Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 768 | | Total RAM Bits | - | | Number of I/O | 66 | | Number of Gates | 30000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -20°C ~ 85°C (TJ) | | Package / Case | 81-WFBGA, CSBGA | | Supplier Device Package | 81-CSP (5x5) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agln030v2-zcsg81 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | IGLOO nano Devices | AGLN010 | AGLN015 ¹ | AGLN020 | | AGLN060 | AGLN125 | AGLN250 | |-----------------------------------|--------------|----------------------|---------------|--------------------------|-----------------------|-----------------------|-----------------------| | IGLOO nano-Z Devices ¹ | | | | AGLN030Z ¹ | AGLN060Z ¹ | AGLN125Z ¹ | AGLN250Z ¹ | | Package Pins UC/CS QFN | UC36
QN48 | QN68 | UC81,
CS81 | UC81, CS81
QN48, QN68 | CS81 | CS81 | CS81 | | VQFP | | | QN68 | VQ100 | VQ100 | VQ100 | VQ100 | #### Notes: - Not recommended for new designs. Few devices/packages are obsoleted. For more information on obsoleted devices/packages, refer to the PDN 1503 IGLOO nano Z and ProASIC3 nano Z Families. - AGLN030 and smaller devices do not support this feature. - AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. For higher densities and support of additional features, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOOe Low-Power Flash FPGAs Datasheet . # I/Os Per Package | IGLOO nano Devices | AGLN010 | AGLN015 ¹ | AGLN020 | | AGLN060 | AGLN125 | AGLN250 | |-----------------------------------|---------|----------------------|---------|-----------------------|-----------------------|-----------------------|-----------------------| | IGLOO nano-Z Devices ¹ | | | | AGLN030Z ¹ | AGLN060Z ¹ | AGLN125Z ¹ | AGLN250Z ¹ | | Known Good Die | 34 | - | 52 | 83 | 71 | 71 | 68 | | UC36 | 23 | - | _ | _ | - | - | _ | | QN48 | 34 | - | _ | 34 | - | - | _ | | QN68 | - | 49 | 49 | 49 | - | - | _ | | UC81 | _ | - | 52 | 66 | - | - | _ | | CS81 | _ | - | 52 | 66 | 60 | 60 | 60 | | VQ100 | - | - | _ | 77 | 71 | 71 | 68 | #### Notes: - 1. Not recommended for new designs. - 2. When considering migrating your design to a lower- or higher-density device, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOO FPGA Fabric User's Guide to ensure compliance with design and board migration requirements. - 3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one. - 4. "G" indicates RoHS-compliant packages. Refer to "IGLOO nano Ordering Information" on page IV for the location of the "G" in the part number. For nano devices, the VQ100 package is offered in both leaded and RoHS-compliant versions. All other packages are RoHS-compliant only. Table 1 • IGLOO nano FPGAs Package Sizes Dimensions | Packages | UC36 | UC81 | CS81 | QN48 | QN68 | VQ100 | |---------------------------------|-------|-------|-------|-------|-------|---------| | Length × Width (mm\mm) | 3 x 3 | 4 x 4 | 5 x 5 | 6 x 6 | 8 x 8 | 14 x 14 | | Nominal Area (mm ²) | 9 | 16 | 25 | 36 | 64 | 196 | | Pitch (mm) | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 | | Height (mm) | 0.80 | 0.80 | 0.80 | 0.90 | 0.90 | 1.20 | Revision 19 # **IGLOO** nano Ordering Information #### Notes: - Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming. The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade devices are not recommended for new designs. - AGLN030 is available in the Z feature grade only. - 3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5 designator. # **Devices Not Recommended For New Designs** AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs. For more information on obsoleted devices/packages, refer to the *PDN1503 - IGLOO nano Z and ProASIC3 nano Z Families*. IV Revision 19 # **Table of Contents** | IGLOO nano Device Overview | | |---|------| | General Description | | | IGLOO nano