Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 1536 | | Total RAM Bits | 18432 | | Number of I/O | 71 | | Number of Gates | 60000 | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agln060v5-zvq100i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Device Marking** Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples. Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered. Figure 1 • Example of Device Marking for Small Form Factor Packages Revision 19 V ## IGLOO nano Products Available in the Z Feature Grade | IGLOO nano-Z Devices | AGLN030Z* | AGLN060Z* | AGLN125Z* | AGLN250Z* | |----------------------|-----------|-----------|-----------|-----------| | | QN48 | - | - | _ | | | QN68 | ı | - | _ | | | UC81 | - | - | - | | | CS81 | CS81 | CS81 | CS81 | | Packages | VQ100 | VQ100 | VQ100 | VQ100 | Note: *Not recommended for new designs. # **Temperature Grade Offerings** | | AGLN010 | AGLN015 [*] | AGLN020 | | | AGLN125 | AGLN250 | |---------|---------|----------------------|---------|-----------|-----------|-----------|-----------------------| | Package | | | | AGLN030Z* | AGLN060Z* | AGLN125Z* | AGLN250Z [*] | | UC36 | C, I | - | _ | _ | - | - | - | | QN48 | C, I | - | - | C, I | | | - | | QN68 | - | C, I | C, I | C, I | - | - | - | | UC81 | _ | - | C, I | C, I | - | _ | - | | CS81 | _ | - | C, I | | VQ100 | _ | - | - | C, I | C, I | C, I | C, I | Note: * Not recommended for new designs. C = Enhanced Commercial temperature range: -20°C to +85°C junction temperature I = Industrial temperature range: -40°C to +100°C junction temperature Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx. VI Revision 19 IGLOO nano DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions 1 | Symbol | P | arameter | Extended
Commercial | Industrial | Units | |---|---|---|-------------------------|--------------------------|-------| | TJ | Junction temperature | | $-20 \text{ to} + 85^2$ | -40 to +100 ² | °C | | VCC | 1.5 V DC core supply vo | oltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.2 V–1.5 V wide range | core voltage ^{4,5} | 1.14 to 1.575 | 1.14 to 1.575 | V | | VJTAG | JTAG DC voltage | | 1.4 to 3.6 | 1.4 to 3.6 | V | | VPUMP ⁶ Programming voltage | | Programming mode | 3.15 to 3.45 | 3.15 to 3.45 | V | | | Operation | 0 to 3.6 | 0 to 3.6 | V | | | VCCPLL ⁷ Analog power supply | 1.5 V DC core supply voltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | | (PLL) | 1.2 V–1.5 V wide range core supply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | VCCI and | 1.2 V DC supply voltage | . 4 | 1.14 to 1.26 | 1.14 to 1.26 | V | | VMV ^{8,9} | 1.2 V DC wide range su | pply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | | 1.5 V DC supply voltage | ; | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.8 V DC supply voltage | | 1.7 to 1.9 | 1.7 to 1.9 | V | | | 2.5 V DC supply voltage | | 2.3 to 2.7 | 2.3 to 2.7 | V | | | 3.3 V DC supply voltage | : | 3.0 to 3.6 | 3.0 to 3.6 | V | | | 3.3 V DC wide range su | pply voltage ¹⁰ | 2.7 to 3.6 | 2.7 to 3.6 | V | #### Notes: - 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. - 2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help. - 3. For IGLOO® nano V5 devices - 4. For IGLOO nano V2 devices only, operating at VCCI ≥ VCC - 5. IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to do in-system programming using 1.2 V, please contact the factory. - 6. V_{PUMP} can be left floating during operation (not programming mode). - 7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information. - 8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano FPGA Fabric User's Guide for further information. - 9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank. - 10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹ | Product
