

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1536
Total RAM Bits	18432
Number of I/O	60
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	81-WFBGA, CSBGA
Supplier Device Package	81-CSP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln060v2-csg81i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Marking

Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples.

Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered.

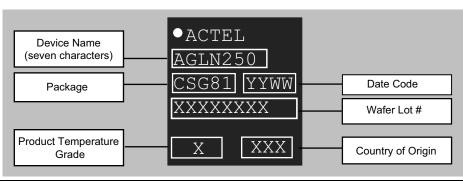


Figure 1 • Example of Device Marking for Small Form Factor Packages

2 – IGLOO nano DC and Switching Characteristics

General Specifications

The Z feature grade does not support the enhanced nano features of Schmitt trigger input, Flash*Freeze bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, and hot-swap I/O capability. Refer to "IGLOO nano Ordering Information" on page IV for more information.

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI ¹	I/O input voltage	–0.3 V to 3.6 V	V
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

 Table 2-1 •
 Absolute Maximum Ratings

Notes:

^{1.} The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

^{2.} For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2.

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

 The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO nano device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO nano I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

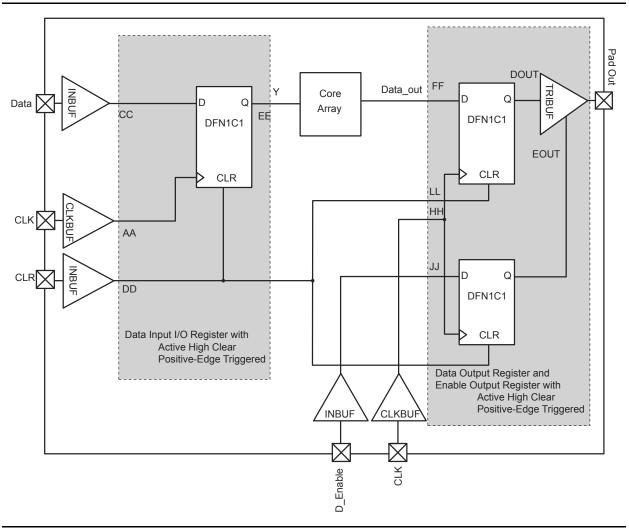
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Table 2-17 •	Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices
	For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

		[Device-Spe	cific Dyna	mic Power	r (µW/MHz)	
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PAC1	Clock contribution of a Global Rib	2.829	2.875	1.728	0	0	0
PAC2	Clock contribution of a Global Spine	1.731	1.265	1.268	2.562	2.562	1.685
PAC3	Clock contribution of a VersaTile row	0.957	0.963	0.967	0.862	0.862	0.858
PAC4	Clock contribution of a VersaTile used as a sequential module	0.098	0.098	0.098	0.094	0.094	0.091
PAC5	First contribution of a VersaTile used as a sequential module	0.045					
PAC6	Second contribution of a VersaTile used as a sequential module	0.186					
PAC7	Contribution of a VersaTile used as a combinatorial module			0.1	11		
PAC8	Average contribution of a routing net			0.4	15		
PAC9	Contribution of an I/O input pin (standard-dependent)		See	e Table 2-13	3 on page 2	2-9	
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table 2-14 on page 2-9				
PAC11	Average contribution of a RAM block during a read operation	25.00 N/A					
PAC12	Average contribution of a RAM block during a write operation	30.00 N/A					
PAC13	Dynamic contribution for PLL		2.10			N/A	


Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

			Device-Specific Static Power (mW)				
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PDC1	Array static power in Active mode		See Table 2-12 on page 2-8				
PDC2	Array static power in Static (Idle) mode		See Table 2-12 on page 2-8				
PDC3	Array static power in Flash*Freeze mode		See Table 2-9 on page 2-7				
PDC4 ¹	Static PLL contribution	0.90 N/A					
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8					

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

Fully Registered I/O Buffers with Asynchronous Clear

Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

Microsemi

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO nano library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide for Software v10.1*.