DC and Switching Characteristics | | | General Specifications | | | Calculating Power Dissipation | | | User I/O Characteristics | 2-15 | | VersaTile Characteristics | 2-57 | | Global Resource Characteristics | 2-63 | | Clock Conditioning Circuits | | | Embedded SRAM and FIFO Characteristics | 2-73 | | Embedded FlashROM Characteristics | 2-87 | | JTAG 1532 Characteristics | 2-88 | | Pin Descriptions | | | Supply Pins | | | User Pins | | | JTAG Pins | | | Special Function Pins | | | Packaging | | | Related Documents | | | Package Pin Assignments | | | UC36 | 4-1 | | UC81 | 4-3 | | CS81 | 4-6 | | QN48 | 4-15 | | QN68 | 4-18 | | VQ100 | 4-22 | | Datasheet Information | | | List of Changes | | | Datasheet Categories | 5-8 | | Safety Critical, Life Support, and High-Reliability Applications Policy | 5-8 | # 1 – IGLOO nano Device Overview # **General Description** The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOO nano devices enables entering and exiting an ultra-low power mode that consumes nanoPower while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO nano device is completely functional in the system. This allows the IGLOO nano device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. Nonvolatile flash technology gives IGLOO nano devices the advantage of being a secure, low power, single-chip solution that is Instant On. The IGLOO nano device is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. IGLOO nano devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGLN030 and smaller devices have no PLL or RAM support. IGLOO nano devices have up to 250 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 71 user I/Os. IGLOO nano devices increase the breadth of the IGLOO product line by adding new features and packages for greater customer value in high volume consumer, portable, and battery-backed markets. Features such as smaller footprint packages designed with two-layer PCBs in mind, power consumption measured in nanoPower, Schmitt trigger, and bus hold (hold previous I/O state in Flash*Freeze mode) functionality make these devices ideal for deployment in applications that require high levels of flexibility and low cost. # Flash*Freeze Technology The IGLOO nano device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO nano devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO nano V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power. During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state, tristate, HIGH, or LOW. The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and small-footprint packages make IGLOO nano devices the best fit for portable electronics. Revision 19 1-1 ## User Nonvolatile FlashROM IGLOO nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: - · Internet protocol addressing (wireless or fixed) - · System calibration settings - Device serialization and/or inventory control - · Subscription-based business models (for example, set-top boxes) - Secure key storage for secure communications algorithms - Asset management/tracking - Date stamping - Version management The FlashROM is written using the standard IGLOO nano IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGLN030 and smaller devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The IGLOO nano development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature enables the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Microsemi Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. ### SRAM and FIFO IGLOO nano devices (except the AGLN030 and smaller devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGLN030 and smaller devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. #### PLL and CCC Higher density IGLOO nano devices using either the two I/O bank or four I/O bank architectures provide designers with very