

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	71
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln125v2-vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Device Status

IGLOO nano Devices	Status	IGLOO nano-Z Devices	Status
AGLN010	Production		
AGLN015	Not recommended for new designs.		
AGLN020	Production		
		AGLN030Z	Not recommended for new designs.
AGLN060	Production	AGLN060Z	Not recommended for new designs.
AGLN125	Production	AGLN125Z	Not recommended for new designs.
AGLN250	Production	AGLN250Z	Not recommended for new designs.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic.

Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano devices cost-effective ASIC replacement solutions, especially for applications in the consumer, networking/communications, computing, and avionics markets.

With a variety of devices under \$1, IGLOO nano FPGAs enable cost-effective implementation of programmable logic and quick time to market.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on page 1-5 to Figure 1-4 on page 1-5):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLN030 and smaller devices do not support PLL or SRAM.

Microsemi

IGLOO nano DC and Switching Characteristics

Symbol	Р	arameter	Extended Commercial	Industrial	Units
TJ	Junction temperature		$-20 \text{ to } + 85^2$	$-40 \text{ to } +100^2$	°C
VCC	1.5 V DC core supply voltage ³		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range	core voltage ^{4,5}	1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP ⁶	Programming voltage	Programming mode	3.15 to 3.45	3.15 to 3.45	V
		Operation	0 to 3.6	0 to 3.6	V
	Analog power supply (PLL)	1.5 V DC core supply voltage ³	1.425 to 1.575	1.425 to 1.575	V
		1.2 V–1.5 V wide range core supply voltage ⁴	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC supply voltage	4	1.14 to 1.26	1.14 to 1.26	V
VMV ^{8,9}	1.2 V DC wide range su	pply voltage ⁴	1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage)	1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage)	1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage)	2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage)	3.0 to 3.6	3.0 to 3.6	V
	3.3 V DC wide range su	pply voltage ¹⁰	2.7 to 3.6	2.7 to 3.6	V

Table 2-2 • Recommended Operating Conditions ¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help.

3. For IGLOO[®] nano V5 devices

- 4. For IGLOO nano V2 devices only, operating at VCCI ≥ VCC
- IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to do in-system programming using 1.2 V, please contact the factory.
- 6. V_{PUMP} can be left floating during operation (not programming mode).
- 7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information.

8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano FPGA Fabric User's Guide for further information.

9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank.

10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100
Notes:			•	•

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

 The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO nano device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO nano I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)

Array Voltage	Junction Temperature (°C)								
VCC (V)	-40°C	–20°C	0°C	25°C	70°C	85°C	100°C		
1.14	0.968	0.974	0.979	0.991	1.000	1.006	1.009		
1.2	0.863	0.868	0.873	0.884	0.892	0.898	0.901		
1.26	0.792	0.797	0.801	0.811	0.819	0.824	0.827		

For IGLOO nano V2, 1.2 V DC Core Supply Voltage

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 •	Power Supply State per Mode
	· oner euppig etate per meae

	Power Supply Configurations						
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP		
Flash*Freeze	On	On	On	On	On/off/floating		
Sleep	Off	Off	On	Off	Off		
Shutdown	Off	Off	Off	Off	Off		
No Flash*Freeze	On	On	On	On	On/off/floating		

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
Typical (25°C)	1.2 V	1.9	3.3	3.3	8	13	20	μA
	1.5 V	5.8	6	6	10	18	34	μA

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7).

Table 2-17 •	Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices
	For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

		[Device-Spe	cific Dyna	mic Power	r (µW/MHz)	
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PAC1	Clock contribution of a Global Rib	2.829	2.875	1.728	0	0	0
PAC2	Clock contribution of a Global Spine	1.731	1.265	1.268	2.562	2.562	1.685
PAC3	Clock contribution of a VersaTile row	0.957	0.963	0.967	0.862	0.862	0.858
PAC4	Clock contribution of a VersaTile used as a sequential module	0.098	0.098	0.098	0.094	0.094	0.091
PAC5	First contribution of a VersaTile used as a sequential module	0.045					
PAC6	Second contribution of a VersaTile used as a sequential module	0.186					
PAC7	Contribution of a VersaTile used as a combinatorial module			0.1	11		
PAC8	Average contribution of a routing net			0.4	15		
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-13 on page 2-9					
PAC10	Contribution of an I/O output pin (standard-dependent)	N See Table 2-14 on page 2-9					
PAC11	Average contribution of a RAM block during a read operation	ck 25.00 N/A					
PAC12	Average contribution of a RAM block during a write operation	< 30.00 N/A					
PAC13	Dynamic contribution for PLL		2.10			N/A	

Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

		Device-Specific Static Power (mW)					
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PDC1	Array static power in Active mode		See Table 2-12 on page 2-8				
PDC2	Array static power in Static (Idle) mode	See Table 2-12 on page 2-8					
PDC3	Array static power in Flash*Freeze mode	See Table 2-9 on page 2-7					
PDC4 ¹	Static PLL contribution	0.90 N/A					
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8					

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: STD Speed, Commercial Temperature Range ($T_J = 70^{\circ}C$), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Detailed I/O DC Characteristics

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-27 • Input Capacitance

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent s	software default drive
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS ⁴	1 mA	315	315
1.2 V LVCMOS Wide Range ⁴	100 µA	315	315

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

 Table 2-57 •
 Minimum and Maximum DC Input and Output Levels

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: **Measuring point* = *Vtrip.* See Table 2-23 on page 2-20 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.76	ns
AND2	$Y = A \cdot B$	t _{PD}	0.87	ns
NAND2	Y = !(A · B)	t _{PD}	0.91	ns
OR2	Y = A + B	t _{PD}	0.90	ns
NOR2	Y = !(A + B)	t _{PD}	0.94	ns
XOR2	Y = A 🕀 B	t _{PD}	1.39	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.44	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.60	ns
MUX2	Y = A !S + B S	t _{PD}	1.17	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.18	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-85 •Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.33	ns
AND2	$Y = A \cdot B$	t _{PD}	1.48	ns
NAND2	Y = !(A · B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	1.53	ns
NOR2	Y = !(A + B)	t _{PD}	1.63	ns
XOR2	Y = A 🕀 B	t _{PD}	2.34	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.59	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	2.74	ns
MUX2	Y = A !S + B S	t _{PD}	2.03	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-88 •AGLN010 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.13	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.15	1.50	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • AGLN015 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

			Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns	
t _{RCKH}	Input High Delay for Global Clock	1.23	1.65	ns	
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns	
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-90 •AGLN020 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-91 • AGLN060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.71	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Microsemi.

IGLOO nano DC and Switching Characteristics

Table 2-92 •AGLN125 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-93 • AGLN250 Global Resource

		S	Std.	
Parameter	Description	Min. ¹	Min. ¹ Max. ²	
t _{RCKL}	Input Low Delay for Global Clock	1.39	1.73	ns
t _{RCKH}	Input High Delay for Global Clock	1.41	1.84	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock			ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-98 • AGLN125 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock 1.65			ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-99 • AGLN250 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.11	2.57	ns
t _{RCKH}	Input High Delay for Global Clock	2.19	2.81	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-100 • IGLOO nano CCC/PLL Specification

For IGLOO nano V2 OR V5 Devices, 1.5 V DC Core Supply Voltage

Parameter		Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC				250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_C}	Clock Conditioning Circuitry Output Frequency f _{OUT CCC}			250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}			360 ³		ps
Number of Programmable Values in Each Programma	ble Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL 4,9				100	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)				1	ns
Acquisition Time					
	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵					
	LockControl = 0			2.5	ns
	LockControl = 1			1.5	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}		1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2,}		0.025		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}			3.5		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁶ Max Peak-to-Pea		ak Jitter Da	ta ^{6,7,8}		
	$SSO \le 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$	
0.75 MHz to 50 MHz	0.50	0.60	0.80	1.20	%
50 MHz to 250 MHz 2.50		4.00	6.00	12.00	%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for deratings.

2. $T_{.1} = 25^{\circ}C, VCC = 1.5 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

- 4. Maximum value obtained for a STD speed grade device in Worst-Case Commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for derating values.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 6. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT, regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, no matter what the settings are for the output divider.
- 7. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 8. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO nano FPGA Fabric User's Guide.
- 9. The AGLN010, AGLN015, and AGLN020 devices do not support PLLs.

IGLOO nano DC and Switching Characteristics

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ *Figure 2-26* • Peak-to-Peak Jitter Definition

