E·XFL

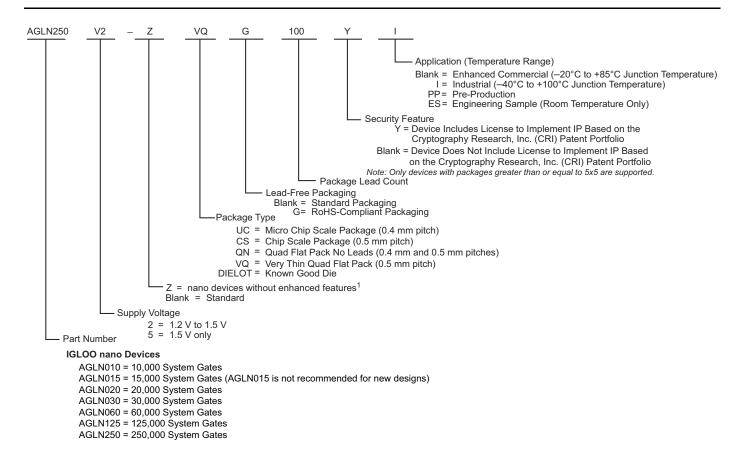
Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

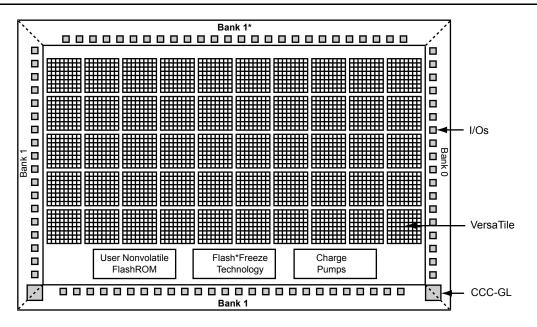
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	71
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agIn125v5-vq100i

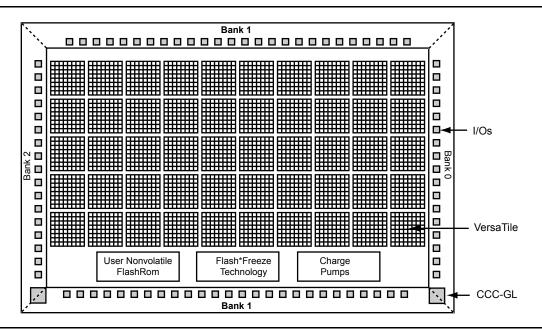
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Notes:

- Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming. The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade devices are not recommended for new designs.
- 2. AGLN030 is available in the Z feature grade only.
- 3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5 designator.

Devices Not Recommended For New Designs


AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs. For more information on obsoleted devices/packages, refer to the *PDN1503 - IGLOO nano Z and ProASIC3 nano Z Families*.

Note: *Bank 0 for the AGLN030 device

Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks and No RAM (AGLN010 and AGLN030)

Figure 1-2 • IGLOO Device Architecture Overview with Three I/O Banks and No RAM (AGLN015 and AGLN020)

IGLOO nano DC and Switching Characteristics

Symbol	Р	arameter	Extended Commercial	Industrial	Units
TJ	Junction temperature		$-20 \text{ to } + 85^2$	$-40 \text{ to } +100^2$	°C
VCC	1.5 V DC core supply vo	oltage ³	1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range	core voltage ^{4,5}	1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP ⁶ Programming voltage		Programming mode	3.15 to 3.45	3.15 to 3.45	V
		Operation	0 to 3.6	0 to 3.6	V
	•	1.5 V DC core supply voltage ³	1.425 to 1.575	1.425 to 1.575	V
	(PLL)	1.2 V–1.5 V wide range core supply voltage ⁴	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC supply voltage	4	1.14 to 1.26	1.14 to 1.26	V
VMV ^{8,9}	1.2 V DC wide range su	pply voltage ⁴	1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage)	1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage)	1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage)	2.3 to 2.7 2.3 to 2.7		V
	3.3 V DC supply voltage)	3.0 to 3.6	3.0 to 3.6	V
	3.3 V DC wide range su	pply voltage ¹⁰	2.7 to 3.6	2.7 to 3.6	V

Table 2-2 • Recommended Operating Conditions ¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help.