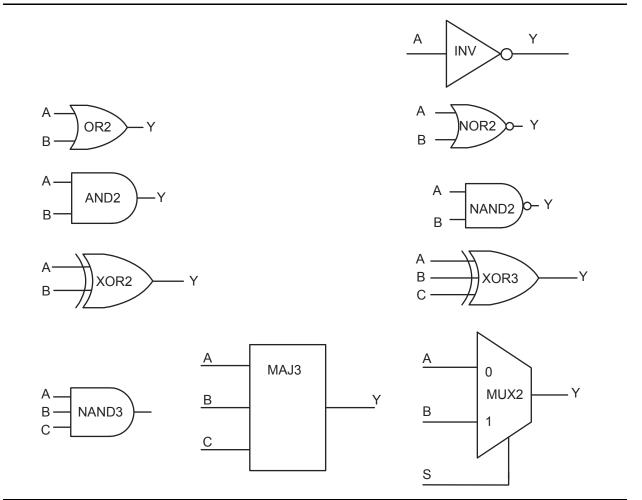


Figure 2-21 • Sample of Combinatorial Cells

Table 2-90 •AGLN020 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-91 • AGLN060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.71	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Microsemi.

IGLOO nano DC and Switching Characteristics

Table 2-92 •AGLN125 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-93 • AGLN250 Global Resource

Commercial-Case Conditio	ons: T _J = 70°C, VCC = 1.425 V
---------------------------------	---

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.39	1.73	ns
t _{RCKH}	Input High Delay for Global Clock	1.41	1.84	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-94 •AGLN010 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		5	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.71	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.78	2.31	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.53	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-95 • AGLN015 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.81	2.26	ns
t _{RCKH}	Input High Delay for Global Clock	1.90	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-98 • AGLN125 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-99 • AGLN250 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.11	2.57	ns
t _{RCKH}	Input High Delay for Global Clock	2.19	2.81	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

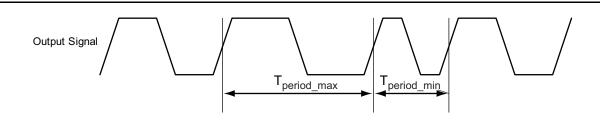
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-101 • IGLOO nano CCC/PLL Specification	
For IGLOO nano V2 Devices, 1.2 V DC Core Supply Voltage	

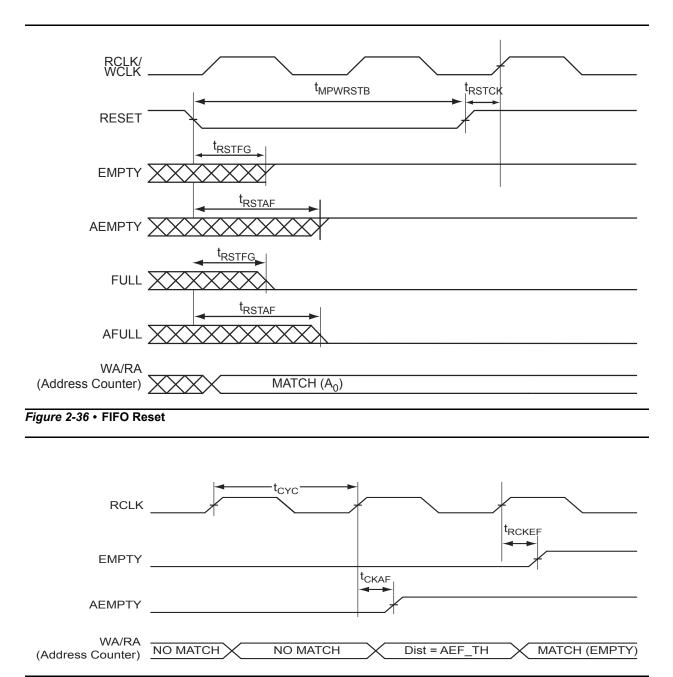
Parameter		Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz	
Clock Conditioning Circuitry Output Frequency fOUT_CC	0.75		160	MHz	
Delay Increments in Programmable Delay Blocks ^{1, 2}			580 ³		ps
Number of Programmable Values in Each Programmab	le Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,9}				60	
Input Cycle-to-Cycle Jitter (peak magnitude)				0.25	ns
Acquisition Time					
	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵					
	LockControl = 0			4	ns
	LockControl = 1			3	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}		2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}		0.025		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2}			5.7		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁶		Max Peak-to-Peak Period Ji		<pre> Period Jitte </pre>	er ^{6,7,8}
-	$SSO \le 2$	$SSO \leq 4$	$\text{SSO} \leq 8$	$SSO \leq 16$	
0.75 MHz to 50MHz	0.50	1.20	2.00	3.00	%
50 MHz to 100 MHz	2.50	5.00	7.00	15.00	%

Notes:


1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$.