Package Pin Assignments

(QN68	QN68		
Pin Number	AGLN020 Function	Pin Number	AGLN020 Function	
1	IO60RSB2	36	TDO	
2	IO54RSB2	37	TRST	
3	IO52RSB2	38	VJTAG	
4	IO50RSB2	39	IO17RSB0	
5	IO49RSB2	40	IO16RSB0	
6	GEC0/IO48RSB2	41	GDA0/IO15RSB0	
7	GEA0/IO47RSB2	42	GDC0/IO14RSB0	
8	VCC	43	IO13RSB0	
9	GND	44	VCCIB0	
10	VCCIB2	45	GND	
11	IO46RSB2	46	VCC	
12	IO45RSB2	47	IO12RSB0	
13	IO44RSB2	48	IO11RSB0	
14	IO43RSB2	49	IO09RSB0	
15	IO42RSB2	50	IO05RSB0	
16	IO41RSB2	51	IO00RSB0	
17	IO40RSB2	52	IO07RSB0	
18	FF/IO39RSB1	53	IO03RSB0	
19	IO37RSB1	54	IO18RSB1	
20	IO35RSB1	55	IO20RSB1	
21	IO33RSB1	56	IO22RSB1	
22	IO31RSB1	57	IO24RSB1	
23	IO30RSB1	58	IO28RSB1	
24	VCC	59	NC	
25	GND	60	GND	
26	VCCIB1	61	NC	
27	IO27RSB1	62	IO32RSB1	
28	IO25RSB1	63	IO34RSB1	
29	IO23RSB1	64	IO36RSB1	
30	IO21RSB1	65	IO61RSB2	
31	IO19RSB1	66	IO58RSB2	
32	ТСК	67	IO56RSB2	
33	TDI	68	IO63RSB2	
34	TMS			
35	VPUMP			

Microsemi

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100		VQ100		
Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function	
1	GND	36	IO93RSB1	71	GBB2/IO43RSB0	
2	GAA2/IO67RSB1	37	VCC	72	IO42RSB0	
3	IO68RSB1	38	GND	73	GBA2/IO41RSB0	
4	GAB2/IO69RSB1	39	VCCIB1	74	VMV0	
5	IO132RSB1	40	IO87RSB1	75	GNDQ	
6	GAC2/IO131RSB1	41	IO84RSB1	76	GBA1/IO40RSB0	
7	IO130RSB1	42	IO81RSB1	77	GBA0/IO39RSB0	
8	IO129RSB1	43	IO75RSB1	78	GBB1/IO38RSB0	
9	GND	44	GDC2/IO72RSB1	79	GBB0/IO37RSB0	
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	80	GBC1/IO36RSB0	
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	81	GBC0/IO35RSB0	
12	VCOMPLF	47	ТСК	82	IO32RSB0	
13	GFA0/IO122RSB1	48	TDI	83	IO28RSB0	
14	VCCPLF	49	TMS	84	IO25RSB0	
15	GFA1/IO121RSB1	50	VMV1	85	IO22RSB0	
16	GFA2/IO120RSB1	51	GND	86	IO19RSB0	
17	VCC	52	VPUMP	87	VCCIB0	
18	VCCIB1	53	NC	88	GND	
19	GEC0/IO111RSB1	54	TDO	89	VCC	
20	GEB1/IO110RSB1	55	TRST	90	IO15RSB0	
21	GEB0/IO109RSB1	56	VJTAG	91	IO13RSB0	
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	92	IO11RSB0	
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	93	IO09RSB0	
24	VMV1	59	GDC1/IO61RSB0	94	IO07RSB0	
25	GNDQ	60	GCC2/IO59RSB0	95	GAC1/IO05RSB0	
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	96	GAC0/IO04RSB0	
27	FF/GEB2/IO105RSB1	62	GCA0/IO56RSB0	97	GAB1/IO03RSB0	
28	GEC2/IO104RSB1	63	GCA1/IO55RSB0	98	GAB0/IO02RSB0	
29	IO102RSB1	64	GCC0/IO52RSB0	99	GAA1/IO01RSB0	
30	IO100RSB1	65	GCC1/IO51RSB0	100	GAA0/IO00RSB0	
31	IO99RSB1	66	VCCIB0	L		
32	IO97RSB1	67	GND			
33	IO96RSB1	68	VCC			
34	IO95RSB1	69	IO47RSB0			
35	IO94RSB1	70	GBC2/IO45RSB0			

