E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2000	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	71
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-20°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln125v2-vqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic.

Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano devices cost-effective ASIC replacement solutions, especially for applications in the consumer, networking/communications, computing, and avionics markets.

With a variety of devices under \$1, IGLOO nano FPGAs enable cost-effective implementation of programmable logic and quick time to market.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on page 1-5 to Figure 1-4 on page 1-5):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLN030 and smaller devices do not support PLL or SRAM.

The inputs of the six CCC blocks are accessible from the FPGA core or from dedicated connections to the CCC block, which are located near the CCC.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time is 300 µs (for PLL only)
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps \times 250 MHz / f_{OUT_CCC} (for PLL only)

Global Clocking

IGLOO nano devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

IGLOO nano FPGAs feature a flexible I/O structure, supporting a range of voltages (1.2 V, 1.2 V wide range, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V).

The I/Os are organized into banks with two, three, or four banks per device. The configuration of these banks determines the I/O standards supported.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of various single-data-rate applications for all versions of nano devices and double-data-rate applications for the AGLN060, AGLN125, and AGLN250 devices.

IGLOO nano devices support LVTTL and LVCMOS I/O standards, are hot-swappable, and support cold-sparing and Schmitt trigger.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOO nano devices support JEDEC-defined wide range I/O operation. IGLOO nano devices support both the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

IGLOO nano Device Overview

- 6. Click **OK** to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)

Array Voltage	Junction Temperature (°C)									
VCC (V)	-40°C	–20°C	0°C	25°C	70°C	85°C	100°C			
1.14	0.968	0.974	0.979	0.991	1.000	1.006	1.009			
1.2	0.863	0.868	0.873	0.884	0.892	0.898	0.901			
1.26	0.792	0.797	0.801	0.811	0.819	0.824	0.827			

For IGLOO nano V2, 1.2 V DC Core Supply Voltage

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 •	Power Supply State per Mode
	· oner euppig etate per meae

	Power Supply Configurations							
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP			
Flash*Freeze	On	On	On	On	On/off/floating			
Sleep	Off	Off	On	Off	Off			
Shutdown	Off	Off	Off	Off	Off			
No Flash*Freeze	On	On	On	On	On/off/floating			

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
Typical (25°C)	1.2 V	1.9	3.3	3.3	8	13	20	μA
	1.5 V	5.8	6	6	10	18	34	μA

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7).

IGLOO nano DC and Switching Characteristics

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
VCCI= 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	1.7	1.7	1.7	μA
VCCI = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	1.8	1.8	1.8	μA
VCCI = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	1.9	1.9	1.9	μA
VCCI = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	2.2	2.2	2.2	μA
VCCI = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	2.5	2.5	2.5	μA

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*

Note: *I_{DD} = N_{BANKS} * I_{CCI}.

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Shutdown Mode

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	0	0	0	0	μA

Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode¹

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
ICCA Current ²		•						
Typical (25°C)	1.2 V	3.7	5	5	10	13	18	μA
	1.5 V	8	14	14	20	28	44	μA
ICCI or IJTAG Current		-						
VCCI / VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	1.7	1.7	1.7	μA
VCCI / VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	1.8	1.8	1.8	μA
VCCI / VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	1.9	1.9	1.9	μA
VCCI / VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	2.2	2.2	2.2	μA
VCCI / VJTAG = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	2.5	2.5	2.5	μA

Notes:

IDD = N_{BANKS} * ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC, VCCPLL, and VPUMP currents.

Table 2-17 •	Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices
	For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

		[Device-Spe	cific Dyna	mic Power	r (µW/MHz)	
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PAC1	Clock contribution of a Global Rib	2.829	2.875	1.728	0	0	0
PAC2	Clock contribution of a Global Spine	1.731	1.265	1.268	2.562	2.562	1.685
PAC3	Clock contribution of a VersaTile row	0.957	0.963	0.967	0.862	0.862	0.858
PAC4	Clock contribution of a VersaTile used as a sequential module	0.098	0.098	0.098	0.094	0.094	0.091
PAC5	First contribution of a VersaTile used as a sequential module			0.0	45		
PAC6	Second contribution of a VersaTile used as a sequential module	rsaTile 0.186					
PAC7	Contribution of a VersaTile used as a combinatorial module			0.1	11		
PAC8	Average contribution of a routing net		0.45				
PAC9	Contribution of an I/O input pin (standard-dependent)		See	e Table 2-13	3 on page 2	2-9	
PAC10	Contribution of an I/O output pin (standard-dependent)	pin See Table 2-14 on page 2-9					
PAC11	Average contribution of a RAM block during a read operation	k 25.00 N/A					
PAC12	Average contribution of a RAM block during a write operation	k 30.00 N/A					
PAC13	Dynamic contribution for PLL		2.10			N/A	

Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

			Device	-Specific S	Static Powe	er (mW)		
Parameter	Definition	AGLN250 AGLN125 AGLN060 AGLN020 AGLN015 AGLN0						
PDC1	Array static power in Active mode		Se	e Table 2-1	2 on page 2	2-8		
PDC2	Array static power in Static (Idle) mode		See Table 2-12 on page 2-8					
PDC3	Array static power in Flash*Freeze mode		S	ee Table 2-9	9 on page 2	2-7		
PDC4 ¹	Static PLL contribution	0.90 N/A						
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8						

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

IGLOO nano DC and Switching Characteristics

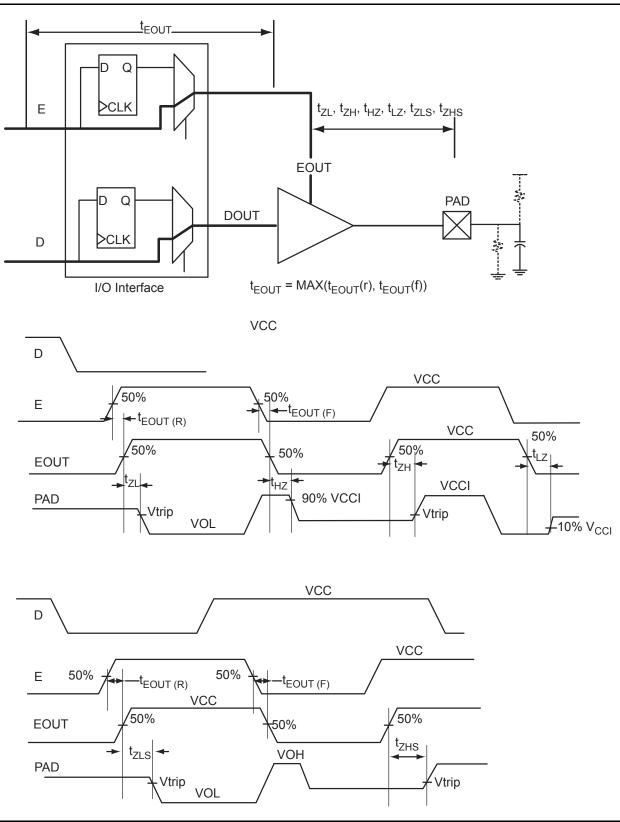


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

IGLOO nano DC and Switching Characteristics

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK PL}	JLL-UP) ¹ (Ω)	$R_{(WEAK PULL-DOWN)}^2(\Omega)$		
VCCI	Min.	Max.	Min.	Max.	
3.3 V	10 K	45 K	10 K	45 K	
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K	
2.5 V	11 K	55 K	12 K	74 K	
1.8 V	18 K	70 K	17 K	110 K	
1.5 V	19 K	90 K	19 K	140 K	
1.2 V	25 K	110 K	25 K	150 K	
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K	

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
 R_(WEAK PULL-DOWN-MAX) = (VOLspec) / I_(WEAK PULL-DOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
_	4 mA	25	27
Γ	6 mA	51	54
Γ	8 mA	51	54
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent s	oftware default drive
2.5 V LVCMOS	2 mA	16	18
Γ	4 mA	16	18
	6 mA	32	37
Γ	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
Γ	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16
1.2 V LVCMOS	1 mA	10	13
1.2 V LVCMOS Wide Range	100 µA	10	13

Note: $^{*}T_{J} = 100^{\circ}C$

IGLOO nano DC and Switching Characteristics

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

Table 2-34 • Minimum and Maximum DC Input and Output Levels

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{5}$$
 pF $R = 1 k$
Datapath $rac{1}{5}$ pF $R = 1 k$
Enable Path $rac{1}{5}$ pF for $t_{LZ} / t_{ZL} / t_{ZLS}$
 $rac{1}{5}$ pF for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-7 • AC Loading

