud	Data Setup Time for the Output Data Register	1.15	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.96	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.96	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

DDR Module Specifications

Note: DDR is not supported for AGLN010, AGLN015, and AGLN020 devices.

Input DDR Module

Figure	2-17 •	Input DF)R Timina	Model
		in par =		mouo

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Global Resource Characteristics

AGLN125 Clock Tree Topology

Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device. It is used to drive all D-flip-flops in the device.

Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing

IGLOO nano DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-88 •AGLN010 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.13	1.42	ns	
t _{RCKH}	Input High Delay for Global Clock	1.15	1.50	ns	
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns	
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.35	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • AGLN015 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

			Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns	
t _{RCKH}	Input HIgh Delay for Global Clock	1.23	1.65	ns	
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns	
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-27 • RAM Models

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO nano V5 devices, and 1.2 V or 1.5 V for IGLOO nano V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter in the *IGLOO nano FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on IGLOO nano devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO nano devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG

Package Pin Assignments

	CS81	CS81					
Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function				
A1	GAA0/IO00RSB0	E1	GFB0/IO120RSB1				
A2	GAA1/IO01RSB0	E2	GFB1/IO121RSB1				
A3	GAC0/IO04RSB0	E3	GFA1/IO118RSB1				
A4	IO13RSB0	E4	VCCIB1				
A5	IO22RSB0	E5	VCC				
A6	IO32RSB0	E6	VCCIB0				
A7	GBB0/IO37RSB0	E7	GCA0/IO56RSB0				
A8	GBA1/IO40RSB0	E8	GCA1/IO55RSB0				
A9	GBA2/IO41RSB0	E9	GCB2/IO58RSB0				
B1	GAA2/IO132RSB1	F1*	VCCPLF				
B2	GAB0/IO02RSB0	F2*	VCOMPLF				
B3	GAC1/IO05RSB0	F3	GND				
B4	IO11RSB0	F4	GND				
B5	IO25RSB0	F5	VCCIB1				
B6	GBC0/IO35RSB0	F6	GND				
B7	GBB1/IO38RSB0	F7	GDA1/IO65RSB0				
B8	IO42RSB0	F8	GDC1/IO61RSB0				
B9	GBB2/IO43RSB0	F9	GDC0/IO62RSB0				
C1	GAB2/IO130RSB1	G1	GEA0/IO104RSB1				
C2	IO131RSB1	G2	GEC0/IO108RSB1				
C3	GND	G3	GEB1/IO107RSB1				
C4	IO15RSB0	G4	IO96RSB1				
C5	IO28RSB0	G5	IO92RSB1				
C6	GND	G6	IO72RSB1				
C7	GBA0/IO39RSB0	G7	GDB2/IO68RSB1				
C8	GBC2/IO45RSB0	G8	VJTAG				
C9	IO47RSB0	G9	TRST				
D1	GAC2/IO128RSB1	H1	GEA1/IO105RSB1				
D2	IO129RSB1	H2	FF/GEB2/IO102RSB1				
D3	GFA2/IO117RSB1	H3	IO99RSB1				
D4	VCC	H4	IO94RSB1				
D5	VCCIB0	H5	IO91RSB1				
D6	GND	H6	IO81RSB1				
D7	GCC2/IO59RSB0	H7	GDA2/IO67RSB1				
D8	GCC1/IO51RSB0	H8	TDI				
D9	GCC0/IO52RSB0	H9	TDO				

CS81			
Pin Number	AGLN125Z Function		
J1	GEA2/IO103RSB1		
J2	GEC2/IO101RSB1		
J3	IO97RSB1		
J4	IO93RSB1		
J5	IO90RSB1		
J6	IO78RSB1		
J7	ТСК		
J8	TMS		
J9	VPUMP		

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125Z-CS81.

Package Pin Assignments

	CS81		CS81	
Pin Number	AGLN250Z Function	Pin Number	AGLN250Z Function	
A1	GAA0/IO00RSB0	E1	GFB0/IO59RSB3	
A2	GAA1/IO01RSB0	E2	GFB1/IO60RSB3	
A3	GAC0/IO04RSB0	E3	GFA1/IO58RSB3	
A4	IO07RSB0	E4	VCCIB3	
A5	IO09RSB0	E5	VCC	
A6	IO12RSB0	E6	VCCIB1	
A7	GBB0/IO16RSB0	E7	GCA0/IO28RSB1	
A8	GBA1/IO19RSB0	E8	GCA1/IO27RSB1	
A9	GBA2/IO20RSB1	E9	GCB2/IO29RSB1	
B1	GAA2/IO67RSB3	F1*	VCCPLF	
B2	GAB0/IO02RSB0	F2*	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO06RSB0	F4	GND	
B5	IO10RSB0	F5	VCCIB2	
B6	GBC0/IO14RSB0	F6	GND	
B7	GBB1/IO17RSB0	F7	GDA1/IO33RSB1	
B8	IO21RSB1	F8	GDC1/IO31RSB1	
B9	GBB2/IO22RSB1	F9	GDC0/IO32RSB1	
C1	GAB2/IO65RSB3	G1	GEA0/IO51RSB3	
C2	IO66RSB3	G2	GEC1/IO54RSB3	
C3	GND	G3	GEC0/IO53RSB3	
C4	IO08RSB0	G4	IO45RSB2	
C5	IO11RSB0	G5	IO42RSB2	
C6	GND	G6	IO37RSB2	
C7	GBA0/IO18RSB0	G7	GDB2/IO35RSB2	
C8	GBC2/IO23RSB1	G8	VJTAG	
C9	IO24RSB1	G9	TRST	
D1	GAC2/IO63RSB3	H1	GEA1/IO52RSB3	
D2	IO64RSB3	H2	FF/GEB2/IO49RSB2	
D3	GFA2/IO56RSB3	H3	IO47RSB2	
D4	VCC	H4	IO44RSB2	
D5	VCCIB0	H5	IO41RSB2	
D6	GND	H6	IO39RSB2	
D7	IO30RSB1	H7	GDA2/IO34RSB2	
D8	GCC1/IO25RSB1	H8	TDI	
D9	GCC0/IO26RSB1	H9	TDO	