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst-Case Commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for derating values.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 6. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT, regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, no matter what the settings are for the output divider.
- 7. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO nano FPGA Fabric User's Guide.
- 9. The AGLN010, AGLN015, and AGLN020 devices do not support PLLs.



IGLOO nano DC and Switching Characteristics

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ *Figure 2-26* • Peak-to-Peak Jitter Definition

IGLOO nano Low Power Flash FPGAs

Microsemi

AGLN020 Function IO38RSB1

IO37RSB1

IO33RSB1

IO30RSB1

IO27RSB1 IO23RSB1

TCK

TMS VPUMP

IGLOO nano Low Power Flash FPGAs

CS81

	CS81		CS81	
Pin Number	AGLN020 Function	Pin Number	AGLN020 Function	Pin Number
A1	IO64RSB2	E1	GEC0/IO48RSB2	J1
A2	IO54RSB2	E2	GEA0/IO47RSB2	J2
A3	IO57RSB2	E3	NC	J3
A4	IO36RSB1	E4	VCCIB1	J4
A5	IO32RSB1	E5	VCC	J5
A6	IO24RSB1	E6	VCCIB0	J6
A7	IO20RSB1	E7	NC	J7
A8	IO04RSB0	E8	GDA0/IO15RSB0	J8
A9	IO08RSB0	E9	GDC0/IO14RSB0	J9
B1	IO59RSB2	F1	IO46RSB2	
B2	IO55RSB2	F2	IO45RSB2	
B3	IO62RSB2	F3	NC	
B4	IO34RSB1	F4	GND	
B5	IO28RSB1	F5	VCCIB1	
B6	IO22RSB1	F6	NC	
B7	IO18RSB1	F7	NC	
B8	IO00RSB0	F8	IO16RSB0	
B9	IO03RSB0	F9	IO17RSB0	
C1	IO51RSB2	G1	IO43RSB2	
C2	IO50RSB2	G2	IO42RSB2	
C3	NC	G3	IO41RSB2	
C4	NC	G4	IO31RSB1	
C5	NC	G5	NC	
C6	NC	G6	IO21RSB1	
C7	NC	G7	NC	
C8	IO10RSB0	G8	VJTAG	
C9	IO07RSB0	G9	TRST	
D1	IO49RSB2	H1	IO40RSB2	
D2	IO44RSB2	H2	FF/IO39RSB1	
D3	NC	H3	IO35RSB1	
D4	VCC	H4	IO29RSB1	
D5	VCCIB2	H5	IO26RSB1	
D6	GND	H6	IO25RSB1	
D7	NC	H7	IO19RSB1	
D8	IO13RSB0	H8	TDI	
D9	IO12RSB0	H9	TDO	

QN48						
Pin Number	Pin Number AGLN030Z Function					
1	IO82RSB1					
2	GEC0/IO73RSB1					
3	GEA0/IO72RSB1					
4	GEB0/IO71RSB1					
5	GND					
6	VCCIB1					
7	IO68RSB1					
8	IO67RSB1					
9	IO66RSB1					
10	IO65RSB1					
11	IO64RSB1					
12	IO62RSB1					
13	IO61RSB1					
14	FF/IO60RSB1					
15	IO57RSB1					
16	IO55RSB1					
17	IO53RSB1					
18	VCC					
19	VCCIB1					
20	IO46RSB1					
21	IO42RSB1					
22	TCK					
23	TDI					
24	TMS					
25	VPUMP					
26	TDO					
27	TRST					
28	VJTAG					
29	IO38RSB0					
30	GDB0/IO34RSB0					
31	GDA0/IO33RSB0					
32	GDC0/IO32RSB0					
33	VCCIB0					
34	GND					
35	VCC					
36	IO25RSB0					

		QN48		
	Pin Number	AGLN030Z Function		
	37	IO24RSB0		
	38	IO22RSB0		
	39	IO20RSB0		
	40	IO18RSB0		
	41	IO16RSB0		
	42	IO14RSB0		
	43	IO10RSB0		
	44	IO08RSB0		
	45	IO06RSB0		
	46	IO04RSB0		
	47	IO02RSB0		
	48	IO00RSB0		
1				