3. For IGLOO[®] nano V5 devices

- 4. For IGLOO nano V2 devices only, operating at VCCI ≥ VCC
- IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to do in-system programming using 1.2 V, please contact the factory.
- 6. V_{PUMP} can be left floating during operation (not programming mode).
- 7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information.

8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano FPGA Fabric User's Guide for further information.

9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank.

10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100
Notes:			•	•

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

IGLOO nano DC and Switching Characteristics

Power Consumption of Various Internal Resources

 Table 2-15 •
 Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices

 For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device Sp	ecific Dyna	mic Power	· (µW/MHz)				
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010			
PAC1	Clock contribution of a Global Rib	4.421	4.493	2.700	0	0	0			
PAC2	Clock contribution of a Global Spine	2.704	1.976	1.982	4.002	4.002	2.633			
PAC3	Clock contribution of a VersaTile row	1.496	1.504	1.511	1.346	1.346	1.340			
PAC4	Clock contribution of a VersaTile used as a sequential module	0.152	0.153	0.153	0.148	0.148	0.143			
PAC5	First contribution of a VersaTile used as a sequential module		0.057							
PAC6	Second contribution of a VersaTile used as a sequential module	0.207								
PAC7	Contribution of a VersaTile used as a combinatorial module			0.	17					
PAC8	Average contribution of a routing net			0.	.7					
PAC9	Contribution of an I/O input pin (standard-dependent)		Se	e Table 2-13	3 on page 2	2-9.				
PAC10	Contribution of an I/O output pin (standard-dependent)			See Tab	le 2-14.					
PAC11	Average contribution of a RAM block during a read operation	< 25.00 N/A				N/A				
PAC12	Average contribution of a RAM block during a write operation	30.00 N/A								
PAC13	Dynamic contribution for PLL		2.70			N/A				

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

		Device -Specific Static Power (mW)							
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010		
PDC1	Array static power in Active mode	See Table 2-12 on page 2-8							
	Array static power in Static (Idle) mode	See Table 2-12 on page 2-8							
PDC3	Array static power in Flash*Freeze mode	See Table 2-9 on page 2-7							
PDC4 ¹	Static PLL contribution		1.84						
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8							

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

IGLOO nano DC and Switching Characteristics

Applies to IGLOO nano at 1.2 V Core Operating Conditions

Table 2-26 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,Worst-Case VCCI = 3.0 V

	-														
I/O Standard	Drive Strength (mA)	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	teouт	t _{DP}	t _{DIN}	t _P Y)	t _{PYS}	teour	t _{zı}	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	1.55	3.25	0.26	1.31	1.91	1.10	3.25	2.61	3.38	4.27	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	1.55	2.78	0.26	1.27	1.77	1.10	2.82	2.62	2.44	2.74	ns
1.2 V LVCMOS	1 mA	1 mA	High	5 pF	1.55	3.50	0.26	1.56	2.27	1.10	3.37	3.10	2.55	2.66	ns
1.2 V LVCMOS Wide Range ³	100 µA	1 mA	High	5 pF	1.55	3.50	0.26	1.56	2.27	1.10	3.37	3.10	2.55	2.66	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V side range as specified in the JESD8-12 specification.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 8 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
–20°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL / LVCMOS (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns *	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	I _I H ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	17	22	10	10

Table 2-51 • Minimum and Maximum DC Input and Output Levels

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{1}$$
 $rac{1}{1}$ $rac{1$

Figure 2-9 • AC Loading

Table 2-52 • 1.8 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)		
0	1.8	0.9	5		

