Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 1536 | | Total RAM Bits | 18432 | | Number of I/O | 71 | | Number of Gates | 60000 | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -20°C ~ 85°C (TJ) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agln060v5-zvq100 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Device Marking** Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples. Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered. Figure 1 • Example of Device Marking for Small Form Factor Packages Revision 19 V IGLOO nano Low Power Flash FPGAs # Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano devices cost-effective ASIC replacement solutions, especially for applications in the consumer, networking/communications, computing, and avionics markets. With a variety of devices under \$1, IGLOO nano FPGAs enable cost-effective implementation of programmable logic and quick time to market. # Firm-Error Immunity Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. # Advanced Flash Technology The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes of operation. #### Advanced Architecture The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on page 1-5 to Figure 1-4 on page 1-5): - Flash*Freeze technology - FPGA VersaTiles - Dedicated FlashROM - Dedicated SRAM/FIFO memory[†] - Extensive CCCs and PLLs[†] - Advanced I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. [†] The AGLN030 and smaller devices do not support PLL or SRAM. # **General Specifications** The Z feature grade does not support the enhanced nano features of Schmitt trigger input, Flash*Freeze bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, and hot-swap I/O capability. Refer to "IGLOO nano Ordering Information" on page IV for more information. # **Operating Conditions** Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 • Absolute Maximum Ratings | Symbol | Parameter | Limits | Units | |-------------------------------|------------------------------|-----------------|-------| | VCC | DC core supply voltage | -0.3 to 1.65 | V | | VJTAG | JTAG DC voltage | -0.3 to 3.75 | V | | VPUMP | Programming voltage | -0.3 to 3.75 | V | | VCCPLL | Analog power supply (PLL) | -0.3 to 1.65 | V | | VCCI | DC I/O buffer supply voltage | -0.3 to 3.75 | V | | VI ¹ | I/O input voltage | −0.3 V to 3.6 V | V | | T _{STG} ² | Storage temperature | -65 to +150 | °C | | T_J^2 | Junction temperature | +125 | °C | #### Notes: ^{1.} The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3. ^{2.} For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2. ## **Thermal Characteristics** ## Introduction The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. $$T_J$$ = Junction Temperature = $\Delta T + T_A$ EQ 1 #### where: T_A = Ambient temperature ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Figure 2-5. P = Power dissipation # Package Thermal Characteristics The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The maximum operating junction temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air. Maximum Power Allowed = $$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°\text{C/W})} = \frac{100°\text{C} - 70°\text{C}}{20.5°\text{C/W}} = 1.46~\text{W}$$ EQ 2 Table 2-5 • Package Thermal Resistivities | Package Type | Pin
Count | θ _{jc} | Still Air | 200 ft./
min. | 500 ft./