Grade | | Program Retention (biased/unbiased) | Maximum Storage
Temperature T _{STG} (°C) ² | Maximum Operating Junction
Temperature T _J (°C) ² | |------------------|-----|-------------------------------------|---|--| | Commercial | 500 | 20 years | 110 | 100 | | Industrial | 500 | 20 years | 110 | 100 | ### Notes: - 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. - These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits. 2-2 Revision 19 Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | [| Device-Spe | cific Dyna | mic Power | r (µW/MHz) |) | | |-----------|--|---------------------------|------------|------------|-------------|------------|---------|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | | PAC1 | Clock contribution of a Global Rib | 2.829 | 2.875 | 1.728 | 0 | 0 | 0 | | | PAC2 | Clock contribution of a Global Spine | 1.731 | 1.265 | 1.268 | 2.562 | 2.562 | 1.685 | | | PAC3 | Clock contribution of a VersaTile row | 0.957 | 0.963 | 0.967 | 0.862 | 0.862 | 0.858 | | | PAC4 | Clock contribution of a VersaTile used as a sequential module | d 0.098 0.098 0.094 0.094 | | | | | 0.091 | | | PAC5 | First contribution of a VersaTile used as a sequential module | 0.045 | | | | | | | | PAC6 | Second contribution of a VersaTile used as a sequential module | 0.186 | | | | | | | | PAC7 | Contribution of a VersaTile used as a combinatorial module | | | 0.1 | 11 | | | | | PAC8 | Average contribution of a routing net | | | 0.4 | 1 5 | | | | | PAC9 | Contribution of an I/O input pin (standard-dependent) | | See | Table 2-10 | 3 on page 2 | 2-9 | | | | PAC10 | Contribution of an I/O output pin (standard-dependent) | | See | Table 2-14 | 4 on page 2 | 2-9 | | | | PAC11 | Average contribution of a RAM block during a read operation | 25.00 | | | | N/A | | | | PAC12 | Average contribution of a RAM block during a write operation | k 30.00 N/A | | | | | | | | PAC13 | Dynamic contribution for PLL | | 2.10 | | | N/A | | | Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | | Device | -Specific S | tatic Powe | er (mW) | | | | |-------------------|---|---------------------------|----------------------------|-------------|-------------|---------|---------|--|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | | | PDC1 | Array static power in Active mode | | Se | e Table 2-1 | 2 on page 2 | 2-8 | | | | | PDC2 | Array static power in Static (Idle) mode | | See Table 2-12 on page 2-8 | | | | | | | | PDC3 | Array static power in Flash*Freeze mode | See Table 2-9 on page 2-7 | | | | | | | | | PDC4 ¹ | Static PLL contribution | 0.90 N/A | | | | | | | | | PDC5 | Bank quiescent power
(VCCI-dependent) ² | | Se | e Table 2-1 | 2 on page 2 | 2-8 | | | | #### Notes: - 1. Minimum contribution of the PLL when running at lowest frequency. - 2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC. #### Applies to 1.2 V DC Core Voltage Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | #### Notes: Table 2-44 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | #### Notes: - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. - 3. Software default selection highlighted in gray. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ^{1.