Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 1536 | | Total RAM Bits | 18432 | | Number of I/O | 71 | | Number of Gates | 60000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -20°C ~ 85°C (TJ) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agIn060v2-vqg100 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels # **Power Calculation Methodology** This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software. The power calculation methodology described below uses the following variables: - · The number of PLLs as well as the number and the frequency of each output clock generated - · The number of combinatorial and sequential cells used in the design - · The internal clock frequencies - · The number and the standard of I/O pins used in the design - The number of RAM blocks used in the design - Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14. - Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14. - Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design. # Methodology ### Total Power Consumption—P_{TOTAL} $$P_{TOTAL} = P_{STAT} + P_{DYN}$$ P_{STAT} is the total static power consumption. P_{DYN} is the total dynamic power consumption. ### Total Static Power Consumption—P_{STAT} P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5 N_{BANKS} is the number of I/O banks powered in the design. # Total Dynamic Power Consumption—P_{DYN} # Global Clock Contribution—P_{CLOCK} N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*. N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*. F_{CLK} is the global clock signal frequency. N_{S-CFLL} is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. # Sequential Cells Contribution—P_{S-CELL} ``` P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK} ``` N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14. F_{CLK} is the global clock signal frequency. 2-12 Revision 19 # **User I/O Characteristics** # **Timing Model** Figure 2-3 • Timing Model Operating Conditions: STD Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices Figure 2-5 • Output Buffer Model and Delays (example) # 3.3 V LVCMOS Wide Range Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range | 3.3 V LVCMOS
Wide Range ¹ | _ | | VIL | | VIH | | VOH | IOL | I _{OH} | IIL ² | IIH ³ | |---|---|-----------|-----------|-----------|-----------|-----------|------------|-----|-----------------|-------------------------|-------------------------| | Drive
Strength | Default
Drive
Strength
Option ⁴ | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | μΑ | μА | μ Α ⁵ | μ Α ⁵ | | 100 μΑ | 2 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 4 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 6 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | #### Notes: - 1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification. - 2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 5. Currents are measured at 85°C junction temperature. - 6. Software default selection is highlighted in gray. IGLOO nano DC and Switching Characteristics ### **Timing Characteristics** # Applies to 1.5 V DC Core Voltage Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t_{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|----------|-----------------|-------| | 2 mA | STD | 0.97 | 5.44 | 0.19 | 1.03 | 1.44 | 0.66 | 5.25 | 5.44 | 1.69 | 1.35 | ns | | 4 mA | STD | 0.97 | 4.44 | 0.19 | 1.03 | 1.44 | 0.66 | 4.37 | 4.44 | 1.99 | 2.11 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-----------------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.64 | 0.19 | 1.03 | 1.44 | 0.66 | 2.59 | 2.64 | 1.69 | 1.40 | ns | | 4 mA | STD | 0.97 | 2.08 | 0.19 | 1.03 | 1.44 | 0.66 | 2.12 | 1.95 | 1.99 | 2.19 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. #### Applies to 1.2 V DC Core Voltage Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 5.92 | 0.26 | 1.13 | 1.59 | 1.10 | 5.72 | 5.92 | 2.11 | 1.95 | ns | | 4 mA | STD | 1.55 | 4.91 | 0.26 | 1.13 | 1.59 | 1.10 | 4.82 | 4.91 | 2.42 | 2.73 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 3.05 | 0.26 | 1.13 | 1.59 | 1.10 | 3.01 | 3.05 | 2.10 | 2.00 | ns | | 4 mA | STD | 1.55 | 2.49 | 0.26 | 1.13 | 1.59 | 1.10 | 2.53 | 2.34 | 2.42 | 2.81 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-36 Revision 19 # 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-57 • Minimum and Maximum DC Input and Output Levels | 1.5 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSL | IOSH | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | 13 | 16 | 10 | 10 | #### Notes: - 1. I_{II} is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL. - 2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-10 • AC Loading Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 1.5 | 0.75 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. IGLOO nano DC and Switching Characteristics # **Global Tree Timing Characteristics** Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. ### **Timing Characteristics** 1.5 V DC Core Voltage Table 2-88 • AGLN010 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | S | td. | | |----------------------|-------------------------------------------|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.13 | 1.42 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.15 | 1.50 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.35 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-89 • AGLN015 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | S | td. | | |----------------------|-------------------------------------------|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.21 | 1.55 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.23 | 1.65 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.42 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-64 Revision 19 Table 2-90 • AGLN020 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.425 V | | | S | td. | | |----------------------|-------------------------------------------|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.21 | 1.55 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.23 | 1.65 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.42 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-91 • AGLN060 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | St | td. | | |----------------------|-------------------------------------------|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.32 | 1.62 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.34 | 1.71 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.38 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ### 1.2 V DC Core Voltage Table 2-94 • AGLN010 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | | | Std. | | | |----------------------|-------------------------------------------|---|-------------------|-------------------|-------| | Parameter | Description | • | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | | 1.71 | 2.09 | ns | | t _{RCKH} | Input High Delay for Global Clock | | 1.78 | 2.31 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.53 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-95 • AGLN015 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | | | Std. | | | |----------------------|-------------------------------------------|-----|-----------------|-------------------|-------| | Parameter | Description | Mir | 1. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.8 | 31 | 2.26 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.9 | 90 | 2.51 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.4 | 10 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.6 | 35 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.61 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ Figure 2-26 • Peak-to-Peak Jitter Definition 2-72 Revision 19 Pin Descriptions interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. ### VPUMP Programming Supply Voltage IGLOO nano devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet. When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, $0.01~\mu F$ and $0.33~\mu F$ capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. # **User Pins** ### I/O User Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration. Unused I/Os are configured as follows: - Output buffer is disabled (with tristate value of high impedance) - Input buffer is disabled (with tristate value of high impedance) - Weak pull-up is programmed #### GL Globals GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter in the IGLOO nano FPGA Fabric User's Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input. Refer to the "I/O Structures in nano Devices" chapter of the IGLOO nano FPGA Fabric User's Guide for an explanation of the naming of global pins. ### FF Flash*Freeze Mode Activation Pin Flash*Freeze is available on IGLOO nano devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted. The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin 3-2 Revision 19 Pin Descriptions Table 3-3 • TRST and TCK Pull-Down Recommendations | VJTAG | Tie-Off Resistance* | |----------------|---------------------| | VJTAG at 3.3 V | 200 Ω to 1 kΩ | | VJTAG at 2.5 V | 200 Ω to 1 kΩ | | VJTAG at 1.8 V | 500 Ω to 1 kΩ | | VJTAG at 1.5 V | 500 Ω to 1 kΩ | Note: Equivalent parallel resistance if more than one device is on the JTAG chain ### TDI Test Data Input Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin. ### TDO Test Data Output Serial output for JTAG boundary scan, ISP, and UJTAG usage. #### TMS Test Mode Select The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin. ### TRST Boundary Scan Reset Pin The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain. In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. # **Special Function Pins** #### NC No Connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. #### DC Do Not Connect This pin should not be connected to any signals on the PCB. These pins should be left unconnected. # **Packaging** Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility. Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems. 3-4 Revision 19 # **UC81** Note: This is the bottom view of the package. ### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | A1 | IO64RSB2 | | | A2 | IO54RSB2 | | | A3 | IO57RSB2 | | | A4 | IO36RSB1 | | | A5 | IO32RSB1 | | | A6 | IO24RSB1 | | | A7 | IO20RSB1 | | | A8 | IO04RSB0 | | | A9 | IO08RSB0 | | | B1 | IO59RSB2 | | | B2 | IO55RSB2 | | | В3 | IO62RSB2 | | | B4 | IO34RSB1 | | | B5 | IO28RSB1 | | | В6 | IO22RSB1 | | | В7 | IO18RSB1 | | | B8 | IO00RSB0 | | | В9 | IO03RSB0 | | | C1 | IO51RSB2 | | | C2 | IO50RSB2 | | | C3 | NC | | | C4 | NC | | | C5 | NC | | | C6 | NC | | | C7 | NC | | | C8 | IO10RSB0 | | | C9 | IO07RSB0 | | | D1 | IO49RSB2 | | | D2 | IO44RSB2 | | | D3 | NC | | | D4 | VCC | | | D5 | VCCIB2 | | | D6 | GND | | | D7 | NC | | | D8 | IO13RSB0 | | | D9 | IO12RSB0 | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | E1 | GEC0/IO48RSB2 | | | E2 | GEA0/IO47RSB2 | | | E3 | NC | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | NC | | | E8 | GDA0/IO15RSB0 | | | E9 | GDC0/IO14RSB0 | | | F1 | IO46RSB2 | | | F2 | IO45RSB2 | | | F3 | NC | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | NC | | | F7 | NC | | | F8 | IO16RSB0 | | | F9 | IO17RSB0 | | | G1 | IO43RSB2 | | | G2 | IO42RSB2 | | | G3 | IO41RSB2 | | | G4 | IO31RSB1 | | | G5 | NC | | | G6 | IO21RSB1 | | | G7 | NC | | | G8 | VJTAG | | | G9 | TRST | | | H1 | IO40RSB2 | | | H2 | FF/IO39RSB1 | | | H3 | IO35RSB1 | | | H4 | IO29RSB1 | | | H5 | IO26RSB1 | | | H6 | IO25RSB1 | | | H7 | IO19RSB1 | | | H8 | TDI | | | H9 | TDO | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | J1 | IO38RSB1 | | | J2 | IO37RSB1 | | | J3 | IO33RSB1 | | | J4 | IO30RSB1 | | | J5 | IO27RSB1 | | | J6 | IO23RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | 4-4 Revision 19 | CS81 | | | |------------|------------------|--| | Pin Number | AGLN060 Function | | | A1 | GAA0/IO02RSB0 | | | A2 | GAA1/IO03RSB0 | | | A3 | GAC0/IO06RSB0 | | | A4 | IO09RSB0 | | | A5 | IO13RSB0 | | | A6 | IO18RSB0 | | | A7 | GBB0/IO21RSB0 | | | A8 | GBA1/IO24RSB0 | | | A9 | GBA2/IO25RSB0 | | | B1 | GAA2/IO95RSB1 | | | B2 | GAB0/IO04RSB0 | | | В3 | GAC1/IO07RSB0 | | | B4 | IO08RSB0 | | | B5 | IO15RSB0 | | | B6 | GBC0/IO19RSB0 | | | В7 | GBB1/IO22RSB0 | | | B8 | IO26RSB0 | | | В9 | GBB2/IO27RSB0 | | | C1 | GAB2/IO93RSB1 | | | C2 | IO94RSB1 | | | C3 | GND | | | C4 | IO10RSB0 | | | C5 | IO17RSB0 | | | C6 | GND | | | C7 | GBA0/IO23RSB0 | | | C8 | GBC2/IO29RSB0 | | | C9 | IO31RSB0 | | | D1 | GAC2/IO91RSB1 | | | D2 | IO92RSB1 | | | D3 | GFA2/IO80RSB1 | | | D4 | VCC | | | D5 | VCCIB0 | | | D6 | GND | | | D7 | GCC2/IO43RSB0 | | | | | | | | CS81 | |-----------------|------------------| | Pin Number | AGLN060 Function | | D8 | GCC1/IO35RSB0 | | D9 | GCC0/IO36RSB0 | | E1 | GFB0/IO83RSB1 | | E2 | GFB1/IO84RSB1 | | E3 | GFA1/IO81RSB1 | | E4 | VCCIB1 | | E5 | VCC | | E6 | VCCIB0 | | E7 | GCA1/IO39RSB0 | | E8 | GCA0/IO40RSB0 | | E9 | GCB2/IO42RSB0 | | F1 ¹ | VCCPLF | | F2 ¹ | VCOMPLF | | F3 | GND | | F4 | GND | | F5 | VCCIB1 | | F6 | GND | | F7 | GDA1/IO49RSB0 | | F8 | GDC1/IO45RSB0 | | F9 | GDC0/IO46RSB0 | | G1 | GEA0/IO69RSB1 | | G2 | GEC1/IO74RSB1 | | G3 | GEB1/IO72RSB1 | | G4 | IO63RSB1 | | G5 | IO60RSB1 | | G6 | IO54RSB1 | | G7 | GDB2/IO52RSB1 | | G8 | VJTAG | | G9 | TRST | | H1 | GEA1/IO70RSB1 | | H2 | FF/GEB2/IO67RSB1 | | Н3 | IO65RSB1 | | H4 | IO62RSB1 | | H5 | IO59RSB1 | | CS81 | | | |-----------------|------------------|--| | Pin Number | AGLN060 Function | | | H6 | IO56RSB1 | | | H7 ² | GDA2/IO51RSB1 | | | H8 | TDI | | | H9 | TDO | | | J1 | GEA2/IO68RSB1 | | | J2 | GEC2/IO66RSB1 | | | J3 | IO64RSB1 | | | J4 | IO61RSB1 | | | J5 | IO58RSB1 | | | J6 | IO55RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | ### Notes: - 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060-CS81. - 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060-CS81. | CS81 | | | |------------|-------------------|--| | Pin Number | AGLN060Z Function | | | A1 | GAA0/IO02RSB0 | | | A2 | GAA1/IO03RSB0 | | | A3 | GAC0/IO06RSB0 | | | A4 | IO09RSB0 | | | A5 | IO13RSB0 | | | A6 | IO18RSB0 | | | A7 | GBB0/IO21RSB0 | | | A8 | GBA1/IO24RSB0 | | | A9 | GBA2/IO25RSB0 | | | B1 | GAA2/IO95RSB1 | | | B2 | GAB0/IO04RSB0 | | | В3 | GAC1/IO07RSB0 | | | B4 | IO08RSB0 | | | B5 | IO15RSB0 | | | В6 | GBC0/IO19RSB0 | | | В7 | GBB1/IO22RSB0 | | | В8 | IO26RSB0 | | | В9 | GBB2/IO27RSB0 | | | C1 | GAB2/IO93RSB1 | | | C2 | IO94RSB1 | | | C3 | GND | | | C4 | IO10RSB0 | | | C5 | IO17RSB0 | | | C6 | GND | | | C7 | GBA0/IO23RSB0 | | | C8 | GBC2/IO29RSB0 | | | C9 | IO31RSB0 | | | D1 | GAC2/IO91RSB1 | | | D2 | IO92RSB1 | | | D3 | GFA2/IO80RSB1 | | | D4 | VCC | | | D5 | VCCIB0 | | | D6 | GND | | | D7 | GCC2/IO43RSB0 | | | CS81 | | | |-----------------|-------------------|--| | Pin Number | AGLN060Z Function | | | D8 | GCC1/IO35RSB0 | | | D9 | GCC0/IO36RSB0 | | | E1 | GFB0/IO83RSB1 | | | E2 | GFB1/IO84RSB1 | | | E3 | GFA1/IO81RSB1 | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | GCA1/IO39RSB0 | | | E8 | GCA0/IO40RSB0 | | | E9 | GCB2/IO42RSB0 | | | F1 ¹ | VCCPLF | | | F2 ¹ | VCOMPLF | | | F3 | GND | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | GND | | | F7 | GDA1/IO49RSB0 | | | F8 | GDC1/IO45RSB0 | | | F9 | GDC0/IO46RSB0 | | | G1 | GEA0/IO69RSB1 | | | G2 | GEC1/IO74RSB1 | | | G3 | GEB1/IO72RSB1 | | | G4 | IO63RSB1 | | | G5 | IO60RSB1 | | | G6 | IO54RSB1 | | | G7 | GDB2/IO52RSB1 | | | G8 | VJTAG | | | G9 | TRST | | | H1 | GEA1/IO70RSB1 | | | H2 | FF/GEB2/IO67RSB1 | | | H3 | IO65RSB1 | | | H4 | IO62RSB1 | | | H5 | IO59RSB1 | | | CS81 | | | |-----------------|-------------------|--| | Pin Number | AGLN060Z Function | | | H6 | IO56RSB1 | | | H7 ² | GDA2/IO51RSB1 | | | H8 | TDI | | | H9 | TDO | | | J1 | GEA2/IO68RSB1 | | | J2 | GEC2/IO66RSB1 | | | J3 | IO64RSB1 | | | J4 | IO61RSB1 | | | J5 | IO58RSB1 | | | J6 | IO55RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | ### Notes: - 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81. - 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81. 4-10 Revision 19 | CS81 | | | |------------|-------------------|--| | Pin Number | AGLN250Z Function | | | A1 | GAA0/IO00RSB0 | | | A2 | GAA1/IO01RSB0 | | | A3 | GAC0/IO04RSB0 | | | A4 | IO07RSB0 | | | A5 | IO09RSB0 | | | A6 | IO12RSB0 | | | A7 | GBB0/IO16RSB0 | | | A8 | GBA1/IO19RSB0 | | | A9 | GBA2/IO20RSB1 | | | B1 | GAA2/IO67RSB3 | | | B2 | GAB0/IO02RSB0 | | | В3 | GAC1/IO05RSB0 | | | B4 | IO06RSB0 | | | B5 | IO10RSB0 | | | B6 | GBC0/IO14RSB0 | | | В7 | GBB1/IO17RSB0 | | | B8 | IO21RSB1 | | | В9 | GBB2/IO22RSB1 | | | C1 | GAB2/IO65RSB3 | | | C2 | IO66RSB3 | | | C3 | GND | | | C4 | IO08RSB0 | | | C5 | IO11RSB0 | | | C6 | GND | | | C7 | GBA0/IO18RSB0 | | | C8 | GBC2/IO23RSB1 | | | C9 | IO24RSB1 | | | D1 | GAC2/IO63RSB3 | | | D2 | IO64RSB3 | | | D3 | GFA2/IO56RSB3 | | | D4 | VCC | | | D5 | VCCIB0 | | | D6 | GND | | | D7 | IO30RSB1 | | | D8 | GCC1/IO25RSB1 | | | D9 | GCC0/IO26RSB1 | | | CS81 | | | |------------|-------------------|--| | Pin Number | AGLN250Z Function | | | E1 | GFB0/IO59RSB3 | | | E2 | GFB1/IO60RSB3 | | | E3 | GFA1/IO58RSB3 | | | E4 | VCCIB3 | | | E5 | VCC | | | E6 | VCCIB1 | | | E7 | GCA0/IO28RSB1 | | | E8 | GCA1/IO27RSB1 | | | E9 | GCB2/IO29RSB1 | | | F1* | VCCPLF | | | F2* | VCOMPLF | | | F3 | GND | | | F4 | GND | | | F5 | VCCIB2 | | | F6 | GND | | | F7 | GDA1/IO33RSB1 | | | F8 | GDC1/IO31RSB1 | | | F9 | GDC0/IO32RSB1 | | | G1 | GEA0/IO51RSB3 | | | G2 | GEC1/IO54RSB3 | | | G3 | GEC0/IO53RSB3 | | | G4 | IO45RSB2 | | | G5 | IO42RSB2 | | | G6 | IO37RSB2 | | | G7 | GDB2/IO35RSB2 | | | G8 | VJTAG | | | G9 | TRST | | | H1 | GEA1/IO52RSB3 | | | H2 | FF/GEB2/IO49RSB2 | | | H3 | IO47RSB2 | | | H4 | IO44RSB2 | | | H5 | IO41RSB2 | | | H6 | IO39RSB2 | | | H7 | GDA2/IO34RSB2 | | | H8 | TDI | | | H9 | TDO | | | CS81 | | | |------------|-------------------|--| | Pin Number | AGLN250Z Function | | | J1 | GEA2/IO50RSB2 | | | J2 | GEC2/IO48RSB2 | | | J3 | IO46RSB2 | | | J4 | IO43RSB2 | | | J5 | IO40RSB2 | | | J6 | IO38RSB2 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250Z-CS81. 