Table 2-35 • 3.3 V LVTTL/LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.44	0.19	1.03	1.44	0.66	5.25	5.44	1.69	1.35	ns
4 mA	STD	0.97	4.44	0.19	1.03	1.44	0.66	4.37	4.44	1.99	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.64	0.19	1.03	1.44	0.66	2.59	2.64	1.69	1.40	ns
4 mA	STD	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.92	0.26	1.13	1.59	1.10	5.72	5.92	2.11	1.95	ns
4 mA	STD	1.55	4.91	0.26	1.13	1.59	1.10	4.82	4.91	2.42	2.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	3.05	0.26	1.13	1.59	1.10	3.01	3.05	2.10	2.00	ns
4 mA	STD	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-59 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.39	0.19	1.19	1.62	0.66	5.48	5.39	2.02	2.06	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-60 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

			J	,				,				
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.39	0.19	1.19	1.62	0.66	2.44	2.24	2.02	2.15	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-61 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.87	0.26	1.27	1.77	1.10	5.92	5.87	2.45	2.65	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-62 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial Case Conditional T = 70°C Worst Case VCC = 1.14 V

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.78	0.26	1.27	1.77	1.10	2.82	2.62	2.44	2.74	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-71 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-13 on page 2-43 for more information.

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-77 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units	
t _{oeclkq}	Clock-to-Q of the Output Enable Register	1.10	ns	
t _{OESUD}	Data Setup Time for the Output Enable Register	1.15	ns	
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns	
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.65	ns	
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.65	ns	
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns	
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns	
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns	
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns	
tOEWCLR	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns	
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns	
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns	
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns	

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO nano library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide for Software v10.1*.

Figure 2-21 • Sample of Combinatorial Cells

IGLOO nano DC and Switching Characteristics

Table 2-96 • AGLN020 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.81	2.26	ns
t _{RCKH}	Input High Delay for Global Clock	1.90	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

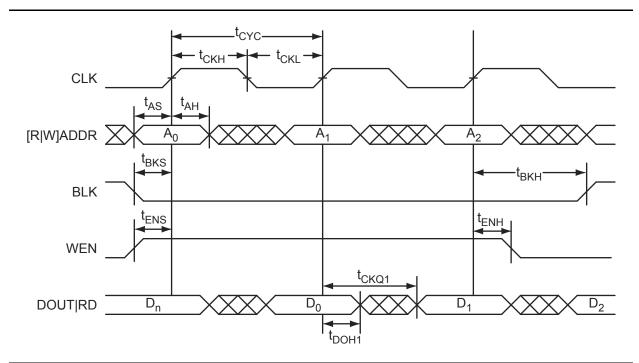
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

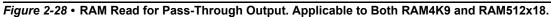
Table 2-97 • AGLN060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.			
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	2.02	2.42	ns	
t _{RCKH}	Input High Delay for Global Clock	2.09	2.65	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.56	ns	

Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).


2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

Timing Waveforms

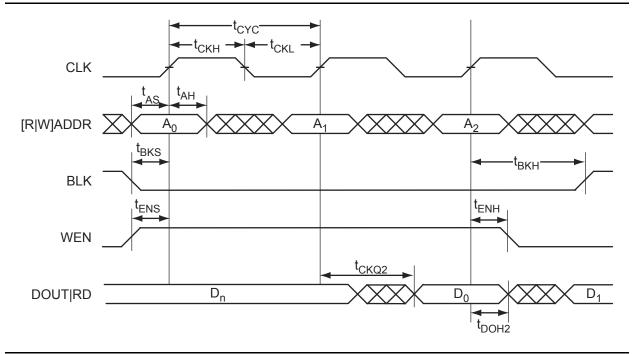


Figure 2-29 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-102 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.68	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{BKS}	BLK setup time	1.37	ns
t _{BKH}	BLK hold time	0.13	ns
t _{DS}	Input data (DIN) setup time	0.59	ns
t _{DH}	Input data (DIN) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	2.94	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	2.55	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	1.51	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable C to closing edge		ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	1.72	ns
	RESET Low to data out Low on DOUT (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-110 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-111 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU} Test Data Input Setup Time		1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano Low Power Flash FPGAs

