

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1536
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-20°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln060v2-vq100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Products Available in the Z Feature Grade

IGLOO nano-Z Devices	AGLN030Z*	AGLN060Z*	AGLN125Z*	AGLN250Z*
	QN48	-	-	-
	QN68	-	-	-
	UC81	-	-	-
	CS81	CS81	CS81	CS81
Packages	VQ100	VQ100	VQ100	VQ100

Note: *Not recommended for new designs.

Temperature Grade Offerings

	AGLN010	AGLN015 [*]	AGLN020		AGLN060	AGLN125	AGLN250
Package				AGLN030Z [*]	AGLN060Z [*]	AGLN125Z [*]	AGLN250Z [*]
UC36	C, I	-	-	-	-	-	_
QN48	C, I	-	-	C, I	-	-	_
QN68	-	C, I	C, I	C, I	-	-	_
UC81	-	-	C, I	C, I	-	_	_
CS81	-	-	C, I	C, I	C, I	C, I	C, I
VQ100	_	_	_	C, I	C, I	C, I	C, I

Note: * Not recommended for new designs.

C = Enhanced Commercial temperature range: -20°C to +85°C junction temperature

I = Industrial temperature range: –40°C to +100°C junction temperature

Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

User Nonvolatile FlashROM

IGLOO nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO nano IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGLN030 and smaller devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The IGLOO nano development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature enables the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Microsemi Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO nano devices (except the AGLN030 and smaller devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGLN030 and smaller devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

Higher density IGLOO nano devices using either the two I/O bank or four I/O bank architectures provide designers with very flexible clock conditioning capabilities. AGLN060, AGLN125, and AGLN250 contain six CCCs. One CCC (center west side) has a PLL. The AGLN030 and smaller devices use different CCCs in their architecture (CCC-GL). These CCC-GLs contain a global MUX but do not have any PLLs or programmable delays.

For devices using the six CCC block architecture, these are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

IGLOO nano DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$ for V5 devices, and $0.75 V \pm 0.2 V$ for V2 devices), the PLL output lock signal goes LOW and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO nano FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Applies to IGLOO nano at 1.5 V Core Operating Conditions

Table 2-25 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 3.0 V

I/O Standard	Drive Strength (mA)	Equivalent Software Default t Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	t _{воит}	toP	t _{DIN}	t _{PY}	ters	teour	tzı	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	0.97	2.56	0.19	1.20	1.66	0.66	2.57	2.02	2.82	3.31	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	0.97	2.39	0.19	1.19	1.52	0.66	2.44	2.24	2.02	2.15	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

Detailed I/O DC Characteristics

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-27 • Input Capacitance

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS ⁴	1 mA	315	315
1.2 V LVCMOS Wide Range ⁴	100 µA	315	315

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.

IGLOO nano DC and Switching Characteristics

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK P}		$R_{(WEAK PULL-DOWN)}^2$ (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 K	45 K	10 K	45 K		
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K		
2.5 V	11 K	55 K	12 K	74 K		
1.8 V	18 K	70 K	17 K	110 K		
1.5 V	19 K	90 K	19 K	140 K		
1.2 V	25 K	110 K	25 K	150 K		
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K		

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
 R_(WEAK PULL-DOWN-MAX) = (VOLspec) / I_(WEAK PULL-DOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16
1.2 V LVCMOS	1 mA	10	13
1.2 V LVCMOS Wide Range	100 µA	10	13

Note: $^{*}T_{J} = 100^{\circ}C$

IGLOO nano DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-49 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.61	0.26	1.21	1.39	1.10	4.55	4.61	2.15	2.43	ns
4 mA	STD	1.55	4.61	0.26	1.21	1.39	1.10	4.55	4.61	2.15	2.43	ns
6 mA	STD	1.55	3.86	0.26	1.21	1.39	1.10	3.82	3.86	2.41	2.89	ns
8 mA	STD	1.55	3.86	0.26	1.21	1.39	1.10	3.82	3.86	2.41	2.89	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-50 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	1.21	1.39	1.10	2.72	2.54	2.15	2.51	ns
4 mA	STD	1.55	2.68	0.26	1.21	1.39	1.10	2.72	2.54	2.15	2.51	ns
6 mA	STD	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns
8 mA	STD	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns

Notes:

1. Software default selection highlighted in gray.

IGLOO nano DC and Switching Characteristics

Output DDR Module

Figure 2-19 • Output DDR Timing Model

Table 2-81 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

IGLOO nano DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-88 •AGLN010 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.13	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.15	1.50	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • AGLN015 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns
t _{RCKH}	Input HIgh Delay for Global Clock	1.23	1.65	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Table 2-90 •AGLN020 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-91 • AGLN060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.71	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Timing Characteristics

1.5 V DC Core Voltage

Table 2-102 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.68	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{BKS}	BLK setup time	1.37	ns
t _{BKH}	BLK hold time	0.13	ns
t _{DS}	Input data (DIN) setup time	0.59	ns
t _{DH}	Input data (DIN) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	2.94	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	2.55	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	1.51	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	1.72	ns
	RESET Low to data out Low on DOUT (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

IGLOO nano DC and Switching Characteristics

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO nano V5 devices, and 1.2 V or 1.5 V for IGLOO nano V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter in the *IGLOO nano FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on IGLOO nano devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO nano devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO nano Low Power Flash FPGAs

UC81		UC81		
Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	
A1	IO00RSB0	D9	IO30RSB0	
A2	IO02RSB0	E1	GEB0/IO71RSB1	
A3	IO06RSB0	E2	GEA0/IO72RSB1	
A4	IO11RSB0	E3	GEC0/IO73RSB1	
A5	IO16RSB0	E4	VCCIB1	
A6	IO19RSB0	E5	VCC	
A7	IO22RSB0	E6	VCCIB0	
A8	IO24RSB0	E7	GDC0/IO32RSB0	
A9	IO26RSB0	E8	GDA0/IO33RSB0	
B1	IO81RSB1	E9	GDB0/IO34RSB0	
B2	IO04RSB0	F1	IO68RSB1	
B3	IO10RSB0	F2	IO67RSB1	
B4	IO13RSB0	F3	IO64RSB1	
B5	IO15RSB0	F4	GND	
B6	IO20RSB0	F5	VCCIB1	
B7	IO21RSB0	F6	IO47RSB1	
B8	IO28RSB0	F7	IO36RSB0	
B9	IO25RSB0	F8	IO38RSB0	
C1	IO79RSB1	F9	IO40RSB0	
C2	IO80RSB1	G1	IO65RSB1	
C3	IO08RSB0	G2	IO66RSB1	
C4	IO12RSB0	G3	IO57RSB1	
C5	IO17RSB0	G4	IO53RSB1	
C6	IO14RSB0	G5	IO49RSB1	
C7	IO18RSB0	G6	IO45RSB1	
C8	IO29RSB0	G7	IO46RSB1	
C9	IO27RSB0	G8	VJTAG	
D1	IO74RSB1	G9	TRST	
D2	IO76RSB1	H1	IO62RSB1	
D3	IO77RSB1	H2	FF/IO60RSB1	
D4	VCC	H3	IO58RSB1	
D5	VCCIB0	H4	IO54RSB1	
D6	GND	H5	IO48RSB1	
D7	IO23RSB0	H6	IO43RSB1	
D8	IO31RSB0	H7	IO42RSB1	

UC81		
Pin Number	AGLN030Z Function	
H8	TDI	
H9	TDO	
J1	IO63RSB1	
J2	IO61RSB1	
J3	IO59RSB1	
J4	IO56RSB1	
J5	IO52RSB1	
J6	IO44RSB1	
J7	ТСК	
J8	TMS	
J9	VPUMP	