} The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. # I/O Register Specifications # Fully Registered I/O Buffers with Asynchronous Preset Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset ## Input Register Figure 2-14 • Input Register Timing Diagram ### **Timing Characteristics** 1.5 V DC Core Voltage Table 2-72 • Input Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |----------------------|---|------|-------| | t _{ICLKQ} | Clock-to-Q of the Input Data Register | 0.42 | ns | | t _{ISUD} | Data Setup Time for the Input Data Register | 0.47 | ns | | t _{IHD} | Data Hold Time for the Input Data Register | 0.00 | ns | | t _{ICLR2Q} | Asynchronous Clear-to-Q of the Input Data Register | 0.79 | ns | | t _{IPRE2Q} | Asynchronous Preset-to-Q of the Input Data Register | 0.79 | ns | | t _{IREMCLR} | Asynchronous Clear Removal Time for the Input Data Register | 0.00 | ns | | t _{IRECCLR} | Asynchronous Clear Recovery Time for the Input Data Register | 0.24 | ns | | t _{IREMPRE} | Asynchronous Preset Removal Time for the Input Data Register | 0.00 | ns | | t _{IRECPRE} | Asynchronous Preset Recovery Time for the Input Data Register | 0.24 | ns | | t _{IWCLR} | Asynchronous Clear Minimum Pulse Width for the Input Data Register | 0.19 | ns | | t _{IWPRE} | Asynchronous Preset Minimum Pulse Width for the Input Data Register | 0.19 | ns | | t _{ICKMPWH} | Clock Minimum Pulse Width HIGH for the Input Data Register | 0.31 | ns | | t _{ICKMPWL} | Clock Minimum Pulse Width LOW for the Input Data Register | 0.28 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-90 • AGLN020 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.425 V | | | S | td. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.21 | 1.55 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.23 | 1.65 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.42 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-91 • AGLN060 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | St | td. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.32 | 1.62 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.34 | 1.71 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.38 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-98 • AGLN125 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | Std. | | itd. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 2.08 | 2.54 | ns | | t _{RCKH} | Input High Delay for Global Clock | 2.15 | 2.77 | ns | | t _{RCKMPWH} | Minimum Pulse Width HIGH for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width LOW for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.62 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-99 • AGLN250 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | | | S | Std. | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 2.11 | 2.57 | ns | | t _{RCKH} | Input High Delay for Global Clock | 2.19 | 2.81 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.62 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Figure 2-32 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18. 2-76 Revision 19 # **Embedded FlashROM Characteristics** Figure 2-41 • Timing Diagram ## **Timing Characteristics** 1.5 V DC Core Voltage Table 2-108 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{su} | Address Setup Time | 0.57 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 20.90 | ns | | F _{MAX} | Maximum Clock Frequency | 15 | MHz | ### 1.2 V DC Core Voltage Table 2-109 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{SU} | Address Setup Time | 0.59 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 35.74 | ns | | F _{MAX} | Maximum Clock Frequency | 10 | MHz | should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered. Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required. Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO nano devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO nano devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the IGLOO nano FPGA Fabric User's Guide for more information on I/O states during Flash*Freeze mode. Table 3-1 • Flash*Freeze Pin Locations for IGLOO nano Devices | Package | Flash*Freeze Pin | |-----------|------------------| | CS81/UC81 | H2 | | QN48 | 14 | | QN68 | 18 | | VQ100 | 27 | | UC36 | E2 | ### **JTAG Pins** Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. #### TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information. Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins | VJTAG | Tie-Off Resistance ^{1,2} | |----------------|-----------------------------------| | VJTAG at 3.3 V | 200 Ω to 1 kΩ | | VJTAG at 2.5 V | 200 Ω to 1 kΩ | | VJTAG at 1.8 V | 500 Ω to 1 kΩ | | VJTAG at 1.5 V | 500 Ω to 1 kΩ | #### Notes: - 1. The TCK pin can be pulled-up or pulled-down. - 2. The TRST pin is pulled-down. - 3. Equivalent parallel resistance if more than one device is on the JTAG chain ### Package Pin Assignments | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | A1 | IO64RSB2 | | | A2 | IO54RSB2 | | | A3 | IO57RSB2 | | | A4 | IO36RSB1 | | | A5 | IO32RSB1 | | | A6 | IO24RSB1 | | | A7 | IO20RSB1 | | | A8 | IO04RSB0 | | | A9 | IO08RSB0 | | | B1 | IO59RSB2 | | | B2 | IO55RSB2 | | | В3 | IO62RSB2 | | | B4 | IO34RSB1 | | | B5 | IO28RSB1 | | | В6 | IO22RSB1 | | | В7 | IO18RSB1 | | | B8 | IO00RSB0 | | | В9 | IO03RSB0 | | | C1 | IO51RSB2 | | | C2 | IO50RSB2 | | | C3 | NC | | | C4 | NC | | | C5 | NC | | | C6 | NC | | | C7 | NC | | | C8 | IO10RSB0 | | | C9 | IO07RSB0 | | | D1 | IO49RSB2 | | | D2 | IO44RSB2 | | | D3 | NC | | | D4 | VCC | | | D5 | VCCIB2 | | | D6 | GND | | | D7 | NC | | | D8 | IO13RSB0 | | | D9 | IO12RSB0 | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | E1 | GEC0/IO48RSB2 | | | E2 | GEA0/IO47RSB2 | | | E3 | NC | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | NC | | | E8 | GDA0/IO15RSB0 | | | E9 | GDC0/IO14RSB0 | | | F1 | IO46RSB2 | | | F2 | IO45RSB2 | | | F3 | NC | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | NC | | | F7 | NC | | | F8 | IO16RSB0 | | | F9 | IO17RSB0 | | | G1 | IO43RSB2 | | | G2 | IO42RSB2 | | | G3 | IO41RSB2 | | | G4 | IO31RSB1 | | | G5 | NC | | | G6 | IO21RSB1 | | | G7 | NC | | | G8 | VJTAG | | | G9 | TRST | | | H1 | IO40RSB2 | | | H2 | FF/IO39RSB1 | | | H3 | IO35RSB1 | | | H4 | IO29RSB1 | | | H5 | IO26RSB1 | | | H6 | IO25RSB1 | | | H7 | IO19RSB1 | | | H8 | TDI | | | H9 | TDO | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | J1 | IO38RSB1 | | | J2 | IO37RSB1 | | | J3 | IO33RSB1 | | | J4 | IO30RSB1 | | | J5 | IO27RSB1 | | | J6 | IO23RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | 4-4 Revision 19 | VQ100 | | | |------------|----------------------|--| | Pin Number | AGLN030Z
Function | | | 1 | GND | | | 2 | IO82RSB1 | | | 3 | IO81RSB1 | | | 4 | IO80RSB1 | | | 5 | IO79RSB1 | | | 6 | IO78RSB1 | | | 7 | IO77RSB1 | | | 8 | IO76RSB1 | | | 9 | GND | | | 10 | IO75RSB1 | | | 11 | IO74RSB1 | | | 12 | GEC0/IO73RSB1 | | | 13 | GEA0/IO72RSB1 | | | 14 | GEB0/IO71RSB1 | | | 15 | IO70RSB1 | | | 16 | IO69RSB1 | | | 17 | VCC | | | 18 | VCCIB1 | | | 19 | IO68RSB1 | | | 20 | IO67RSB1 | | | 21 | IO66RSB1 | | | 22 | IO65RSB1 | | | 23 | IO64RSB1 | | | 24 | IO63RSB1 | | | 25 | IO62RSB1 | | | 26 | IO61RSB1 | | | 27 | FF/IO60RSB1 | | | 28 | IO59RSB1 | | | 29 | IO58RSB1 | | | 30 | IO57RSB1 | | | 31 | IO56RSB1 | | | 32 | IO55RSB1 | | | 33 | IO54RSB1 | | | 34 | IO53RSB1 | | | 35 | IO52RSB1 | | | VQ100 | | | |------------|----------------------|--| | Pin Number | AGLN030Z