flexible clock conditioning capabilities. AGLN060, AGLN125, and AGLN250 contain six CCCs. One CCC (center west side) has a PLL. The AGLN030 and smaller devices use different CCCs in their architecture (CCC-GL). These CCC-GLs contain a global MUX but do not have any PLLs or programmable delays. For devices using the six CCC block architecture, these are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. Revision 19 1-7 ### PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes LOW and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO nano FPGA Fabric User's Guide* for information on clock and lock recovery. ### Internal Power-Up Activation Sequence - Core - 2. Input buffers - 3. Output buffers, after 200 ns delay from input buffer activation To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design. Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels 2-4 Revision 19 Figure 2-5 • Output Buffer Model and Delays (example) Revision 19 2-17 IGLOO nano Low Power Flash FPGAs ### Applies to IGLOO nano at 1.5 V Core Operating Conditions Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings STD Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V | I/O Standard | Drive Strength (mA) | Equivalent Software Default
t Drive Strength Option ¹ | Slew Rate | Capacitive Load (pF) | tвоит | t _{оР} | t _{DIN} | tpγ | tpys | teour | ^t zı. | tz | t _{LZ} | ^t нz | Units | |---|---------------------|---|-----------|----------------------|-------|-----------------|------------------|------|------|-------|------------------|------|-----------------|-----------------|-------| | 3.3 V LVTTL /
3.3 V LVCMOS | 8 mA | 8 mA | High | 5 pF | 0.97 | 1.79 | 0.19 | 0.86 | 1.16 | 0.66 | 1.83 | 1.45 | 1.98 | 2.38 | ns | | 3.3 V LVCMOS
Wide Range ² | 100 μΑ | 8 mA | High | 5 pF | 0.97 | 2.56 | 0.19 | 1.20 | 1.66 | 0.66 | 2.57 | 2.02 | 2.82 | 3.31 | ns | | 2.5 V LVCMOS | 8 mA | 8 mA | High | 5 pF | 0.97 | 1.81 | 0.19 | 1.10 | 1.24 | 0.66 | 1.85 | 1.63 | 1.97 | 2.26 | ns | | 1.8 V LVCMOS | 4 mA | 4 mA | High | 5 pF | 0.97 | 2.08 | 0.19 | 1.03 | 1.44 | 0.66 | 2.12 | 1.95 | 1.99 | 2.19 | ns | | 1.5 V LVCMOS | 2 mA | 2 mA | High | 5 pF | 0.97 | 2.39 | 0.19 | 1.19 | 1.52 | 0.66 | 2.44 | 2.24 | 2.02 | 2.15 | ns | #### Notes: - The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification. - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 19 2-21 ### Applies to 1.2 V DC Core Voltage Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 4.09 | 0.26 | 0.97 | 1.36 | 1.10 | 4.16 | 3.91 | 2.19 | 2.64 | ns | | 4 mA | STD | 1.55 | 4.09 | 0.26 | 0.97 | 1.36 | 1.10 | 4.16 | 3.91 | 2.19 | 2.64 | ns | | 6 mA | STD | 1.55 | 3.45 | 0.26 | 0.97 | 1.36 | 1.10 | 3.51 | 3.32 | 2.43 | 3.03 | ns | | 8 mA | STD | 1.55 | 3.45 | 0.26 | 0.97 | 1.36 | 1.10 | 3.51 | 3.32 | 2.43 | 3.03 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 2.68 | 0.26 | 0.97 | 1.36 | 1.10 | 2.72 | 2.26 | 2.19 | 2.74 | ns | | 4 mA | STD | 1.55 | 2.68 | 0.26 | 0.97 | 1.36 | 1.10 | 2.72 | 2.26 | 2.19 | 2.74 | ns | | 6 mA | STD | 1.55 | 2.31 | 0.26 | 0.97 | 1.36 | 1.10 | 2.34 | 1.90 | 2.43 | 3.14 | ns | | 8 mA | STD | 1.55 | 2.31 | 0.26 | 0.97 | 1.36 | 1.10 | 2.34 | 1.90 | 2.43 | 3.14 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-28 Revision 19 IGLOO nano Low Power Flash FPGAs ### 3.3 V LVCMOS Wide Range Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range | 3.3 V LVCMOS
Wide Range ¹ | Software | | | , | VIH | VOL | VOH | IOL | I _{OH} | IIL ² | IIH ³ | |---|---|-----------|-----------|-----------|-----------|-----------|------------|-----|-----------------|-------------------------|-------------------------| | Drive
Strength | Default
Drive
Strength