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

 Table 2-57 •
 Minimum and Maximum DC Input and Output Levels

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

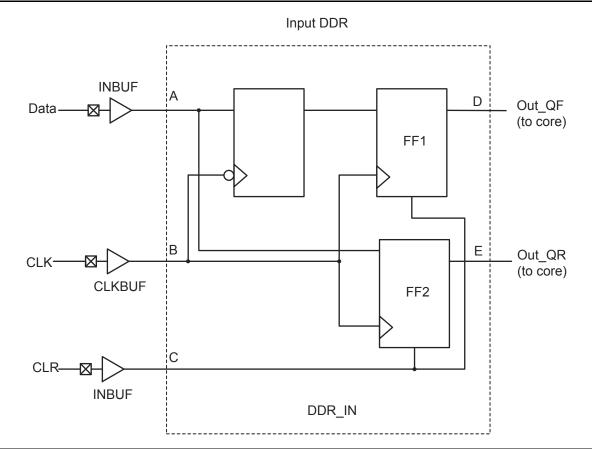
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads


Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

DDR Module Specifications

Note: DDR is not supported for AGLN010, AGLN015, and AGLN020 devices.

Input DDR Module

Figure	2-17•	Input	DDR	Timing	Model

Parameter Name	Parameter Definition	Measuring Nodes (from, to)		
t _{DDRICLKQ1} Clock-to-Out Out_QR		B, D		
t _{DDRICLKQ2} Clock-to-Out Out_QF		B, E		
t _{DDRISUD}	Data Setup Time of DDR input	A, B		
t _{DDRIHD} Data Hold Time of DDR input		A, B		
t _{DDRICLR2Q1} Clear-to-Out Out_QR		C, D		
t _{DDRICLR2Q2} Clear-to-Out Out_QF		C, E		
t _{DDRIREMCLR} Clear Removal		С, В		
t _{DDRIRECCLR} Clear Recovery		С, В		

IGLOO nano DC and Switching Characteristics

VersaTile Specifications as a Sequential Module

The IGLOO nano library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide for Software v10.1*.

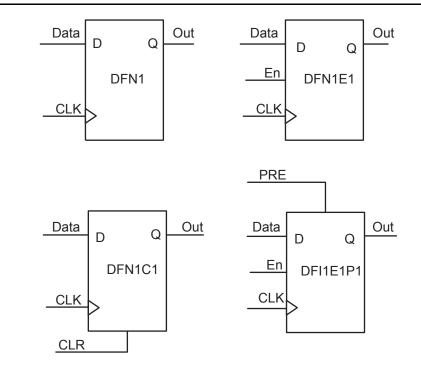
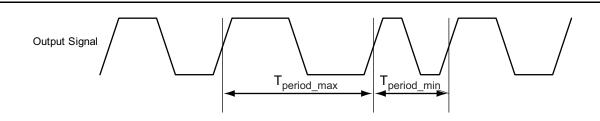



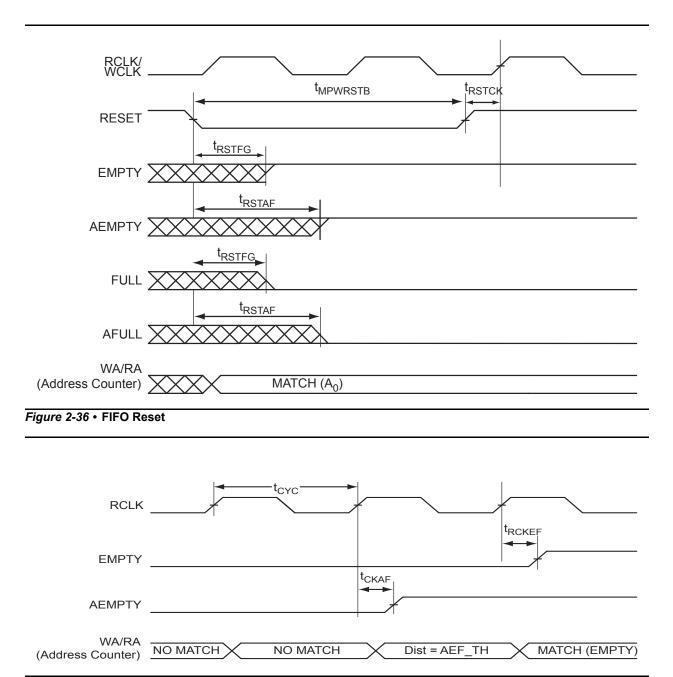
Figure 2-23 • Sample of Sequential Cells