4-14 Revision 19 | QN68 | | |---------------|--| | AGLN020 | | | Function | | | IO60RSB2 | | | IO54RSB2 | | | IO52RSB2 | | | IO50RSB2 | | | IO49RSB2 | | | GEC0/IO48RSB2 | | | GEA0/IO47RSB2 | | | VCC | | | GND | | | VCCIB2 | | | IO46RSB2 | | | IO45RSB2 | | | IO44RSB2 | | | IO43RSB2 | | | IO42RSB2 | | | IO41RSB2 | | | IO40RSB2 | | | FF/IO39RSB1 | | | IO37RSB1 | | | IO35RSB1 | | | IO33RSB1 | | | IO31RSB1 | | | IO30RSB1 | | | VCC | | | GND | | | VCCIB1 | | | IO27RSB1 | | | IO25RSB1 | | | IO23RSB1 | | | IO21RSB1 | | | IO19RSB1 | | | TCK | | | TDI | | | TMS | | | VPUMP | | | | | | QN68 | | | |------------|---------------------|--| | Pin Number | AGLN020
Function | | | 36 | TDO | | | 37 | TRST | | | 38 | VJTAG | | | 39 | IO17RSB0 | | | 40 | IO16RSB0 | | | 41 | GDA0/IO15RSB0 | | | 42 | GDC0/IO14RSB0 | | | 43 | IO13RSB0 | | | 44 | VCCIB0 | | | 45 | GND | | | 46 | VCC | | | 47 | IO12RSB0 | | | 48 | IO11RSB0 | | | 49 | IO09RSB0 | | | 50 | IO05RSB0 | | | 51 | IO00RSB0 | | | 52 | IO07RSB0 | | | 53 | IO03RSB0 | | | 54 | IO18RSB1 | | | 55 | IO20RSB1 | | | 56 | IO22RSB1 | | | 57 | IO24RSB1 | | | 58 | IO28RSB1 | | | 59 | NC | | | 60 | GND | | | 61 | NC | | | 62 | IO32RSB1 | | | 63 | IO34RSB1 | | | 64 | IO36RSB1 | | | 65 | IO61RSB2 | | | 66 | IO58RSB2 | | | 67 | IO56RSB2 | | | 68 | IO63RSB2 | | 4-20 Revision 19 | VQ100 | | VQ100 | | |------------|------------------|------------|------------------| | Pin Number | AGLN060 Function | Pin Number | AGLN060 Function | | 1 | GND | 36 | IO61RSB1 | | 2 | GAA2/IO51RSB1 | 37 | VCC | | 3 | IO52RSB1 | 38 | GND | | 4 | GAB2/IO53RSB1 | 39 | VCCIB1 | | 5 | IO95RSB1 | 40 | IO60RSB1 | | 6 | GAC2/IO94RSB1 | 41 | IO59RSB1 | | 7 | IO93RSB1 | 42 | IO58RSB1 | | 8 | IO92RSB1 | 43 | IO57RSB1 | | 9 | GND | 44 | GDC2/IO56RSB1 | | 10 | GFB1/IO87RSB1 | 45* | GDB2/IO55RSB1 | | 11 | GFB0/IO86RSB1 | 46 | GDA2/IO54RSB1 | | 12 | VCOMPLF | 47 | TCK | | 13 | GFA0/IO85RSB1 | 48 | TDI | | 14 | VCCPLF | 49 | TMS | | 15 | GFA1/IO84RSB1 | 50 | VMV1 | | 16 | GFA2/IO83RSB1 | 51 | GND | | 17 | VCC | 52 | VPUMP | | 18 | VCCIB1 | 53 | NC | | 19 | GEC1/IO77RSB1 | 54 | TDO | | 20 | GEB1/IO75RSB1 | 55 | TRST | | 21 | GEB0/IO74RSB1 | 56 | VJTAG | | 22 | GEA1/IO73RSB1 | 57 | GDA1/IO49RSB0 | | 23 | GEA0/IO72RSB1 | 58 | GDC0/IO46RSB0 | | 24 | VMV1 | 59 | GDC1/IO45RSB0 | | 25 | GNDQ | 60 | GCC2/IO43RSB0 | | 26 | GEA2/IO71RSB1 | 61 | GCB2/IO42RSB0 | | 27 | FF/GEB2/IO70RSB1 | 62 | GCA0/IO40RSB0 | | 28 | GEC2/IO69RSB1 | 63 | GCA1/IO39RSB0 | | 29 | IO68RSB1 | 64 | GCC0/IO36RSB0 | | 30 | IO67RSB1 | 65 | GCC1/IO35RSB0 | | 31 | IO66RSB1 | 66 | VCCIB0 | | 32 | IO65RSB1 | 67 | GND | | 33 | IO64RSB1 | 68 | VCC | | 34 | IO63RSB1 | 69 | IO31RSB0 | | 35 | IO62RSB1 | 70 | GBC2/IO29RSB0 | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN060 Function | | | 71 | GBB2/IO27RSB0 | | | 72 | IO26RSB0 | | | 73 | GBA2/IO25RSB0 | | | 74 | VMV0 | | | 75 | GNDQ | | | 76 | GBA1/IO24RSB0 | | | 77 | GBA0/IO23RSB0 | | | 78 | GBB1/IO22RSB0 | | | 79 | GBB0/IO21RSB0 | | | 80 | GBC1/IO20RSB0 | | | 81 | GBC0/IO19RSB0 | | | 82 | IO18RSB0 | | | 83 | IO17RSB0 | | | 84 | IO15RSB0 | | | 85 | IO13RSB0 | | | 86 | IO11RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO10RSB0 | | | 91 | IO09RSB0 | | | 92 | IO08RSB0 | | | 93 | GAC1/IO07RSB0 | | | 94 | GAC0/IO06RSB0 | | | 95 | GAB1/IO05RSB0 | | | 96 | GAB0/IO04RSB0 | | | 97 | GAA1/IO03RSB0 | | | 98 | GAA0/IO02RSB0 | | | 99 | IO01RSB0 | | | 100 | IO00RSB0 | | Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-VQ100. 4-24 Revision 19