Microsemi

IGLOO nano Low Power Flash FPGAs

VQ100			VQ100
Pin Number	AGLN250Z Function	Pin Number	AGLN250Z Function
1	GND	37	VCC
2	GAA2/IO67RSB3	38	GND
3	IO66RSB3	39	VCCIB2
4	GAB2/IO65RSB3	40	IO39RSB2
5	IO64RSB3	41	IO38RSB2
6	GAC2/IO63RSB3	42	IO37RSB2
7	IO62RSB3	43	GDC2/IO36RSB2
8	IO61RSB3	44	GDB2/IO35RSB2
9	GND	45	GDA2/IO34RSB2
10	GFB1/IO60RSB3	46	GNDQ
11	GFB0/IO59RSB3	47	ТСК
12	VCOMPLF	48	TDI
13	GFA0/IO57RSB3	49	TMS
14	VCCPLF	50	VMV2
15	GFA1/IO58RSB3	51	GND
16	GFA2/IO56RSB3	52	VPUMP
17	VCC	53	NC
18	VCCIB3	54	TDO
19	GFC2/IO55RSB3	55	TRST
20	GEC1/IO54RSB3	56	VJTAG
21	GEC0/IO53RSB3	57	GDA1/IO33RSB1
22	GEA1/IO52RSB3	58	GDC0/IO32RSB1
23	GEA0/IO51RSB3	59	GDC1/IO31RSB1
24	VMV3	60	IO30RSB1
25	GNDQ	61	GCB2/IO29RSB1
26	GEA2/IO50RSB2	62	GCA1/IO27RSB1
27	FF/GEB2/IO49RSB2	63	GCA0/IO28RSB1
28	GEC2/IO48RSB2	64	GCC0/IO26RSB1
29	IO47RSB2	65	GCC1/IO25RSB1
30	IO46RSB2	66	VCCIB1
31	IO45RSB2	67	GND
32	IO44RSB2	68	VCC
33	IO43RSB2	69	IO24RSB1
34	IO42RSB2	70	GBC2/IO23RSB1
35	IO41RSB2	71	GBB2/IO22RSB1
36	IO40RSB2	72	IO21RSB1

	VQ100				
Pin Number	AGLN250Z Function				
73	GBA2/IO20RSB1				
74	VMV1				
75	GNDQ				
76	GBA1/IO19RSB0				
77	GBA0/IO18RSB0				
78	GBB1/IO17RSB0				
79	GBB0/IO16RSB0				
80	GBC1/IO15RSB0				
81	GBC0/IO14RSB0				
82	IO13RSB0				
83	IO12RSB0				
84	IO11RSB0				
85	IO10RSB0				
86	IO09RSB0				
87	VCCIB0				
88	GND				
89	VCC				
90	IO08RSB0				
91	IO07RSB0				
92	IO06RSB0				
93	GAC1/IO05RSB0				
94	GAC0/IO04RSB0				
95	GAB1/IO03RSB0				
96	GAB0/IO02RSB0				
97	GAA1/IO01RSB0				
98	GAA0/IO00RSB0				
99	GNDQ				
100	VMV0				

Datasheet Information

Revision	Changes	Page	
Revision 10 (continued)	The following tables were updated with current available information. The equivalent software default drive strength option was added.	through	
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels	2-40	
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings		
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings		
	Table 2-28 • I/O Output Buffer Maximum Resistances ¹		
	Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances		
	Table 2-30 • I/O Short Currents IOSH/IOSL		
	Timing tables in the "Single-Ended I/O Characteristics" section, including new tables for 3.3 V and 1.2 V LVCMOS wide range.		
	Table 2-40 $\mbox{ \bullet}$ Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range		
	Table 2-63 • Minimum and Maximum DC Input and Output Levels		
	Table 2-67 • Minimum and Maximum DC Input and Output Levels (new)		
	The formulas in the notes to Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 21348).		
	The text introducing Table 2-31 • Duration of Short Circuit Event before Failure was revised to state six months at 100° instead of three months at 110° for reliability concerns. The row for 110° was removed from the table.		
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5-V tolerant input buffer and push-pull output buffer."	2-32	
	The $F_{DDRIMAX}$ and F_{DDOMAX} values were added to tables in the "DDR Module Specifications" section (SAR 23919). A note was added stating that DDR is not supported for AGLN010, AGLN015, and AGLN020.	2-51	
	Tables in the "Global Tree Timing Characteristics" section were updated with new information available.	2-64	
	Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification were revised (SAR 79390).	2-70, 2-71	
	Tables in the SRAM "Timing Characteristics" section and FIFO "Timing Characteristics" section were updated with new information available.	2-77, 2-85	
	Table 3-3 • TRST and TCK Pull-Down Recommendations is new.	3-4	
	A note was added to the "CS81" pin tables for AGLN060, AGLN060Z, AGLN125, AGLN125Z, AGLN250, and AGLN250Z indicating that pins F1 and F2 must be grounded (SAR 25007).	4-9, through 4-14	
	A note was added to the "CS81" and "VQ100" pin tables for AGLN060 and AGLN060Z stating that bus hold is not available for pin H7 or pin 45 (SAR 24079).	4-9, 4-24	
	The AGLN250 function for pin C8 in the "CS81" table was revised (SAR 22134).	4-13	