IGLOO nano DC and Switching Characteristics

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ *Figure 2-26* • Peak-to-Peak Jitter Definition

IGLOO nano DC and Switching Characteristics

Table 2-105 • RAM512X18


Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.13	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{DS}	Input data (WD) setup time	1.10	ns
t _{DH}	Input data (WD) hold time	0.55	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	6.56	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	2.67	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.87	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.04	ns
t _{RSTBQ}	RESET LOW to data out LOW on RD (flow through)	3.21	ns
	RESET LOW to data out LOW on RD (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano Low Power Flash FPGAs

Timing Characteristics

Maximum Frequency for FIFO

1.5 V DC Core Voltage

Table 2-106 • FIFO

 $\mathsf{F}_{\mathsf{MAX}}$

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V Parameter Units Description Std. REN, WEN Setup Time 1.66 ns t_{ENS} REN, WEN Hold Time 0.13 t_{ENH} ns **BLK Setup Time** 0.30 ns t_{BKS} **BLK Hold Time** 0.00 ns t_{BKH} Input Data (WD) Setup Time 0.63 ns t_{DS} Input Data (WD) Hold Time 0.20 t_{DH} ns Clock High to New Data Valid on RD (flow-through) 2.77 ns t_{CKQ1} Clock High to New Data Valid on RD (pipelined) 1.50 ns t_{CKQ2} RCLK High to Empty Flag Valid 2.94 ns t_{RCKEF} WCLK High to Full Flag Valid 2.79 ns t_{WCKFF} Clock High to Almost Empty/Full Flag Valid 10.71 ns t_{CKAF} RESET Low to Empty/Full Flag Valid 2.90 ns t_{RSTFG} RESET Low to Almost Empty/Full Flag Valid 10.60 t_{RSTAF} ns RESET Low to Data Out LOW on RD (flow-through) 1.68 ns t_{RSTBQ} RESET Low to Data Out LOW on RD (pipelined) 1.68 ns **RESET Removal** 0.51 ns t_{REMRSTB} **RESET Recovery** 2.68 **t**_{RECRSTB} ns **RESET Minimum Pulse Width** 0.68 ns t_{MPWRSTB} Clock Cycle Time t_{CYC} 6.24 ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

160

MHz

IGLOO nano Low Power Flash FPGAs

	CS81		CS81			
Pin Number	AGLN060 Function	Pin Number	AGLN060 Functi			
A1	GAA0/IO02RSB0	D8	GCC1/IO35RSB			
A2	GAA1/IO03RSB0	D9	GCC0/IO36RSB			
A3	GAC0/IO06RSB0	E1	GFB0/IO83RSB			
A4	IO09RSB0	E2	GFB1/IO84RSB			
A5	IO13RSB0	E3	GFA1/IO81RSB			
A6	IO18RSB0	E4	VCCIB1			
A7	GBB0/IO21RSB0	E5	VCC			
A8	GBA1/IO24RSB0	E6	VCCIB0			
A9	GBA2/IO25RSB0	E7	GCA1/IO39RSB			
B1	GAA2/IO95RSB1	E8	GCA0/IO40RSB			
B2	GAB0/IO04RSB0	E9	GCB2/IO42RSB			
B3	GAC1/IO07RSB0	F1 ¹	VCCPLF			
B4	IO08RSB0	F2 ¹	VCOMPLF			
B5	IO15RSB0	F3	GND			
B6	GBC0/IO19RSB0	F4	GND			
B7	GBB1/IO22RSB0	F5	VCCIB1			
B8	IO26RSB0	F6	GND			
B9	GBB2/IO27RSB0	F7	GDA1/IO49RSB			
C1	GAB2/IO93RSB1	F8	GDC1/IO45RSB			
C2	IO94RSB1	F9	GDC0/IO46RSB			
C3	GND	G1	GEA0/IO69RSB			
C4	IO10RSB0	G2	GEC1/IO74RSB			
C5	IO17RSB0	G3	GEB1/IO72RSB			
C6	GND	G4	IO63RSB1			
C7	GBA0/IO23RSB0	G5	IO60RSB1			
C8	GBC2/IO29RSB0	G6	IO54RSB1			
C9	IO31RSB0	G7	GDB2/IO52RSB			
D1	GAC2/IO91RSB1	G8	VJTAG			
D2	IO92RSB1	G9	TRST			
D3	GFA2/IO80RSB1	H1	GEA1/IO70RSB			
D4	VCC	H2	FF/GEB2/IO67RS			
D5	VCCIB0	H3	IO65RSB1			
D6	GND	H4	IO62RSB1			
D7	GCC2/IO43RSB0	H5	IO59RSB1			

