E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1536
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln060v5-vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes:

- Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming. The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade devices are not recommended for new designs.
- 2. AGLN030 is available in the Z feature grade only.
- 3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5 designator.

Devices Not Recommended For New Designs

AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs. For more information on obsoleted devices/packages, refer to the *PDN1503 - IGLOO nano Z and ProASIC3 nano Z Families*.

Device Marking

Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples.

Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered.

Figure 1 • Example of Device Marking for Small Form Factor Packages

IGLOO nano Products Available in the Z Feature Grade

IGLOO nano-Z Devices	AGLN030Z*	AGLN060Z*	AGLN125Z*	AGLN250Z*
	QN48	-	-	-
	QN68	-	-	-
	UC81	-	-	-
	CS81	CS81	CS81	CS81
Packages	VQ100	VQ100	VQ100	VQ100

Note: *Not recommended for new designs.

Temperature Grade Offerings

	AGLN010	AGLN015 [*]	AGLN020		AGLN060	AGLN125	AGLN250
Package				AGLN030Z [*]	AGLN060Z [*]	AGLN125Z [*]	AGLN250Z [*]
UC36	C, I	-	-	-	-	-	_
QN48	C, I	-	-	C, I	-	-	_
QN68	-	C, I	C, I	C, I	-	-	_
UC81	-	-	C, I	C, I	-	_	_
CS81	-	-	C, I	C, I	C, I	C, I	C, I
VQ100	_	_	_	C, I	C, I	C, I	C, I

Note: * Not recommended for new designs.

C = Enhanced Commercial temperature range: -20°C to +85°C junction temperature

I = Industrial temperature range: –40°C to +100°C junction temperature

Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic.

Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano devices cost-effective ASIC replacement solutions, especially for applications in the consumer, networking/communications, computing, and avionics markets.

With a variety of devices under \$1, IGLOO nano FPGAs enable cost-effective implementation of programmable logic and quick time to market.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on page 1-5 to Figure 1-4 on page 1-5):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLN030 and smaller devices do not support PLL or SRAM.

Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks (AGLN060, AGLN125)

Figure 1-4 • IGLOO Device Architecture Overview with Four I/O Banks (AGLN250)

IGLOO nano DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$ for V5 devices, and $0.75 V \pm 0.2 V$ for V2 devices), the PLL output lock signal goes LOW and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO nano FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

IGLOO nano DC and Switching Characteristics

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

Detailed I/O DC Characteristics

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-27 • Input Capacitance

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS ⁴	1 mA	315	315
1.2 V LVCMOS Wide Range ⁴	100 µA	315	315

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.

IGLOO nano DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
4 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
6 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns
8 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
4 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
6 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
8 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Fully Registered I/O Buffers with Asynchronous Preset

I/O Register Specifications

Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset

Fully Registered I/O Buffers with Asynchronous Clear

Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

Global Resource Characteristics

AGLN125 Clock Tree Topology

Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device. It is used to drive all D-flip-flops in the device.

Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing

Timing Characteristics

1.5 V DC Core Voltage

Table 2-102 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.68	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{BKS}	BLK setup time	1.37	ns
t _{BKH}	BLK hold time	0.13	ns
t _{DS}	Input data (DIN) setup time	0.59	ns
t _{DH}	Input data (DIN) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	2.94	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	2.55	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	1.51	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	1.72	ns
	RESET Low to data out Low on DOUT (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Table 2-103 • RAM512X18

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.61	ns
t _{ENH}	REN, WEN hold time	0.07	ns
t _{DS}	Input data (WD) setup time	0.59	ns
t _{DH}	Input data (WD) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on RD (output retained)	3.51	ns
t _{CKQ2}	Clock HIGH to new data valid on RD (pipelined)	1.43	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.42	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	1.72	ns
	RESET Low to data out Low on RD (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	0.51
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-110 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{тск2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-111 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

AGLN020 Function IO38RSB1

IO37RSB1

IO33RSB1

IO30RSB1

IO27RSB1 IO23RSB1

TCK

TMS VPUMP

IGLOO nano Low Power Flash FPGAs

CS81

CS81				
Pin Number	AGLN020 Function	Pin Number	AGLN020 Function	Pin Number
A1	IO64RSB2	E1	GEC0/IO48RSB2	J1
A2	IO54RSB2	E2	GEA0/IO47RSB2	J2
A3	IO57RSB2	E3	NC	J3
A4	IO36RSB1	E4	VCCIB1	J4
A5	IO32RSB1	E5	VCC	J5
A6	IO24RSB1	E6	VCCIB0	J6
A7	IO20RSB1	E7	NC	J7
A8	IO04RSB0	E8 GDA0/IO15RSB0		J8
A9	IO08RSB0	E9	E9 GDC0/IO14RSB0	
B1	IO59RSB2	F1	IO46RSB2	
B2	IO55RSB2	F2	IO45RSB2	
B3	IO62RSB2	F3	NC	
B4	IO34RSB1	F4	GND	
B5	IO28RSB1	F5	VCCIB1	
B6	IO22RSB1	F6	NC	
B7	IO18RSB1	F7	NC	
B8	IO00RSB0	F8	IO16RSB0	
B9	IO03RSB0	F9	IO17RSB0	
C1	IO51RSB2	G1	IO43RSB2	
C2	IO50RSB2	G2	IO42RSB2	
C3	NC	G3	IO41RSB2	
C4	NC	G4	G4 IO31RSB1	
C5	NC	G5	NC	
C6	NC	G6	IO21RSB1	
C7	NC	G7	NC	
C8	IO10RSB0	G8	VJTAG	
C9	IO07RSB0	G9	TRST	
D1	IO49RSB2	H1	IO40RSB2	
D2	IO44RSB2	H2	FF/IO39RSB1	
D3	NC	H3	IO35RSB1	
D4	VCC	H4	IO29RSB1	
D5	VCCIB2	H5	IO26RSB1	
D6	GND	H6	IO25RSB1	
D7	NC	H7	IO19RSB1	
D8	IO13RSB0	H8	TDI	
D9	IO12RSB0	H9	TDO	