Package Pin Assignments

	QN68	QN68	
Pin Number	AGLN020 Function	Pin Number	AGLN020 Function
1	IO60RSB2	36	TDO
2	IO54RSB2	37	TRST
3	IO52RSB2	38	VJTAG
4	IO50RSB2	39	IO17RSB0
5	IO49RSB2	40	IO16RSB0
6	GEC0/IO48RSB2	41	GDA0/IO15RSB0
7	GEA0/IO47RSB2	42	GDC0/IO14RSB0
8	VCC	43	IO13RSB0
9	GND	44	VCCIB0
10	VCCIB2	45	GND
11	IO46RSB2	46	VCC
12	IO45RSB2	47	IO12RSB0
13	IO44RSB2	48	IO11RSB0
14	IO43RSB2	49	IO09RSB0
15	IO42RSB2	50	IO05RSB0
16	IO41RSB2	51	IO00RSB0
17	IO40RSB2	52	IO07RSB0
18	FF/IO39RSB1	53	IO03RSB0
19	IO37RSB1	54	IO18RSB1
20	IO35RSB1	55	IO20RSB1
21	IO33RSB1	56	IO22RSB1
22	IO31RSB1	57	IO24RSB1
23	IO30RSB1	58	IO28RSB1
24	VCC	59	NC
25	GND	60	GND
26	VCCIB1	61	NC
27	IO27RSB1	62	IO32RSB1
28	IO25RSB1	63	IO34RSB1
29	IO23RSB1	64	IO36RSB1
30	IO21RSB1	65	IO61RSB2
31	IO19RSB1	66	IO58RSB2
32	ТСК	67	IO56RSB2
33	TDI	68	IO63RSB2
34	TMS	L	•
35	VPUMP		

Microsemi

Revision	Changes	Page
Revision 11	The status of the AGLN060 device has changed from Advance to Production.	
(Jul 2010)	The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for 1.5 V core supply voltage (SAR 26404).	2-10
	The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for 1.2 V core supply voltage (SAR 26404).	2-11
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO nano Device Status" table on page III indicates the status for each device in the device family.	N/A
Revision 10 (Apr 2010)	References to differential inputs were removed from the datasheet, since IGLOO nano devices do not support differential inputs (SAR 21449).	N/A
	A parenthetical note, "hold previous I/O state in Flash*Freeze mode," was added to each occurrence of bus hold in the datasheet (SAR 24079).	N/A
	The "In-System Programming (ISP) and Security" section was revised to add 1.2 V programming.	I
	The note connected with the "IGLOO nano Ordering Information" table was revised to clarify features not available for Z feature grade devices.	IV
	The "IGLOO nano Device Status" table is new.	
	The definition of C in the "Temperature Grade Offerings" table was changed to "extended commercial temperature range".	VI
	1.2 V wide range was added to the list of voltage ranges in the "I/Os with Advanced I/O Standards" section.	1-8
	A note was added to Table 2-2 • Recommended Operating Conditions ¹ regarding switching from 1.2 V to 1.5 V core voltage for in-system programming. The VJTAG voltage was changed from "1.425 to 3.6" to "1.4 to 3.6" (SAR 24052). The note regarding voltage for programming V2 and V5 devices was revised (SAR 25213). The maximum value for VPUMP programming voltage (operation mode) was changed from 3.45 V to 3.6 V (SAR 25220).	2-2
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated. Table 2-8 • Power Supply State per Mode is new.	2-6, 2-7
	The tables in the "Quiescent Supply Current" section were updated (SAR 24882 and SAR 24112).	2-7
	VJTAG was removed from Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode* (SARs 24112, 24882, and 79503).	2-8
	The note stating what was included in I _{DD} was removed from Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Shutdown Mode. The note, "per VCCI or VJTAG bank" was removed from Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ . The note giving I _{DD} was changed to "I _{DD} = $N_{BANKS} * I_{CCI} + I_{CCA}$."	2-8
	The values in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ were updated. Wide range support information was added.	2-9