IGLOO nano Low Power Flash FPGAs

	CS81 CS81		CS81
Pin Number	AGLN060 Function	Pin Number	AGLN060 Function
A1	GAA0/IO02RSB0	D8	GCC1/IO35RSB0
A2	GAA1/IO03RSB0	D9	GCC0/IO36RSB0
A3	GAC0/IO06RSB0	E1	GFB0/IO83RSB1
A4	IO09RSB0	E2	GFB1/IO84RSB1
A5	IO13RSB0	E3	GFA1/IO81RSB1
A6	IO18RSB0	E4	VCCIB1
A7	GBB0/IO21RSB0	E5	VCC
A8	GBA1/IO24RSB0	E6	VCCIB0
A9	GBA2/IO25RSB0	E7	GCA1/IO39RSB0
B1	GAA2/IO95RSB1	E8	GCA0/IO40RSB0
B2	GAB0/IO04RSB0	E9	GCB2/IO42RSB0
B3	GAC1/IO07RSB0	F1 ¹	VCCPLF
B4	IO08RSB0	F2 ¹	VCOMPLF
B5	IO15RSB0	F3	GND
B6	GBC0/IO19RSB0	F4	GND
B7	GBB1/IO22RSB0	F5	VCCIB1
B8	IO26RSB0	F6	GND
B9	GBB2/IO27RSB0	F7	GDA1/IO49RSB0
C1	GAB2/IO93RSB1	F8	GDC1/IO45RSB0
C2	IO94RSB1	F9	GDC0/IO46RSB0
C3	GND	G1	GEA0/IO69RSB1
C4	IO10RSB0	G2	GEC1/IO74RSB1
C5	IO17RSB0	G3	GEB1/IO72RSB1
C6	GND	G4	IO63RSB1
C7	GBA0/IO23RSB0	G5	IO60RSB1
C8	GBC2/IO29RSB0	G6	IO54RSB1
C9	IO31RSB0	G7	GDB2/IO52RSB1
D1	GAC2/IO91RSB1	G8	VJTAG
D2	IO92RSB1	G9	TRST
D3	GFA2/IO80RSB1	H1	GEA1/IO70RSB1
D4	VCC	H2	FF/GEB2/IO67RSB1
D5	VCCIB0	H3	IO65RSB1
D6	GND	H4	IO62RSB1
D7	GCC2/IO43RSB0	H5	IO59RSB1

CS81		
Pin Number	AGLN060 Function	
H6	IO56RSB1	
H7 ²	GDA2/IO51RSB1	
H8	TDI	
H9	TDO	
J1	GEA2/IO68RSB1	
J2	GEC2/IO66RSB1	
J3	IO64RSB1	
J4	IO61RSB1	
J5	IO58RSB1	
J6	IO55RSB1	
J7	ТСК	
J8	TMS	
J9	VPUMP	

Notes:

1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060-CS81.

2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060-CS81.

Package Pin Assignments

CS81		CS81		
Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function	
A1	GAA0/IO00RSB0	E1	GFB0/IO120RSB1	
A2	GAA1/IO01RSB0	E2	GFB1/IO121RSB1	
A3	GAC0/IO04RSB0	E3	GFA1/IO118RSB1	
A4	IO13RSB0	E4	VCCIB1	
A5	IO22RSB0	E5	VCC	
A6	IO32RSB0	E6	VCCIB0	
A7	GBB0/IO37RSB0	E7	GCA0/IO56RSB0	
A8	GBA1/IO40RSB0	E8	GCA1/IO55RSB0	
A9	GBA2/IO41RSB0	E9	GCB2/IO58RSB0	
B1	GAA2/IO132RSB1	F1*	VCCPLF	
B2	GAB0/IO02RSB0	F2*	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO11RSB0	F4	GND	
B5	IO25RSB0	F5	VCCIB1	
B6	GBC0/IO35RSB0	F6	GND	
B7	GBB1/IO38RSB0	F7	GDA1/IO65RSB0	
B8	IO42RSB0	F8	GDC1/IO61RSB0	
B9	GBB2/IO43RSB0	F9	GDC0/IO62RSB0	
C1	GAB2/IO130RSB1	G1	GEA0/IO104RSB1	
C2	IO131RSB1	G2	GEC0/IO108RSB1	
C3	GND	G3	GEB1/IO107RSB1	
C4	IO15RSB0	G4	IO96RSB1	
C5	IO28RSB0	G5	IO92RSB1	
C6	GND	G6	IO72RSB1	
C7	GBA0/IO39RSB0	G7	GDB2/IO68RSB1	
C8	GBC2/IO45RSB0	G8	VJTAG	
C9	IO47RSB0	G9	TRST	
D1	GAC2/IO128RSB1	H1	GEA1/IO105RSB1	
D2	IO129RSB1	H2	FF/GEB2/IO102RSB1	
D3	GFA2/IO117RSB1	H3	IO99RSB1	
D4	VCC	H4	IO94RSB1	
D5	VCCIB0	H5	IO91RSB1	
D6	GND	H6	IO81RSB1	
D7	GCC2/IO59RSB0	H7	GDA2/IO67RSB1	
D8	GCC1/IO51RSB0	H8	TDI	
D9	GCC0/IO52RSB0	H9	TDO	