min. | Units | |---------------------------------|--------------|-----------------|-----------|------------------|------------------|-------| | Chip Scale Package (CSP) | 36 | TBD | TBD | TBD | TBD | C/W | | | 81 | TBD | TBD | TBD | TBD | C/W | | Quad Flat No Lead (QFN) | 48 | TBD | TBD | TBD | TBD | C/W | | | 68 | TBD | TBD | TBD | TBD | C/W | | | 100 | TBD | TBD | TBD | TBD | C/W | | Very Thin Quad Flat Pack (VQFP) | 100 | 10.0 | 35.3 | 29.4 | 27.1 | C/W | # Temperature and Voltage Derating Factors Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V) For IGLOO nano V2 or V5 Devices, 1.5 V DC Core Supply Voltage | Array Voltage | | Junction Temperature (°C) | | | | | | | | | | | | |---------------|-------|---------------------------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | VCC (V) | -40°C | –20°C | 0°C | 25°C | 70°C | 85°C | 100°C | | | | | | | | 1.425 | 0.947 | 0.956 | 0.965 | 0.978 | 1.000 | 1.009 | 1.013 | | | | | | | | 1.5 | 0.875 | 0.883 | 0.892 | 0.904 | 0.925 | 0.932 | 0.937 | | | | | | | | 1.575 | 0.821 | 0.829 | 0.837 | 0.848 | 0.868 | 0.875 | 0.879 | | | | | | | 2-6 Revision 19 Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | Γ | Device-Spe | cific Dyna | mic Powe | r (µW/MHz |) | | | | |-----------|--|------------------------------------|------------|------------|-------------|-----------|---------|--|--|--| | Parameter | Definition | Definition AGLN250 AGLN125 AGLN060 | | | | | AGLN010 | | | | | PAC1 | Clock contribution of a Global Rib | 2.829 | 2.875 | 1.728 | 0 | 0 | 0 | | | | | PAC2 | Clock contribution of a Global Spine | 1.731 | 1.265 | 1.268 | 2.562 | 2.562 | 1.685 | | | | | PAC3 | Clock contribution of a VersaTile row | 0.957 | 0.963 | 0.967 | 0.862 | 0.862 | 0.858 | | | | | PAC4 | Clock contribution of a VersaTile used as a sequential module | 0.098 | 0.098 | 0.094 | 0.094 | 0.091 | | | | | | PAC5 | First contribution of a VersaTile used as a sequential module | 0.045 | | | | | | | | | | PAC6 | Second contribution of a VersaTile used as a sequential module | | | 0.1 | 86 | | | | | | | PAC7 | Contribution of a VersaTile used as a combinatorial module | | | 0.1 | 11 | | | | | | | PAC8 | Average contribution of a routing net | | | 0.4 | 1 5 | | | | | | | PAC9 | Contribution of an I/O input pin (standard-dependent) | | See | Table 2-10 | 3 on page 2 | 2-9 | | | | | | PAC10 | Contribution of an I/O output pin (standard-dependent) | | See | Table 2-14 | 4 on page 2 | 2-9 | | | | | | PAC11 | Average contribution of a RAM block during a read operation | k 25.00 N/A | | | | | | | | | | PAC12 | Average contribution of a RAM block during a write operation | 30.00 N/A | | | | | | | | | | PAC13 | Dynamic contribution for PLL | | 2.10 | | | N/A | | | | | Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | | Device | -Specific S | tatic Powe | er (mW) | | | | | |-------------------|---|----------------------------|---------|-------------|-------------|---------|---------|--|--|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | | | | PDC1 | Array static power in Active mode | | Se | e Table 2-1 | 2 on page 2 | 2-8 | | | | | | PDC2 | Array static power in Static (Idle) mode | See Table 2-12 on page 2-8 | | | | | | | | | | PDC3 | Array static power in Flash*Freeze mode | See Table 2-9 on page 2-7 | | | | | | | | | | PDC4 ¹ | Static PLL contribution | | 0.90 | | | N/A | | | | | | PDC5 | Bank quiescent power
(VCCI-dependent) ² | See Table 2-12 on page 2-8 | | | | | | | | | #### Notes: - 1. Minimum contribution of the PLL when running at lowest frequency. - 2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC. # **Power Calculation Methodology** This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software. The power calculation methodology described below uses the following variables: - · The number of PLLs as well as the number and the frequency of each output clock generated - The number of combinatorial and sequential cells used in the design - · The internal clock frequencies - · The number and the standard of I/O pins used in the design - · The number of RAM blocks used in the design - Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14. - Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14. - Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design. # Methodology ## Total Power Consumption—P_{TOTAL} $$P_{TOTAL} = P_{STAT} + P_{DYN}$$ P_{STAT} is the total static power consumption. P_{DYN} is the total dynamic power consumption. ## Total Static Power Consumption—P_{STAT} P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5 N_{BANKS} is the number of I/O banks powered in the design. # Total Dynamic Power Consumption—P_{DYN} # Global Clock Contribution—P_{CLOCK} ``` P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL}* PAC4) * F_{CLK} ``` N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*. N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO nano FPGA Fabric User's Guide*. F_{CLK} is the global clock signal frequency. N_{S-CFLL} is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. # Sequential Cells Contribution—P_{S-CELL} ``` P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK} ``` N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14. F_{CLK} is the global clock signal frequency. 2-12 Revision 19 The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 8 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-31 • Duration of Short Circuit Event before Failure | Temperature | Time before Failure | |-------------|---------------------| | -40°C | > 20 years | | -20°C | > 20 years | | 0°C | > 20 years | | 25°C | > 20 years | | 70°C | 5 years | | 85°C | 2 years | | 100°C | 6 months | Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers | Input Buffer Configuration | Hysteresis Value (typ.) | |---|-------------------------| | 3.3 V LVTTL / LVCMOS (Schmitt trigger mode) | 240 mV | | 2.5 V LVCMOS (Schmitt trigger mode) | 140 mV | | 1.8 V LVCMOS (Schmitt trigger mode) | 80 mV | | 1.5 V LVCMOS (Schmitt trigger mode) | 60 mV | | 1.2 V LVCMOS (Schmitt trigger mode) | 40 mV | Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability | Input Buffer | Input Rise/Fall
Time (min.) | Input Rise/Fall Time (max.) | Reliability | |---|--------------------------------|---|------------------| | LVTTL/LVCMOS (Schmitt trigger disabled) | No requirement | 10 ns * | 20 years (100°C) | | LVTTL/LVCMOS (Schmitt trigger enabled) | No requirement | No requirement, but input noise voltage cannot exceed Schmitt hysteresis. | 20 years (100°C) | Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. IGLOO nano Low Power Flash FPGAs ### Applies to 1.2 V DC Core Voltage Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | #### Notes: Table 2-44 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{zh} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | #### Notes: - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. - 3. Software default selection highlighted in gray. ^{1.} The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ^{1.} The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ### 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 2.5 V applications. Table 2-45 • Minimum and Maximum DC Input and Output Levels | 2.5 V
LVCMOS | V | VIL VIH | | IH | VOL | VOH | VOH IOL IOH | | IOSL | IOSH | IIL ¹ | IIH ² | |-------------------|---------|---------|---------|---------|---------|---------|-------------|----|-----------------------|-----------------------|-------------------------|-------------------------| | Drive