Option ⁴ | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | μΑ | μА | μ Α ⁵ | μ Α ⁵ | | 100 μΑ | 2 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 4 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 6 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | #### Notes: - 1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification. - 2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 5. Currents are measured at 85°C junction temperature. - 6. Software default selection is highlighted in gray. Revision 19 2-29 ### **Timing Characteristics** ### Applies to 1.5 V DC Core Voltage Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t_{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|----------|-----------------|-------| | 2 mA | STD | 0.97 | 5.44 | 0.19 | 1.03 | 1.44 | 0.66 | 5.25 | 5.44 | 1.69 | 1.35 | ns | | 4 mA | STD | 0.97 | 4.44 | 0.19 | 1.03 | 1.44 | 0.66 | 4.37 | 4.44 | 1.99 | 2.11 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.64 | 0.19 | 1.03 | 1.44 | 0.66 | 2.59 | 2.64 | 1.69 | 1.40 | ns | | 4 mA | STD | 0.97 | 2.08 | 0.19 | 1.03 | 1.44 | 0.66 | 2.12 | 1.95 | 1.99 | 2.19 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. #### Applies to 1.2 V DC Core Voltage Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 5.92 | 0.26 | 1.13 | 1.59 | 1.10 | 5.72 | 5.92 | 2.11 | 1.95 | ns | | 4 mA | STD | 1.55 | 4.91 | 0.26 | 1.13 | 1.59 | 1.10 | 4.82 | 4.91 | 2.42 | 2.73 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 3.05 | 0.26 | 1.13 | 1.59 | 1.10 | 3.01 | 3.05 | 2.10 | 2.00 | ns | | 4 mA | STD | 1.55 | 2.49 | 0.26 | 1.13 | 1.59 | 1.10 | 2.53 | 2.34 | 2.42 | 2.81 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-36 Revision 19 ### 1.2 V DC Core Voltage Table 2-77 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |-----------------------|--|------|-------| | t _{OECLKQ} | Clock-to-Q of the Output Enable Register | 1.10 | ns | | t _{OESUD} | Data Setup Time for the Output Enable Register | 1.15 | ns | | t _{OEHD} | Data Hold Time for the Output Enable Register | 0.00 | ns | | t _{OECLR2Q} | Asynchronous Clear-to-Q of the Output Enable Register | 1.65 | ns | | t _{OEPRE2Q} | Asynchronous Preset-to-Q of the Output Enable Register | 1.65 | ns | | t _{OEREMCLR} | Asynchronous Clear Removal Time for the Output Enable Register | 0.00 | ns | | t _{OERECCLR} | Asynchronous Clear Recovery Time for the Output Enable Register | 0.24 | ns | | t _{OEREMPRE} | Asynchronous Preset Removal Time for the Output Enable Register | 0.00 | ns | | t _{OERECPRE} | Asynchronous Preset Recovery Time for the Output Enable Register | 0.24 | ns | | t _{OEWCLR} | Asynchronous Clear Minimum Pulse Width for the Output Enable Register | 0.19 | ns | | t _{OEWPRE} | Asynchronous Preset Minimum Pulse Width for the Output Enable Register | 0.19 | ns | | t _{OECKMPWH} | Clock Minimum Pulse Width HIGH for the Output Enable Register | 0.31 | ns | | t _{OECKMPWL} | Clock Minimum Pulse Width LOW for the Output Enable Register | 0.28 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-50 Revision 19 # **Output DDR Module** Figure 2-19 • Output DDR Timing Model Table 2-81 • Parameter Definitions | Parameter Name | Parameter Definition | Measuring Nodes (from, to) | |-------------------------|---------------------------|----------------------------| | t _{DDROCLKQ} | Clock-to-Out | B, E | | t _{DDROCLR2Q} | Asynchronous Clear-to-Out | C, E | | t _{DDROREMCLR} | Clear Removal | C, B | | t _{DDRORECCLR} | Clear Recovery | C, B | | t _{DDROSUD1} | Data Setup Data_F | A, B | | t _{DDROSUD2} | Data Setup Data_R | D, B | | t _{DDROHD1} | Data Hold Data_F | A, B | | t _{DDROHD2} | Data Hold Data_R | D, B | 2-54 Revision 19 # **VersaTile Characteristics** # VersaTile Specifications as a Combinatorial Module The IGLOO nano library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide for Software v10.1*. Figure 2-21 • Sample of Combinatorial Cells Revision 19 2-57 # **Global Tree Timing Characteristics** Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. ### **Timing Characteristics** 1.5 V DC Core Voltage Table 2-88 • AGLN010 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | S | Std. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.13 | 1.42 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.15 | 1.50 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.35 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-89 • AGLN015 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | | td. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.21 | 1.55 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.23 | 1.65 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.42 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-64 Revision 19 Table 2-103 • RAM512X18 ### Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |-----------------------|---|------|-------| | t _{AS} | Address setup time | 0.69 | ns | | t _{AH} | Address hold time | 0.13 | ns | | t _{ENS} | REN, WEN setup time | 0.61 | ns | | t _{ENH} | REN, WEN hold time | 0.07 | ns | | t _{DS} | Input data (WD) setup time | 0.59 | ns | | t _{DH} | Input data (WD) hold time | 0.30 | ns | | t _{CKQ1} | Clock HIGH to new data valid on RD (output retained) | 3.51 | ns | | t _{CKQ2} | Clock HIGH to new data valid on RD (pipelined) | 1.43 | ns | | t _{C2CRWH} 1 | Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge | 0.35 | ns | | t _{C2CWRH} 1 | Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge | 0.42 | ns | | t _{RSTBQ} | RESET Low to data out Low on RD (flow-through) | 1.72 | ns | | | RESET Low to data out Low on RD (pipelined) | 1.72 | ns | | t _{REMRSTB} | RESET removal | 0.51 | 0.51 | | t _{RECRSTB} | RESET recovery | 2.68 | ns | | t _{MPWRSTB} | RESET minimum pulse width | 0.68 | ns | | t _{CYC} | Clock cycle time | 6.24 | ns | | F _{MAX} | Maximum frequency | 160 | MHz | #### Notes: 2-78 Revision 19 For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ## 1.2 V DC Core Voltage Table 2-107 • FIFO Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V | Parameter | Description | Std. | Units | |----------------------|---|-------|-------| | t _{ENS} | REN, WEN Setup Time | 3.44 | ns | | t _{ENH} | REN, WEN Hold Time | 0.26 | ns | | t _{BKS} | BLK Setup Time | 0.30 | ns | | t _{BKH} | BLK Hold Time | 0.00 | ns | | t _{DS} | Input Data (DI) Setup Time | 1.30 | ns | | t _{DH} | Input Data (DI) Hold Time | 0.41 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 5.67 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 3.02 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 6.02 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 5.71 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 22.17 | ns | | t _{RSTFG} | RESET LOW to Empty/Full Flag Valid | 5.93 | ns | | t _{RSTAF} | RESET LOW to Almost Empty/Full Flag Valid | 21.94 | ns | | t _{RSTBQ} | RESET LOW to Data Out Low on RD (flow-through) | 3.41 | ns | | | RESET LOW to Data Out Low on RD (pipelined) | 4.09 | 3.41 | | t _{REMRSTB} | RESET Removal | 1.02 | ns | | t _{RECRSTB} | RESET Recovery | | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 1.18 | ns | | t _{CYC} | Clock Cycle Time | 10.90 | ns | | F _{MAX} | Maximum Frequency for FIFO | 92 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-86 Revision 19 # 4 – Package Pin Assignments # **UC36** Note: This is the bottom view of the package. ### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. Revision 19 4-1 IGLOO nano Low Power Flash FPGAs | QN68 | | | |------------|----------------------|--| | Pin Number | AGLN030Z