CS81					
Pin Number AGLN060 Function					
H6	IO56RSB1				
H7 ²	GDA2/IO51RSB1				
H8	TDI				
H9	TDO				
J1	GEA2/IO68RSB1				
J2	GEC2/IO66RSB1				
J3	IO64RSB1				
J4	IO61RSB1				
J5	IO58RSB1				
J6	IO55RSB1				
J7	ТСК				
J8	TMS				
J9	VPUMP				

Notes:

1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060-CS81.

2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060-CS81.

IGLOO nano Low Power Flash FPGAs

	CS81	CS81			
Pin Number	AGLN250 Function	Pin Number	AGLN250 Function		
A1	GAA0/IO00RSB0	E1	GFB0/IO59RSB3		
A2	GAA1/IO01RSB0	E2	GFB1/IO60RSB3		
A3	GAC0/IO04RSB0	E3	GFA1/IO58RSB3		
A4	IO07RSB0	E4	VCCIB3		
A5	IO09RSB0	E5	VCC		
A6	IO12RSB0	E6	VCCIB1		
A7	GBB0/IO16RSB0	E7	GCA0/IO28RSB1		
A8	GBA1/IO19RSB0	E8	GCA1/IO27RSB1		
A9	GBA2/IO20RSB1	E9	GCB2/IO29RSB1		
B1	GAA2/IO67RSB3	F1	VCCPLF		
B2	GAB0/IO02RSB0	F2	VCOMPLF		
B3	GAC1/IO05RSB0	F3	GND		
B4	IO06RSB0	F4	GND		
B5	IO10RSB0	F5	VCCIB2		
B6	GBC0/IO14RSB0	F6	GND		
B7	GBB1/IO17RSB0	F7	GDA1/IO33RSB1		
B8	IO21RSB1	F8	GDC1/IO31RSB1		
B9	GBB2/IO22RSB1	F9	GDC0/IO32RSB1		
C1	GAB2/IO65RSB3	G1	GEA0/IO51RSB3		
C2	IO66RSB3	G2	GEC1/IO54RSB3		
C3	GND	G3	GEC0/IO53RSB3		
C4	IO08RSB0	G4	IO45RSB2		
C5	IO11RSB0	G5	IO42RSB2		
C6	GND	G6	IO37RSB2		
C7	GBA0/IO18RSB0	G7	GDB2/IO35RSB2		
C8	GBC2/IO23RSB1	G8	VJTAG		
C9	IO24RSB1	G9	TRST		
D1	GAC2/IO63RSB3	H1	GEA1/IO52RSB3		
D2	IO64RSB3	H2	FF/GEB2/IO49RSB2		
D3	GFA2/IO56RSB3	H3	IO47RSB2		
D4	VCC	H4	IO44RSB2		
D5	VCCIB0	H5	IO41RSB2		
D6	GND	H6	IO39RSB2		
D7	IO30RSB1	H7	GDA2/IO34RSB2		
D8	GCC1/IO25RSB1	H8	TDI		
D9	GCC0/IO26RSB1	H9	TDO		

CS81					
Pin Number AGLN250 Function					
J1	GEA2/IO50RSB2				
J2	GEC2/IO48RSB2				
J3	IO46RSB2				
J4	IO43RSB2				
J5	IO40RSB2				
J6	IO38RSB2				
J7	ТСК				
J8	TMS				
J9	VPUMP				

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250-CS81.