CS81			
Pin Number	AGLN250Z Function		
J1	GEA2/IO50RSB2		
J2	GEC2/IO48RSB2		
J3	IO46RSB2		
J4	IO43RSB2		
J5	IO40RSB2		
J6	IO38RSB2		
J7	ТСК		
J8	TMS		
J9	VPUMP		

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250Z-CS81.

IGLOO nano Low Power Flash FPGAs

	VQ100	VQ100	
Pin Number	AGLN250Z Function	Pin Number	AGLN250Z Function
1	GND	37	VCC
2	GAA2/IO67RSB3	38	GND
3	IO66RSB3	39	VCCIB2
4	GAB2/IO65RSB3	40	IO39RSB2
5	IO64RSB3	41	IO38RSB2
6	GAC2/IO63RSB3	42	IO37RSB2
7	IO62RSB3	43	GDC2/IO36RSB2
8	IO61RSB3	44	GDB2/IO35RSB2
9	GND	45	GDA2/IO34RSB2
10	GFB1/IO60RSB3	46	GNDQ
11	GFB0/IO59RSB3	47	тск
12	VCOMPLF	48	TDI
13	GFA0/IO57RSB3	49	TMS
14	VCCPLF	50	VMV2
15	GFA1/IO58RSB3	51	GND
16	GFA2/IO56RSB3	52	VPUMP
17	VCC	53	NC
18	VCCIB3	54	TDO
19	GFC2/IO55RSB3	55	TRST
20	GEC1/IO54RSB3	56	VJTAG
21	GEC0/IO53RSB3	57	GDA1/IO33RSB1
22	GEA1/IO52RSB3	58	GDC0/IO32RSB1
23	GEA0/IO51RSB3	59	GDC1/IO31RSB1
24	VMV3	60	IO30RSB1
25	GNDQ	61	GCB2/IO29RSB1
26	GEA2/IO50RSB2	62	GCA1/IO27RSB1
27	FF/GEB2/IO49RSB2	63	GCA0/IO28RSB1
28	GEC2/IO48RSB2	64	GCC0/IO26RSB1
29	IO47RSB2	65	GCC1/IO25RSB1
30	IO46RSB2	66	VCCIB1
31	IO45RSB2	67	GND
32	IO44RSB2	68	VCC
33	IO43RSB2	69	IO24RSB1
34	IO42RSB2	70	GBC2/IO23RSB1
35	IO41RSB2	71	GBB2/IO22RSB1
36	IO40RSB2	72	IO21RSB1

	VQ100
Pin Number	AGLN250Z Function
73	GBA2/IO20RSB1
74	VMV1
75	GNDQ
76	GBA1/IO19RSB0
77	GBA0/IO18RSB0
78	GBB1/IO17RSB0
79	GBB0/IO16RSB0
80	GBC1/IO15RSB0
81	GBC0/IO14RSB0
82	IO13RSB0
83	IO12RSB0
84	IO11RSB0
85	IO10RSB0
86	IO09RSB0
87	VCCIB0
88	GND
89	VCC
90	IO08RSB0
91	IO07RSB0
92	IO06RSB0
93	GAC1/IO05RSB0
94	GAC0/IO04RSB0
95	GAB1/IO03RSB0
96	GAB0/IO02RSB0
97	GAA1/IO01RSB0
98	GAA0/IO00RSB0
99	GNDQ
100	VMV0

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the IGLOO nano datasheet.

Revision	Changes	Page
Revision 19 (October 2015)	Modified the note to include device/package obsoletion information in "Features and Benefits" section (SAR 69724).	1-1
	Added a note under Security Feature "Y" in "IGLOO nano Ordering Information" section (SAR 70553).	1-IV
	Modified AGLN250 pin assignment table to match with I/O Attribute Editor tool from Libero in "CS81" Package (SAR 59049).	4-6
	Modified the nominal area to 25 for CS81 Package in Table 1 (SAR 71127).	1-II
	Modified the title of AGLN125Z pin assignment table for "CS81" Package (SAR 71127).	4-6
Revision 18 (November 2013)	Modified the "Device Marking" section and updated Figure 1 • Example of Device Marking for Small Form Factor Packages to reflect updates suggested per CN1004 published on 5/10/2010 (SAR 52036).	V
Revision 17 (May 2013)	Deleted details related to Ambient temperature from "Enhanced Commercial Temperature Range", "IGLOO nano Ordering Information", "Temperature Grade Offerings", and Table 2-2 • Recommended Operating Conditions ¹ to remove ambiguities arising due to the same, and modified Note 2 (SAR 47063).	I, IV, VI, and 2-2
Revision 16 (December 2012)	The "IGLOO nano Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43174).	IV
	The note in Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42565).	2-70, 2-71
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 15 (September 2012)	The status of the AGLN125 device has been modified from 'Advance' to 'Production' in the "IGLOO nano Device Status" section (SAR 41416).	
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40274).	NA
Revision 14 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data.	1-2
Revision 13 (June 2012)	Figure Figure 2-34 • FIFO Read and Figure 2-35 • FIFO Write have been added (SAR 34842).	2-82
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38319). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1