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	The following tables were updated with current available information. The equivalent software default drive strength option was added.	2-19 through 2-40
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels	
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings	
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings	
	Table 2-28 • I/O Output Buffer Maximum Resistances ¹	
	Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances	
	Table 2-30 • I/O Short Currents IOSH/IOSL	
	Timing tables in the "Single-Ended I/O Characteristics" section, including new tables for 3.3 V and 1.2 V LVCMOS wide range.	
	Table 2-40 $\mbox{ \bullet}$ Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range	
	Table 2-63 • Minimum and Maximum DC Input and Output Levels	
	Table 2-67 • Minimum and Maximum DC Input and Output Levels (new)	
	The formulas in the notes to Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 21348).	2-24
	The text introducing Table 2-31 • Duration of Short Circuit Event before Failure was revised to state six months at 100° instead of three months at 110° for reliability concerns. The row for 110° was removed from the table.	
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5-V tolerant input buffer and push-pull output buffer."	2-32
	The $F_{DDRIMAX}$ and F_{DDOMAX} values were added to tables in the "DDR Module Specifications" section (SAR 23919). A note was added stating that DDR is not supported for AGLN010, AGLN015, and AGLN020.	2-51
	Tables in the "Global Tree Timing Characteristics" section were updated with new information available.	2-64
	Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification were revised (SAR 79390).	2-70, 2-71
	Tables in the SRAM "Timing Characteristics" section and FIFO "Timing Characteristics" section were updated with new information available.	2-77, 2-85
	Table 3-3 • TRST and TCK Pull-Down Recommendations is new.	3-4
	A note was added to the "CS81" pin tables for AGLN060, AGLN060Z, AGLN125, AGLN125Z, AGLN250, and AGLN250Z indicating that pins F1 and F2 must be grounded (SAR 25007).	4-9, through 4-14
	A note was added to the "CS81" and "VQ100" pin tables for AGLN060 and AGLN060Z stating that bus hold is not available for pin H7 or pin 45 (SAR 24079).	4-9, 4-24
	The AGLN250 function for pin C8 in the "CS81" table was revised (SAR 22134).	4-13

Datasheet Information

Revision / Version	Changes	Page
Revision 2 (Dec 2008) Product Brief Advance v0.4	The second table note in "IGLOO nano Devices" table was revised to state, "AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. AGLN030 and smaller devices do not support this feature."	II
	The I/Os per package for CS81 were revised to 60 for AGLN060, AGLN125, and AGLN250 in the "I/Os Per Package"table.	II
Packaging Advance v0.3	The "UC36" pin table is new.	4-2
Revision 1 (Nov 2008) Product Brief Advance v0.3	The "Advanced I/Os" section was updated to include wide power supply voltage support for 1.14 V to 1.575 V.	Ι
	The AGLN030 device was added to product tables and replaces AGL030 entries that were formerly in the tables.	VI
	The "I/Os Per Package"table was updated for the CS81 package to change the number of I/Os for AGLN060, AGLN125, and AGLN250 from 66 to 64.	II
	The "Wide Range I/O Support" section is new.	1-8
	The table notes and references were revised in Table 2-2 • Recommended Operating Conditions ¹ . VMV was included with VCCI and a table note was added stating, "VMV pins must be connected to the corresponding VCCI pins. See <i>Pin Descriptions</i> for further information." Please review carefully.	2-2
	VJTAG was added to the list in the table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*. Values were added for AGLN010, AGLN015, and AGLN030 for 1.5 V.	2-7
	VCCI was removed from the list in the table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*.	2-8
	Values for I _{CCA} current were updated for AGLN010, AGLN015, and AGLN030 in Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ .	2-8
	Values for PAC1 and PAC2 were added to Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices and Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices.	2-10, 2-11
	Table notes regarding wide range support were added to Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels.	2-19
	1.2 V LVCMOS wide range values were added to Table 2-22 • Summary of Maximum and Minimum DC Input Levels and Table 2-23 • Summary of AC Measuring Points.	2-19, 2-20
	The following table note was added to Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings and Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings: "All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification."	2-21
	3.3 V LVCMOS Wide Range and 1.2 V Wide Range were added to Table 2-28 • I/O Output Buffer Maximum Resistances ¹ andTable 2-30 • I/O Short Currents IOSH/IOSL.	2-23, 2-24