r		1		
	QN68			QN68
Pin Number	AGLN015 Function		Pin Number	AGLN015 Function
1	IO60RSB2		36	TDO
2	IO54RSB2		37	TRST
3	IO52RSB2		38	VJTAG
4	IO50RSB2		39	IO17RSB0
5	IO49RSB2		40	IO16RSB0
6	GEC0/IO48RSB2		41	GDA0/IO15RSB0
7	GEA0/IO47RSB2		42	GDC0/IO14RSB0
8	VCC		43	IO13RSB0
9	GND		44	VCCIB0
10	VCCIB2		45	GND
11	IO46RSB2		46	VCC
12	IO45RSB2		47	IO12RSB0
13	IO44RSB2		48	IO11RSB0
14	IO43RSB2		49	IO09RSB0
15	IO42RSB2		50	IO05RSB0
16	IO41RSB2		51	IO00RSB0
17	IO40RSB2		52	IO07RSB0
18	FF/IO39RSB1		53	IO03RSB0
19	IO37RSB1		54	IO18RSB1
20	IO35RSB1		55	IO20RSB1
21	IO33RSB1		56	IO22RSB1
22	IO31RSB1		57	IO24RSB1
23	IO30RSB1		58	IO28RSB1
24	VCC		59	NC
25	GND		60	GND
26	VCCIB1		61	NC
27	IO27RSB1		62	IO32RSB1
28	IO25RSB1		63	IO34RSB1
29	IO23RSB1		64	IO36RSB1
30	IO21RSB1		65	IO61RSB2
31	IO19RSB1		66	IO58RSB2
32	ТСК		67	IO56RSB2
33	TDI		68	IO63RSB2
34	TMS	1		
35	VPUMP]		

Package Pin Assignments

VQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO nano Low Power Flash FPGAs

VQ100			VQ100	VQ100	
Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function
1	GND	35	IO62RSB1	69	IO31RSB0
2	GAA2/IO51RSB1	36	IO61RSB1	70	GBC2/IO29RSB0
3	IO52RSB1	37	VCC	71	GBB2/IO27RSB0
4	GAB2/IO53RSB1	38	GND	72	IO26RSB0
5	IO95RSB1	39	VCCIB1	73	GBA2/IO25RSB0
6	GAC2/IO94RSB1	40	IO60RSB1	74	VMV0
7	IO93RSB1	41	IO59RSB1	75	GNDQ
8	IO92RSB1	42	IO58RSB1	76	GBA1/IO24RSB0
9	GND	43	IO57RSB1	77	GBA0/IO23RSB0
10	GFB1/IO87RSB1	44	GDC2/IO56RSB1	78	GBB1/IO22RSB0
11	GFB0/IO86RSB1	45*	GDB2/IO55RSB1	79	GBB0/IO21RSB0
12	VCOMPLF	46	GDA2/IO54RSB1	80	GBC1/IO20RSB0
13	GFA0/IO85RSB1	47	ТСК	81	GBC0/IO19RSB0
14	VCCPLF	48	TDI	82	IO18RSB0
15	GFA1/IO84RSB1	49	TMS	83	IO17RSB0
16	GFA2/IO83RSB1	50	VMV1	84	IO15RSB0
17	VCC	51	GND	85	IO13RSB0
18	VCCIB1	52	VPUMP	86	IO11RSB0
19	GEC1/IO77RSB1	53	NC	87	VCCIB0
20	GEB1/IO75RSB1	54	TDO	88	GND
21	GEB0/IO74RSB1	55	TRST	89	VCC
22	GEA1/IO73RSB1	56	VJTAG	90	IO10RSB0
23	GEA0/IO72RSB1	57	GDA1/IO49RSB0	91	IO09RSB0
24	VMV1	58	GDC0/IO46RSB0	92	IO08RSB0
25	GNDQ	59	GDC1/IO45RSB0	93	GAC1/IO07RSB0
26	GEA2/IO71RSB1	60	GCC2/IO43RSB0	94	GAC0/IO06RSB0
27	FF/GEB2/IO70RSB1	61	GCB2/IO42RSB0	95	GAB1/IO05RSB0
28	GEC2/IO69RSB1	62	GCA0/IO40RSB0	96	GAB0/IO04RSB0
29	IO68RSB1	63	GCA1/IO39RSB0	97	GAA1/IO03RSB0
30	IO67RSB1	64	GCC0/IO36RSB0	98	GAA0/IO02RSB0
31	IO66RSB1	65	GCC1/IO35RSB0	99	IO01RSB0
32	IO65RSB1	66	VCCIB0	100	IO00RSB0
33	IO64RSB1	67	GND		
34	IO63RSB1	68	VCC		

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-VQ100.