Function | | | 36 | IO51RSB1 | | | 37 | VCC | | | 38 | GND | | | 39 | VCCIB1 | | | 40 | IO49RSB1 | | | 41 | IO47RSB1 | | | 42 | IO46RSB1 | | | 43 | IO45RSB1 | | | 44 | IO44RSB1 | | | 45 | IO43RSB1 | | | 46 | IO42RSB1 | | | 47 | TCK | | | 48 | TDI | | | 49 | TMS | | | 50 | NC | | | 51 | GND | | | 52 | VPUMP | | | 53 | NC | | | 54 | TDO | | | 55 | TRST | | | 56 | VJTAG | | | 57 | IO41RSB0 | | | 58 | IO40RSB0 | | | 59 | IO39RSB0 | | | 60 | IO38RSB0 | | | 61 | IO37RSB0 | | | 62 | IO36RSB0 | | | 63 | GDB0/IO34RSB0 | | | 64 | GDA0/IO33RSB0 | | | 65 | GDC0/IO32RSB0 | | | 66 | VCCIB0 | | | 67 | GND | | | 68 | VCC | | | 69 | IO31RSB0 | | | 70 | IO30RSB0 | | | | | | | VQ100 | | | |------------|----------------------|--| | Pin Number | AGLN030Z
Function | | | 71 | IO29RSB0 | | | 72 | IO28RSB0 | | | 73 | IO27RSB0 | | | 74 | IO26RSB0 | | | 75 | IO25RSB0 | | | 76 | IO24RSB0 | | | 77 | IO23RSB0 | | | 78 | IO22RSB0 | | | 79 | IO21RSB0 | | | 80 | IO20RSB0 | | | 81 | IO19RSB0 | | | 82 | IO18RSB0 | | | 83 | IO17RSB0 | | | 84 | IO16RSB0 | | | 85 | IO15RSB0 | | | 86 | IO14RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO12RSB0 | | | 91 | IO10RSB0 | | | 92 | IO08RSB0 | | | 93 | IO07RSB0 | | | 94 | IO06RSB0 | | | 95 | IO05RSB0 | | | 96 | IO04RSB0 | | | 97 | IO03RSB0 | | | 98 | IO02RSB0 | | | 99 | IO01RSB0 | | | 100 | IO00RSB0 | | Package Pin Assignments | VQ100 | | VQ100 | | |------------|------------------|------------|------------------| | Pin Number | AGLN060 Function | Pin Number | AGLN060 Function | | 1 | GND | 36 | IO61RSB1 | | 2 | GAA2/IO51RSB1 | 37 | VCC | | 3 | IO52RSB1 | 38 | GND | | 4 | GAB2/IO53RSB1 | 39 | VCCIB1 | | 5 | IO95RSB1 | 40 | IO60RSB1 | | 6 | GAC2/IO94RSB1 | 41 | IO59RSB1 | | 7 | IO93RSB1 | 42 | IO58RSB1 | | 8 | IO92RSB1 | 43 | IO57RSB1 | | 9 | GND | 44 | GDC2/IO56RSB1 | | 10 | GFB1/IO87RSB1 | 45* | GDB2/IO55RSB1 | | 11 | GFB0/IO86RSB1 | 46 | GDA2/IO54RSB1 | | 12 | VCOMPLF | 47 | TCK | | 13 | GFA0/IO85RSB1 | 48 | TDI | | 14 | VCCPLF | 49 | TMS | | 15 | GFA1/IO84RSB1 | 50 | VMV1 | | 16 | GFA2/IO83RSB1 | 51 | GND | | 17 | VCC | 52 | VPUMP | | 18 | VCCIB1 | 53 | NC | | 19 | GEC1/IO77RSB1 | 54 | TDO | | 20 | GEB1/IO75RSB1 | 55 | TRST | | 21 | GEB0/IO74RSB1 | 56 | VJTAG | | 22 | GEA1/IO73RSB1 | 57 | GDA1/IO49RSB0 | | 23 | GEA0/IO72RSB1 | 58 | GDC0/IO46RSB0 | | 24 | VMV1 | 59 | GDC1/IO45RSB0 | | 25 | GNDQ | 60 | GCC2/IO43RSB0 | | 26 | GEA2/IO71RSB1 | 61 | GCB2/IO42RSB0 | | 27 | FF/GEB2/IO70RSB1 | 62 | GCA0/IO40RSB0 | | 28 | GEC2/IO69RSB1 | 63 | GCA1/IO39RSB0 | | 29 | IO68RSB1 | 64 | GCC0/IO36RSB0 | | 30 | IO67RSB1 | 65 | GCC1/IO35RSB0 | | 31 | IO66RSB1 | 66 | VCCIB0 | | 32 | IO65RSB1 | 67 | GND | | 33 | IO64RSB1 | 68 | VCC | | 34 | IO63RSB1 | 69 | IO31RSB0 | | 35 | IO62RSB1 | 70 | GBC2/IO29RSB0 | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN060 Function | | | 71 | GBB2/IO27RSB0 | | | 72 | IO26RSB0 | | | 73 | GBA2/IO25RSB0 | | | 74 | VMV0 | | | 75 | GNDQ | | | 76 | GBA1/IO24RSB0 | | | 77 | GBA0/IO23RSB0 | | | 78 | GBB1/IO22RSB0 | | | 79 | GBB0/IO21RSB0 | | | 80 | GBC1/IO20RSB0 | | | 81 | GBC0/IO19RSB0 | | | 82 | IO18RSB0 | | | 83 | IO17RSB0 | | | 84 | IO15RSB0 | | | 85 | IO13RSB0 | | | 86 | IO11RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO10RSB0 | | | 91 | IO09RSB0 | | | 92 | IO08RSB0 | | | 93 | GAC1/IO07RSB0 | | | 94 | GAC0/IO06RSB0 | | | 95 | GAB1/IO05RSB0 | | | 96 | GAB0/IO04RSB0 | | | 97 | GAA1/IO03RSB0 | | | 98 | GAA0/IO02RSB0 | | | 99 | IO01RSB0 | | | 100 | IO00RSB0 | | Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-VQ100. 