Strength | Min., V | Max., V | Min., V | Max., V | Max., V | Min., V | mA | mA | Max., mA ³ | Max., mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 2 | 2 | 16 | 18 | 10 | 10 | | 4 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 4 | 4 | 16 | 18 | 10 | 10 | | 6 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 6 | 6 | 32 | 37 | 10 | 10 | | 8 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 8 | 8 | 32 | 37 | 10 | 10 | #### Notes: - 1. $I_{|L|}$ is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-8 • AC Loading Table 2-46 • 2.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 2.5 | 1.2 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. 2-32 Revision 19 #### **Timing Characteristics** ### Applies to 1.5 V DC Core Voltage Table 2-59 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 5.39 | 0.19 | 1.19 | 1.62 | 0.66 | 5.48 | 5.39 | 2.02 | 2.06 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-60 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.39 | 0.19 | 1.19 | 1.62 | 0.66 | 2.44 | 2.24 | 2.02 | 2.15 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ### Applies to 1.2 V DC Core Voltage Table 2-61 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_{.J} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 5.87 | 0.26 | 1.27 | 1.77 | 1.10 | 5.92 | 5.87 | 2.45 | 2.65 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-62 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 1.55 | 2.78 | 0.26 | 1.27 | 1.77 | 1.10 | 2.82 | 2.62 | 2.44 | 2.74 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-38 Revision 19 # **DDR Module Specifications** Note: DDR is not supported for AGLN010, AGLN015, and AGLN020 devices. # Input DDR Module Figure 2-17 • Input DDR Timing Model Table 2-78 • Parameter Definitions | Parameter Name | Parameter Definition | Measuring Nodes (from, to) | | | |---|------------------------------|----------------------------|--|--| | t _{DDRICLKQ1} | Clock-to-Out Out_QR | B, D | | | | t _{DDRICLKQ2} | Clock-to-Out Out_QF | B, E | | | | t _{DDRISUD} | Data Setup Time of DDR input | A, B | | | | t _{DDRIHD} Data Hold Time of DDR input | | A, B | | | | t _{DDRICLR2Q1} | Clear-to-Out Out_QR | C, D | | | | t _{DDRICLR2Q2} | Clear-to-Out Out_QF | C, E | | | | t _{DDRIREMCLR} Clear Removal | | C, B | | | | t _{DDRIRECCLR} Clear Recovery | | C, B | | | # 1.2 V DC Core Voltage Table 2-83 • Output DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------------|---|--------|-------| | t _{DDROCLKQ} | Clock-to-Out of DDR for Output DDR | 1.60 | ns | | t _{DDROSUD1} | Data_F Data Setup for Output DDR | 1.09 | ns | | t _{DDROSUD2} | Data_R Data Setup for Output DDR | 1.16 | ns | | t _{DDROHD1} | Data_F Data Hold for Output DDR | 0.00 | ns | | t _{DDROHD2} | Data_R Data Hold for Output DDR | 0.00 | ns | | t _{DDROCLR2Q} | Asynchronous Clear-to-Out for Output DDR | 1.99 | ns | | t _{DDROREMCLR} | Asynchronous Clear Removal Time for Output DDR | 0.00 | ns | | t _{DDRORECCLR} | Asynchronous Clear Recovery Time for Output DDR | 0.24 | ns | | t _{DDROWCLR1} | Asynchronous Clear Minimum Pulse Width for Output DDR | 0.19 | ns | | t _{DDROCKMPWH} | Clock Minimum Pulse Width HIGH for the Output DDR | 0.31 | ns | | t _{DDROCKMPWL} | Clock Minimum Pulse Width LOW for the Output DDR | 0.28 | ns | | F _{DDOMAX} | Maximum Frequency for the Output DDR | 160.00 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-56 Revision 19 # **Global Resource Characteristics** # **AGLN125 Clock Tree Topology** Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device. It is used to drive all D-flip-flops in the device. Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing ### 1.2 V DC Core Voltage Table 2-94 • AGLN010 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | | | Std. | | | |----------------------|---|-------------------|-------------------|-------|--| | Parameter | Description | Min. ¹ | Max. ² | Units | | | t _{RCKL} | Input Low Delay for Global Clock | 1.71 | 2.09 | ns | | | t _{RCKH} | Input High Delay for Global Clock | 1.78 | 2.31 | ns | | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.53 | ns | | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-95 • AGLN015 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | | | S | | | |----------------------|---|--|-------------------|-------------------|-------| | Parameter | Description | | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | | 1.81 | 2.26 | ns | | t _{RCKH} | Input High Delay for Global Clock | | 1.90 | 2.51 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.61 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Figure 2-30 • RAM Write, Output Retained (WMODE = 0). Applicable to Both RAM4K9 and RAM512x18. Figure 2-31 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only. Figure 2-38 • FIFO FULL Flag and AFULL Flag Assertion Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Deassertion Figure 2-40 • FIFO FULL Flag and AFULL Flag Deassertion 2-84 Revision 19 # 3 - Pin Descriptions # **Supply Pins** #### GND Ground Ground supply voltage to the core, I/O outputs, and I/O logic. ## GNDQ Ground (quiet) Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board. ### VCC Core Supply Voltage Supply voltage to the FPGA core, nominally 1.5 V for IGLOO nano V5 devices, and 1.2 V or 1.5 V for IGLOO nano V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device. ### VCCIBx I/O Supply Voltage Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND. ## VMVx I/O Supply Voltage (quiet) Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.). ### VCCPLA/B/C/D/E/F PLL Supply Voltage Supply voltage to analog PLL, nominally 1.5 V or 1.2 V. When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter in the *IGLOO nano FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground. There is one VCCPLF pin on IGLOO nano devices. #### VCOMPLA/B/C/D/E/F PLL Ground Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. There is one VCOMPLF pin on IGLOO nano devices. #### VJTAG JTAG Supply Voltage Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG Package Pin Assignments | | CS81 | |------------|-------------------| | Pin Number | AGLN250Z Function | | A1 | GAA0/IO00RSB0 | | A2 | GAA1/IO01RSB0 | | A3 | GAC0/IO04RSB0 | | A4 | IO07RSB0 | | A5 | IO09RSB0 | | A6 | IO12RSB0 | | A7 | GBB0/IO16RSB0 | | A8 | GBA1/IO19RSB0 | | A9 | GBA2/IO20RSB1 | | B1 | GAA2/IO67RSB3 | | B2 | GAB0/IO02RSB0 | | В3 | GAC1/IO05RSB0 | | B4 | IO06RSB0 | | B5 | IO10RSB0 | | B6 | GBC0/IO14RSB0 | | B7 | GBB1/IO17RSB0 | | B8 | IO21RSB1 | | В9 | GBB2/IO22RSB1 | | C1 | GAB2/IO65RSB3 | | C2 | IO66RSB3 | | C3 | GND | | C4 | IO08RSB0 | | C5 | IO11RSB0 | | C6 | GND | | C7 | GBA0/IO18RSB0 | | C8 | GBC2/IO23RSB1 | | C9 | IO24RSB1 | | D1 | GAC2/IO63RSB3 | | D2 | IO64RSB3 | | D3 | GFA2/IO56RSB3 | | D4 | VCC | | D5 | VCCIB0 | | D6 | GND | | D7 | IO30RSB1 | | D8 | GCC1/IO25RSB1 | | D9 | GCC0/IO26RSB1 | | | CS81 | |------------|-------------------| | Pin Number | AGLN250Z Function | | E1 | GFB0/IO59RSB3 | | E2 | GFB1/IO60RSB3 | | E3 | GFA1/IO58RSB3 | | E4 | VCCIB3 | | E5 | VCC | | E6 | VCCIB1 | | E7 | GCA0/IO28RSB1 | | E8 | GCA1/IO27RSB1 | | E9 | GCB2/IO29RSB1 | | F1* | VCCPLF | | F2* | VCOMPLF | | F3 | GND | | F4 | GND | | F5 | VCCIB2 | | F6 | GND | | F7 | GDA1/IO33RSB1 | | F8 | GDC1/IO31RSB1 | | F9 | GDC0/IO32RSB1 | | G1 | GEA0/IO51RSB3 | | G2 | GEC1/IO54RSB3 | | G3 | GEC0/IO53RSB3 | | G4 | IO45RSB2 | | G5 | IO42RSB2 | | G6 | IO37RSB2 | | G7 | GDB2/IO35RSB2 | | G8 | VJTAG | | G9 | TRST | | H1 | GEA1/IO52RSB3 | | H2 | FF/GEB2/IO49RSB2 | | Н3 | IO47RSB2 | | H4 | IO44RSB2 | | H5 | IO41RSB2 | | H6 | IO39RSB2 | | H7 | GDA2/IO34RSB2 | | H8 | TDI | | H9 | TDO | | | CS81 | |------------|-------------------| | Pin Number | AGLN250Z Function | | J1 | GEA2/IO50RSB2 | | J2 | GEC2/IO48RSB2 | | J3 | IO46RSB2 | | J4 | IO43RSB2 | | J5 | IO40RSB2 | | J6 | IO38RSB2 | | J7 | TCK | | J8 | TMS | | J9 | VPUMP | Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250Z-CS81. 