	UC81] [UC81	
Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	
A1	IO00RSB0	D9	IO30RSB0	
A2	IO02RSB0	E1	GEB0/IO71RSB1	
A3	IO06RSB0	E2	GEA0/IO72RSB1	
A4	IO11RSB0	E3	GEC0/IO73RSB1	
A5	IO16RSB0	E4	VCCIB1	
A6	IO19RSB0	E5	VCC	
A7	IO22RSB0	E6	VCCIB0	
A8	IO24RSB0	E7	GDC0/IO32RSB0	
A9	IO26RSB0	E8	GDA0/IO33RSB0	
B1	IO81RSB1	E9	GDB0/IO34RSB0	
B2	IO04RSB0	F1	IO68RSB1	
B3	IO10RSB0	F2	IO67RSB1	
B4	IO13RSB0	F3	IO64RSB1	
B5	IO15RSB0	F4	GND	
B6	IO20RSB0	F5	VCCIB1	
B7	IO21RSB0	F6	IO47RSB1	
B8	IO28RSB0	F7	IO36RSB0	
B9	IO25RSB0	F8	IO38RSB0	
C1	IO79RSB1	F9	IO40RSB0	
C2	IO80RSB1	G1	IO65RSB1	
C3	IO08RSB0	G2	IO66RSB1	
C4	IO12RSB0	G3	IO57RSB1	
C5	IO17RSB0	G4	IO53RSB1	
C6	IO14RSB0	G5	IO49RSB1	
C7	IO18RSB0	G6	IO45RSB1	
C8	IO29RSB0	G7	IO46RSB1	
C9	IO27RSB0	G8	VJTAG	
D1	IO74RSB1	G9	TRST	
D2	IO76RSB1	H1	IO62RSB1	
D3	IO77RSB1	H2	FF/IO60RSB1	
D4	VCC	H3	IO58RSB1	
D5	VCCIB0	H4	IO54RSB1	
D6	GND	H5	IO48RSB1	
D7	IO23RSB0	H6	IO43RSB1	
D8	IO31RSB0	H7	IO42RSB1	

UC81				
Pin Number	AGLN030Z Function			
H8	TDI			
H9	TDO			
J1	IO63RSB1			
J2	IO61RSB1			
J3	IO59RSB1			
J4	IO56RSB1			
J5	IO52RSB1			
J6	IO44RSB1			
J7	ТСК			
J8	TMS			
J9	VPUMP			

IGLOO nano Low Power Flash FPGAs

VQ100			VQ100		VQ100	
Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	
1	GND	36	IO51RSB1	71	IO29RSB0	
2	IO82RSB1	37	VCC	72	IO28RSB0	
3	IO81RSB1	38	GND	73	IO27RSB0	
4	IO80RSB1	39	VCCIB1	74	IO26RSB0	
5	IO79RSB1	40	IO49RSB1	75	IO25RSB0	
6	IO78RSB1	41	IO47RSB1	76	IO24RSB0	
7	IO77RSB1	42	IO46RSB1	77	IO23RSB0	
8	IO76RSB1	43	IO45RSB1	78	IO22RSB0	
9	GND	44	IO44RSB1	79	IO21RSB0	
10	IO75RSB1	45	IO43RSB1	80	IO20RSB0	
11	IO74RSB1	46	IO42RSB1	81	IO19RSB0	
12	GEC0/IO73RSB1	47	ТСК	82	IO18RSB0	
13	GEA0/IO72RSB1	48	TDI	83	IO17RSB0	
14	GEB0/IO71RSB1	49	TMS	84	IO16RSB0	
15	IO70RSB1	50	NC	85	IO15RSB0	
16	IO69RSB1	51	GND	86	IO14RSB0	
17	VCC	52	VPUMP	87	VCCIB0	
18	VCCIB1	53	NC	88	GND	
19	IO68RSB1	54	TDO	89	VCC	
20	IO67RSB1	55	TRST	90	IO12RSB0	
21	IO66RSB1	56	VJTAG	91	IO10RSB0	
22	IO65RSB1	57	IO41RSB0	92	IO08RSB0	
23	IO64RSB1	58	IO40RSB0	93	IO07RSB0	
24	IO63RSB1	59	IO39RSB0	94	IO06RSB0	
25	IO62RSB1	60	IO38RSB0	95	IO05RSB0	
26	IO61RSB1	61	IO37RSB0	96	IO04RSB0	
27	FF/IO60RSB1	62	IO36RSB0	97	IO03RSB0	
28	IO59RSB1	63	GDB0/IO34RSB0	98	IO02RSB0	
29	IO58RSB1	64	GDA0/IO33RSB0	99	IO01RSB0	
30	IO57RSB1	65	GDC0/IO32RSB0	100	IO00RSB0	
31	IO56RSB1	66	VCCIB0			
32	IO55RSB1	67	GND			
33	IO54RSB1	68	VCC			
34	IO53RSB1	69	IO31RSB0			
35	IO52RSB1	70	IO30RSB0			