4-24 Revision 19 Package Pin Assignments | VQ100 | | | |------------|-------------------|--| | Pin Number | AGLN125 Function | | | 1 | GND | | | 2 | GAA2/IO67RSB1 | | | 3 | IO68RSB1 | | | 4 | GAB2/IO69RSB1 | | | 5 | IO132RSB1 | | | 6 | GAC2/IO131RSB1 | | | 7 | IO130RSB1 | | | 8 | IO129RSB1 | | | 9 | GND | | | 10 | GFB1/IO124RSB1 | | | 11 | GFB0/IO123RSB1 | | | 12 | VCOMPLF | | | 13 | GFA0/IO122RSB1 | | | 14 | VCCPLF | | | 15 | GFA1/IO121RSB1 | | | 16 | GFA2/IO120RSB1 | | | 17 | VCC | | | 18 | VCCIB1 | | | 19 | GEC0/IO111RSB1 | | | 20 | GEB1/IO110RSB1 | | | 21 | GEB0/IO109RSB1 | | | 22 | GEA1/IO108RSB1 | | | 23 | GEA0/IO107RSB1 | | | 24 | VMV1 | | | 25 | GNDQ | | | 26 | GEA2/IO106RSB1 | | | 27 | FF/GEB2/IO105RSB1 | | | 28 | GEC2/IO104RSB1 | | | 29 | IO102RSB1 | | | 30 | IO100RSB1 | | | 31 | IO99RSB1 | | | 32 | IO97RSB1 | | | 33 | IO96RSB1 | | | 34 | IO95RSB1 | | | 35 | IO94RSB1 | | | 36 | IO93RSB1 | | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN125 Function | | | 37 | VCC | | | 38 | GND | | | 39 | VCCIB1 | | | 40 | IO87RSB1 | | | 41 | IO84RSB1 | | | 42 | IO81RSB1 | | | 43 | IO75RSB1 | | | 44 | GDC2/IO72RSB1 | | | 45 | GDB2/IO71RSB1 | | | 46 | GDA2/IO70RSB1 | | | 47 | TCK | | | 48 | TDI | | | 49 | TMS | | | 50 | VMV1 | | | 51 | GND | | | 52 | VPUMP | | | 53 | NC | | | 54 | TDO | | | 55 | TRST | | | 56 | VJTAG | | | 57 | GDA1/IO65RSB0 | | | 58 | GDC0/IO62RSB0 | | | 59 | GDC1/IO61RSB0 | | | 60 | GCC2/IO59RSB0 | | | 61 | GCB2/IO58RSB0 | | | 62 | GCA0/IO56RSB0 | | | 63 | GCA1/IO55RSB0 | | | 64 | GCC0/IO52RSB0 | | | 65 | GCC1/IO51RSB0 | | | 66 | VCCIB0 | | | 67 | GND | | | 68 | VCC | | | 69 | IO47RSB0 | | | 70 | GBC2/IO45RSB0 | | | 71 | GBB2/IO43RSB0 | | | 72 | IO42RSB0 | | | | | | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN125 Function | | | 73 | GBA2/IO41RSB0 | | | 74 | VMV0 | | | 75 | GNDQ | | | 76 | GBA1/IO40RSB0 | | | 77 | GBA0/IO39RSB0 | | | 78 | GBB1/IO38RSB0 | | | 79 | GBB0/IO37RSB0 | | | 80 | GBC1/IO36RSB0 | | | 81 | GBC0/IO35RSB0 | | | 82 | IO32RSB0 | | | 83 | IO28RSB0 | | | 84 | IO25RSB0 | | | 85 | IO22RSB0 | | | 86 | IO19RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO15RSB0 | | | 91 | IO13RSB0 | | | 92 | IO11RSB0 | | | 93 | IO09RSB0 | | | 94 | IO07RSB0 | | | 95 | GAC1/IO05RSB0 | | | 96 | GAC0/IO04RSB0 | | | 97 | GAB1/IO03RSB0 | | | 98 | GAB0/IO02RSB0 | | | 99 | GAA1/IO01RSB0 | | | 100 | GAA0/IO00RSB0 | | 4-26 Revision 19 | Revision | Changes | Page | |---------------------------|---|-------------| | Revision 11
(Jul 2010) | The status of the AGLN060 device has changed from Advance to Production. | III | | | The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for 1.5 V core supply voltage (SAR 26404). | 2-10 | | | The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for 1.2 V core supply voltage (SAR 26404). | 2-11 | | July 2010 | The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO nano Device Status" table on page III indicates the status for each device in the device family. | N/A | | Revision 10
(Apr 2010) | References to differential inputs were removed from the datasheet, since IGLOO nano devices do not support differential inputs (SAR 21449). | N/A | | | A parenthetical note, "hold previous I/O state in Flash*Freeze mode," was added to each occurrence of bus hold in the datasheet (SAR 24079). | N/A | | | The "In-System Programming (ISP) and Security" section was revised to add 1.2 V programming. | I | | | The note connected with the "IGLOO nano Ordering Information" table was revised to clarify features not available for Z feature grade devices. | IV | | | The "IGLOO nano Device Status" table is new. | III | | | The definition of C in the "Temperature Grade Offerings" table was changed to "extended commercial temperature range". | VI | | | 1.2 V wide range was added to the list of voltage ranges in the "I/Os with Advanced I/O Standards" section. | 1-8 | | | A note was added to Table 2-2 • Recommended Operating Conditions ¹ regarding switching from 1.2 V to 1.5 V core voltage for in-system programming. The VJTAG voltage was changed from "1.425 to 3.6" to "1.4 to 3.6" (SAR 24052). The note regarding voltage for programming V2 and V5 devices was revised (SAR 25213). The maximum value for VPUMP programming voltage (operation mode) was changed from 3.45 V to 3.6 V (SAR 25220). | 2-2 | | | Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC = 1.14 V) were updated. Table 2-8 • Power Supply State per Mode is new. | 2-6,