4-14 Revision 19 Package Pin Assignments | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN250 Function | | | 1 | GND | | | 2 | GAA2/IO67RSB3 | | | 3 | IO66RSB3 | | | 4 | GAB2/IO65RSB3 | | | 5 | IO64RSB3 | | | 6 | GAC2/IO63RSB3 | | | 7 | IO62RSB3 | | | 8 | IO61RSB3 | | | 9 | GND | | | 10 | GFB1/IO60RSB3 | | | 11 | GFB0/IO59RSB3 | | | 12 | VCOMPLF | | | 13 | GFA0/IO57RSB3 | | | 14 | VCCPLF | | | 15 | GFA1/IO58RSB3 | | | 16 | GFA2/IO56RSB3 | | | 17 | VCC | | | 18 | VCCIB3 | | | 19 | GFC2/IO55RSB3 | | | 20 | GEC1/IO54RSB3 | | | 21 | GEC0/IO53RSB3 | | | 22 | GEA1/IO52RSB3 | | | 23 | GEA0/IO51RSB3 | | | 24 | VMV3 | | | 25 | GNDQ | | | 26 | GEA2/IO50RSB2 | | | 27 | FF/GEB2/IO49RSB2 | | | 28 | GEC2/IO48RSB2 | | | 29 | IO47RSB2 | | | 30 | IO46RSB2 | | | 31 | IO45RSB2 | | | 32 | IO44RSB2 | | | 33 | IO43RSB2 | | | 34 | IO42RSB2 | | | 35 | IO41RSB2 | | | 36 | IO40RSB2 | | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN250 Function | | | 37 | VCC | | | 38 | GND | | | 39 | VCCIB2 | | | 40 | IO39RSB2 | | | 41 | IO38RSB2 | | | 42 | IO37RSB2 | | | 43 | GDC2/IO36RSB2 | | | 44 | GDB2/IO35RSB2 | | | 45 | GDA2/IO34RSB2 | | | 46 | GNDQ | | | 47 | TCK | | | 48 | TDI | | | 49 | TMS | | | 50 | VMV2 | | | 51 | GND | | | 52 | VPUMP | | | 53 | NC | | | 54 | TDO | | | 55 | TRST | | | 56 | VJTAG | | | 57 | GDA1/IO33RSB1 | | | 58 | GDC0/IO32RSB1 | | | 59 | GDC1/IO31RSB1 | | | 60 | IO30RSB1 | | | 61 | GCB2/IO29RSB1 | | | 62 | GCA1/IO27RSB1 | | | 63 | GCA0/IO28RSB1 | | | 64 | GCC0/IO26RSB1 | | | 65 | GCC1/IO25RSB1 | | | 66 | VCCIB1 | | | 67 | GND | | | 68 | VCC | | | 69 | IO24RSB1 | | | 70 | GBC2/IO23RSB1 | | | 71 | GBB2/IO22RSB1 | | | 72 | IO21RSB1 | | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN250 Function | | | 73 | GBA2/IO20RSB1 | | | 74 | VMV1 | | | 75 | GNDQ | | | 76 | GBA1/IO19RSB0 | | | 77 | GBA0/IO18RSB0 | | | 78 | GBB1/IO17RSB0 | | | 79 | GBB0/IO16RSB0 | | | 80 | GBC1/IO15RSB0 | | | 81 | GBC0/IO14RSB0 | | | 82 | IO13RSB0 | | | 83 | IO12RSB0 | | | 84 | IO11RSB0 | | | 85 | IO10RSB0 | | | 86 | IO09RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO08RSB0 | | | 91 | IO07RSB0 | | | 92 | IO06RSB0 | | | 93 | GAC1/IO05RSB0 | | | 94 | GAC0/IO04RSB0 | | | 95 | GAB1/IO03RSB0 | | | 96 | GAB0/IO02RSB0 | | | 97 | GAA1/IO01RSB0 | | | 98 | GAA0/IO00RSB0 | | | 99 | GNDQ | | | 100 | VMV0 | | 4-28 Revision 19 # IGLOO nano Low Power Flash FPGAs | Revision / Version | Changes | Page | |---------------------------|---|------------| | Revision 1 (cont'd) | The "QN48" pin diagram was revised. | 4-16 | | Packaging Advance
v0.2 | Note 2 for the "QN48", "QN68", and "100-Pin QFN" pin diagrams was changed to "The die attach paddle of the package is tied to ground (GND)." | 4-16, 4-19 | | | The "VQ100" pin diagram was revised to move the pin IDs to the upper left corner instead of the upper right corner. | 4-23 | | | The following tables and sections were updated to add the UC81 and CS81 packages for AGL030: "IGLOO nano Devices" "I/Os Per Package" "IGLOO nano Products Available in the Z Feature Grade" "Temperature Grade Offerings" | N/A | | | The "I/Os Per Package" table was updated to add the following information to table note 4: "For nano devices, the VQ100 package is offered in both leaded and RoHS-compliant versions. All other packages are RoHS-compliant only." | II | | | The "IGLOO nano Products Available in the Z Feature Grade" section was updated to remove QN100 for AGLN250. | VI | | | The device architecture figures, Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks (AGLN060, AGLN125) through Figure 1-4 • IGLOO Device Architecture Overview with Four I/O Banks (AGLN250), were revised. Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks and No RAM (AGLN010 and AGLN030) is new. | 1-5 | | | The "PLL and CCC" section was revised to include information about CCC-GLs in AGLN020 and smaller devices. | 1-7 | | | The "I/Os with Advanced I/O Standards" section was revised to add information about IGLOO nano devices supporting double-data-rate applications. | 1-8 |