CS81		
Pin Number	AGLN125Z Function	
J1	GEA2/IO103RSB1	
J2	GEC2/IO101RSB1	
J3	IO97RSB1	
J4	IO93RSB1	
J5	IO90RSB1	
J6	IO78RSB1	
J7	ТСК	
J8	TMS	
J9	VPUMP	

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125Z-CS81.

IGLOO nano Low Power Flash FPGAs

	CS81	CS81		
Pin Number	AGLN250 Function	Pin Number	AGLN250 Function	
A1	GAA0/IO00RSB0	E1	GFB0/IO59RSB3	
A2	GAA1/IO01RSB0	E2	GFB1/IO60RSB3	
A3	GAC0/IO04RSB0	E3	GFA1/IO58RSB3	
A4	IO07RSB0	E4	VCCIB3	
A5	IO09RSB0	E5	VCC	
A6	IO12RSB0	E6	VCCIB1	
A7	GBB0/IO16RSB0	E7	GCA0/IO28RSB1	
A8	GBA1/IO19RSB0	E8	GCA1/IO27RSB1	
A9	GBA2/IO20RSB1	E9	GCB2/IO29RSB1	
B1	GAA2/IO67RSB3	F1	VCCPLF	
B2	GAB0/IO02RSB0	F2	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO06RSB0	F4	GND	
B5	IO10RSB0	F5	VCCIB2	
B6	GBC0/IO14RSB0	F6	GND	
B7	GBB1/IO17RSB0	F7	GDA1/IO33RSB1	
B8	IO21RSB1	F8	GDC1/IO31RSB1	
B9	GBB2/IO22RSB1	F9	GDC0/IO32RSB1	
C1	GAB2/IO65RSB3	G1	GEA0/IO51RSB3	
C2	IO66RSB3	G2	GEC1/IO54RSB3	
C3	GND	G3	GEC0/IO53RSB3	
C4	IO08RSB0	G4	IO45RSB2	
C5	IO11RSB0	G5	IO42RSB2	
C6	GND	G6	IO37RSB2	
C7	GBA0/IO18RSB0	G7	GDB2/IO35RSB2	
C8	GBC2/IO23RSB1	G8	VJTAG	
C9	IO24RSB1	G9	TRST	
D1	GAC2/IO63RSB3	H1	GEA1/IO52RSB3	
D2	IO64RSB3	H2	FF/GEB2/IO49RSB2	
D3	GFA2/IO56RSB3	H3	IO47RSB2	
D4	VCC	H4	IO44RSB2	
D5	VCCIB0	H5	IO41RSB2	
D6	GND	H6	IO39RSB2	
D7	IO30RSB1	H7	GDA2/IO34RSB2	
D8	GCC1/IO25RSB1	H8	TDI	
D9	GCC0/IO26RSB1	H9	TDO	

CS81		
Pin Number	AGLN250 Function	
J1	GEA2/IO50RSB2	
J2	GEC2/IO48RSB2	
J3	IO46RSB2	
J4	IO43RSB2	
J5	IO40RSB2	
J6	IO38RSB2	
J7	ТСК	
J8	TMS	
J9	VPUMP	

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250-CS81.