2-7 | | | The tables in the "Quiescent Supply Current" section were updated (SAR 24882 and SAR 24112). | 2-7 | | | VJTAG was removed from Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode* (SARs 24112, 24882, and 79503). | 2-8 | | | The note stating what was included in I_{DD} was removed from Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Shutdown Mode. The note, "per VCCI or VJTAG bank" was removed from Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ . The note giving I_{DD} was changed to " $I_{DD} = N_{BANKS} * I_{CCI} + I_{CCA}$." | 2-8 | | | The values in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ were updated. Wide range support information was added. | 2-9 | | Revision / Version | Changes | Page | |--|--|------------------------| | Revision 9 (Mar2010) Product Brief Advance v0.9 | All product tables and pin tables were updated to show clearly that AGLN030 is available only in the Z feature grade at this time. The nano-Z feature grade devices are designated with a Z at the end of the part number. | N/A | | Packaging Advance v0.8 | | | | Revision 8 (Jan 2009) | The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance". | I | | Product Brief Advance
v0.8 | The note for AGLN030 in the "IGLOO nano Devices" table and "I/Os Per Package" table was revised to remove the statement regarding package compatibility with lower density nano devices. | , | | | The "I/Os with Advanced I/O Standards" section was revised to add definitions for hot-swap and cold-sparing. | 1-8 | | Packaging Advance
v0.7 | The "UC81", "CS81", "QN48", and "QN68" pin tables for AGLN030 are new. | 4-5, 4-8,
4-17,4-21 | | | The "CS81"pin table for AGLN060 is new. | 4-9 | | | The "CS81" and "VQ100" pin tables for AGLN060Z are new. | 4-10, 4-25 | | | The "CS81" and "VQ100" pin tables for AGLN125Z are new. | 4-12, 4-27 | | | The "CS81" and "VQ100" pin tables for AGLN250Z is new. | 4-14, 4-29 | | Product Brief Advance v0.7 DC and Switching Characteristics Advance v0.3 | removed from the datasheet. | | | Revision 6 (Mar 2009) Packaging Advance v0.6 | The "VQ100" pin table for AGLN030 is new. | 4-23 | | Revision 5 (Feb 2009) Packaging Advance v0.5 | The "100-Pin QFN" section was removed. | N/A | | Revision 4 (Feb 2009) | The QN100 package was removed for all devices. | N/A | | Product Brief Advance
v0.6 | "IGLOO nano Devices" table was updated to change the maximum user I/Os for AGLN030 from 81 to 77. | II | | | The "Device Marking" section is new. | V | | Revision 3 (Feb 2009) Product Brief Advance v0.5 | The following table note was removed from "IGLOO nano Devices" table: "Six chip (main) and three quadrant global networks are available for AGLN060 and above." | II | | | The CS81 package was added for AGLN250 in the "IGLOO nano Products Available in the Z Feature Grade" table. | VI | | Packaging Advance
v0.4 | The "UC81" and "CS81" pin tables for AGLN020 are new. | 4-4, 4-7 | | | The "CS81" pin table for AGLN250 is new. | 4-13 | | | | | Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 #### E-mail: sales.support@microsemi.com © 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.