Function | | | 1 | IO82RSB1 | | | 2 | IO80RSB1 | | | 3 | IO78RSB1 | | | 4 | IO76RSB1 | | | 5 | GEC0/IO73RSB1 | | | 6 | GEA0/IO72RSB1 | | | 7 | GEB0/IO71RSB1 | | | 8 | VCC | | | 9 | GND | | | 10 | VCCIB1 | | | 11 | IO68RSB1 | | | 12 | IO67RSB1 | | | 13 | IO66RSB1 | | | 14 | IO65RSB1 | | | 15 | IO64RSB1 | | | 16 | IO63RSB1 | | | 17 | IO62RSB1 | | | 18 | FF/IO60RSB1 | | | 19 | IO58RSB1 | | | 20 | IO56RSB1 | | | 21 | IO54RSB1 | | | 22 | IO52RSB1 | | | 23 | IO51RSB1 | | | 24 | VCC | | | 25 | GND | | | 26 | VCCIB1 | | | 27 | IO50RSB1 | | | 28 | IO48RSB1 | | | 29 | IO46RSB1 | | | 30 | IO44RSB1 | | | 31 | IO42RSB1 | | | 32 | TCK | | | 33 | TDI | | | 34 | TMS | | | 35 | VPUMP | | | ONEO | | | | |------------|----------------------|--|--| | QN68 | | | | | Pin Number | AGLN030Z
Function | | | | 36 | TDO | | | | 37 | TRST | | | | 38 | VJTAG | | | | 39 | IO40RSB0 | | | | 40 | IO37RSB0 | | | | 41 | GDB0/IO34RSB0 | | | | 42 | GDA0/IO33RSB0 | | | | 43 | GDC0/IO32RSB0 | | | | 44 | VCCIB0 | | | | 45 | GND | | | | 46 | VCC | | | | 47 | IO31RSB0 | | | | 48 | IO29RSB0 | | | | 49 | IO28RSB0 | | | | 50 | IO27RSB0 | | | | 51 | IO25RSB0 | | | | 52 | IO24RSB0 | | | | 53 | IO22RSB0 | | | | 54 | IO21RSB0 | | | | 55 | IO19RSB0 | | | | 56 | IO17RSB0 | | | | 57 | IO15RSB0 | | | | 58 | IO14RSB0 | | | | 59 | VCCIB0 | | | | 60 | GND | | | | 61 | VCC | | | | 62 | IO12RSB0 | | | | 63 | IO10RSB0 | | | | 64 | IO08RSB0 | | | | 65 | IO06RSB0 | | | | 66 | IO04RSB0 | | | | 67 | IO02RSB0 | | | | 68 | IO00RSB0 | | | Package Pin Assignments | VQ100 | | | | |------------|-------------------|--|--| | Pin Number | AGLN125 Function | | | | 1 | GND | | | | 2 | GAA2/IO67RSB1 | | | | 3 | IO68RSB1 | | | | 4 | GAB2/IO69RSB1 | | | | 5 | IO132RSB1 | | | | 6 | GAC2/IO131RSB1 | | | | 7 | IO130RSB1 | | | | 8 | IO129RSB1 | | | | 9 | GND | | | | 10 | GFB1/IO124RSB1 | | | | 11 | GFB0/IO123RSB1 | | | | 12 | VCOMPLF | | | | 13 | GFA0/IO122RSB1 | | | | 14 | VCCPLF | | | | 15 | GFA1/IO121RSB1 | | | | 16 | GFA2/IO120RSB1 | | | | 17 | VCC | | | | 18 | VCCIB1 | | | | 19 | GEC0/IO111RSB1 | | | | 20 | GEB1/IO110RSB1 | | | | 21 | GEB0/IO109RSB1 | | | | 22 | GEA1/IO108RSB1 | | | | 23 | GEA0/IO107RSB1 | | | | 24 | VMV1 | | | | 25 | GNDQ | | | | 26 | GEA2/IO106RSB1 | | | | 27 | FF/GEB2/IO105RSB1 | | | | 28 | GEC2/IO104RSB1 | | | | 29 | IO102RSB1 | | | | 30 | IO100RSB1 | | | | 31 | IO99RSB1 | | | | 32 | IO97RSB1 | | | | 33 | IO96RSB1 | | | | 34 | IO95RSB1 | | | | 35 | IO94RSB1 | | | | 36 | IO93RSB1 | | | | | VQ100 | | |------------|------------------|--| | Pin Number | AGLN125 Function | | | 37 | VCC | | | 38 | GND | | | 39 | VCCIB1 | | | 40 | IO87RSB1 | | | 41 | IO84RSB1 | | | 42 | IO81RSB1 | | | 43 | IO75RSB1 | | | 44 | GDC2/IO72RSB1 | | | 45 | GDB2/IO71RSB1 | | | 46 | GDA2/IO70RSB1 | | | 47 | TCK | | | 48 | TDI | | | 49 | TMS | | | 50 | VMV1 | | | 51 | GND | | | 52 | VPUMP | | | 53 | NC | | | 54 | TDO | | | 55 | TRST | | | 56 | VJTAG | | | 57 | GDA1/IO65RSB0 | | | 58 | GDC0/IO62RSB0 | | | 59 | GDC1/IO61RSB0 | | | 60 | GCC2/IO59RSB0 | | | 61 | GCB2/IO58RSB0 | | | 62 | GCA0/IO56RSB0 | | | 63 | GCA1/IO55RSB0 | | | 64 | GCC0/IO52RSB0 | | | 65 | GCC1/IO51RSB0 | | | 66 | VCCIB0 | | | 67 | GND | | | 68 | VCC | | | 69 | IO47RSB0 | | | 70 | GBC2/IO45RSB0 | | | 71 | GBB2/IO43RSB0 | | | 72 | IO42RSB0 | | | L | | | | VQ100 | | | | |------------|------------------|--|--| | Pin Number | AGLN125 Function | | | | 73 | GBA2/IO41RSB0 | | | | 74 | VMV0 | | | | 75 | GNDQ | | | | 76 | GBA1/IO40RSB0 | | | | 77 | GBA0/IO39RSB0 | | | | 78 | GBB1/IO38RSB0 | | | | 79 | GBB0/IO37RSB0 | | | | 80 | GBC1/IO36RSB0 | | | | 81 | GBC0/IO35RSB0 | | | | 82 | IO32RSB0 | | | | 83 | IO28RSB0 | | | | 84 | IO25RSB0 | | | | 85 | IO22RSB0 | | | | 86 | IO19RSB0 | | | | 87 | VCCIB0 | | | | 88 | GND | | | | 89 | VCC | | | | 90 | IO15RSB0 | | | | 91 | IO13RSB0 | | | | 92 | IO11RSB0 | | | | 93 | IO09RSB0 | | | | 94 | IO07RSB0 | | | | 95 | GAC1/IO05RSB0 | | | | 96 | GAC0/IO04RSB0 | | | | 97 | GAB1/IO03RSB0 | | | | 98 | GAB0/IO02RSB0 | | | | 99 | GAA1/IO01RSB0 | | | | 100 | GAA0/IO00RSB0 | | | 4-26 Revision 19