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100		VQ100	
Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function
1	GND	35	IO62RSB1	69	IO31RSB0
2	GAA2/IO51RSB1	36	IO61RSB1	70	GBC2/IO29RSB0
3	IO52RSB1	37	VCC	71	GBB2/IO27RSB0
4	GAB2/IO53RSB1	38	GND	72	IO26RSB0
5	IO95RSB1	39	VCCIB1	73	GBA2/IO25RSB0
6	GAC2/IO94RSB1	40	IO60RSB1	74	VMV0
7	IO93RSB1	41	IO59RSB1	75	GNDQ
8	IO92RSB1	42	IO58RSB1	76	GBA1/IO24RSB0
9	GND	43	IO57RSB1	77	GBA0/IO23RSB0
10	GFB1/IO87RSB1	44	GDC2/IO56RSB1	78	GBB1/IO22RSB0
11	GFB0/IO86RSB1	45*	GDB2/IO55RSB1	79	GBB0/IO21RSB0
12	VCOMPLF	46	GDA2/IO54RSB1	80	GBC1/IO20RSB0
13	GFA0/IO85RSB1	47	ТСК	81	GBC0/IO19RSB0
14	VCCPLF	48	TDI	82	IO18RSB0
15	GFA1/IO84RSB1	49	TMS	83	IO17RSB0
16	GFA2/IO83RSB1	50	VMV1	84	IO15RSB0
17	VCC	51	GND	85	IO13RSB0
18	VCCIB1	52	VPUMP	86	IO11RSB0
19	GEC1/IO77RSB1	53	NC	87	VCCIB0
20	GEB1/IO75RSB1	54	TDO	88	GND
21	GEB0/IO74RSB1	55	TRST	89	VCC
22	GEA1/IO73RSB1	56	VJTAG	90	IO10RSB0
23	GEA0/IO72RSB1	57	GDA1/IO49RSB0	91	IO09RSB0
24	VMV1	58	GDC0/IO46RSB0	92	IO08RSB0
25	GNDQ	59	GDC1/IO45RSB0	93	GAC1/IO07RSB0
26	GEA2/IO71RSB1	60	GCC2/IO43RSB0	94	GAC0/IO06RSB0
27	FF/GEB2/IO70RSB1	61	GCB2/IO42RSB0	95	GAB1/IO05RSB0
28	GEC2/IO69RSB1	62	GCA0/IO40RSB0	96	GAB0/IO04RSB0
29	IO68RSB1	63	GCA1/IO39RSB0	97	GAA1/IO03RSB0
30	IO67RSB1	64	GCC0/IO36RSB0	98	GAA0/IO02RSB0
31	IO66RSB1	65	GCC1/IO35RSB0	99	IO01RSB0
32	IO65RSB1	66	VCCIB0	100	IO00RSB0
33	IO64RSB1	67	GND		
34	IO63RSB1	68	VCC		

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-VQ100.

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the IGLOO nano datasheet.

Revision	Changes	Page
Revision 19 (October 2015)	Modified the note to include device/package obsoletion information in "Features and Benefits" section (SAR 69724).	1-1
	Added a note under Security Feature "Y" in "IGLOO nano Ordering Information" section (SAR 70553).	1-IV
	Modified AGLN250 pin assignment table to match with I/O Attribute Editor tool from Libero in "CS81" Package (SAR 59049).	4-6
	Modified the nominal area to 25 for CS81 Package in Table 1 (SAR 71127).	1-II
	Modified the title of AGLN125Z pin assignment table for "CS81" Package (SAR 71127).	4-6
Revision 18 (November 2013)	Modified the "Device Marking" section and updated Figure 1 • Example of Device Marking for Small Form Factor Packages to reflect updates suggested per CN1004 published on 5/10/2010 (SAR 52036).	V
Revision 17 (May 2013)	Deleted details related to Ambient temperature from "Enhanced Commercial Temperature Range", "IGLOO nano Ordering Information", "Temperature Grade Offerings", and Table 2-2 • Recommended Operating Conditions ¹ to remove ambiguities arising due to the same, and modified Note 2 (SAR 47063).	I, IV, VI, and 2-2
Revision 16 (December 2012)	The "IGLOO nano Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43174).	IV
	The note in Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42565).	2-70, 2-71
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 15 (September 2012)	The status of the AGLN125 device has been modified from 'Advance' to 'Production' in the "IGLOO nano Device Status" section (SAR 41416).	
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40274).	NA
Revision 14 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data.	1-2
Revision 13 (June 2012)	Figure Figure 2-34 • FIFO Read and Figure 2-35 • FIFO Write have been added (SAR 34842).	2-82
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38319). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1