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100			VQ100		
Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function		
1	GND	35	IO62RSB1	69	IO31RSB0		
2	GAA2/IO51RSB1	36	IO61RSB1	70	GBC2/IO29RSB0		
3	IO52RSB1	37	VCC	71	GBB2/IO27RSB0		
4	GAB2/IO53RSB1	38	GND	72	IO26RSB0		
5	IO95RSB1	39	VCCIB1	73	GBA2/IO25RSB0		
6	GAC2/IO94RSB1	40	IO60RSB1	74	VMV0		
7	IO93RSB1	41	IO59RSB1	75	GNDQ		
8	IO92RSB1	42	IO58RSB1	76	GBA1/IO24RSB0		
9	GND	43	IO57RSB1	77	GBA0/IO23RSB0		
10	GFB1/IO87RSB1	44	GDC2/IO56RSB1	78	GBB1/IO22RSB0		
11	GFB0/IO86RSB1	45*	GDB2/IO55RSB1	79	GBB0/IO21RSB0		
12	VCOMPLF	46	GDA2/IO54RSB1	80	GBC1/IO20RSB0		
13	GFA0/IO85RSB1	47	ТСК	81	GBC0/IO19RSB0		
14	VCCPLF	48	TDI	82	IO18RSB0		
15	GFA1/IO84RSB1	49	TMS	83	IO17RSB0		
16	GFA2/IO83RSB1	50	VMV1	84	IO15RSB0		
17	VCC	51	GND	85	IO13RSB0		
18	VCCIB1	52	VPUMP	86	IO11RSB0		
19	GEC1/IO77RSB1	53	NC	87	VCCIB0		
20	GEB1/IO75RSB1	54	TDO	88	GND		
21	GEB0/IO74RSB1	55	TRST	89	VCC		
22	GEA1/IO73RSB1	56	VJTAG	90	IO10RSB0		
23	GEA0/IO72RSB1	57	GDA1/IO49RSB0	91	IO09RSB0		
24	VMV1	58	GDC0/IO46RSB0	92	IO08RSB0		
25	GNDQ	59	GDC1/IO45RSB0	93	GAC1/IO07RSB0		
26	GEA2/IO71RSB1	60	GCC2/IO43RSB0	94	GAC0/IO06RSB0		
27	FF/GEB2/IO70RSB1	61	GCB2/IO42RSB0	95	GAB1/IO05RSB0		
28	GEC2/IO69RSB1	62	GCA0/IO40RSB0	96	GAB0/IO04RSB0		
29	IO68RSB1	63	GCA1/IO39RSB0	97	GAA1/IO03RSB0		
30	IO67RSB1	64	GCC0/IO36RSB0	98	GAA0/IO02RSB0		
31	IO66RSB1	65	GCC1/IO35RSB0	99	IO01RSB0		
32	IO65RSB1	66	VCCIB0	100	IO00RSB0		
33	IO64RSB1	67	GND				
34	IO63RSB1	68	VCC				

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-VQ100.

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100		VQ100	
Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function	Pin Number	AGLN125Z Function
1	GND	36	IO93RSB1	71	GBB2/IO43RSB0
2	GAA2/IO67RSB1	37	VCC	72	IO42RSB0
3	IO68RSB1	38	GND	73	GBA2/IO41RSB0
4	GAB2/IO69RSB1	39	VCCIB1	74	VMV0
5	IO132RSB1	40	IO87RSB1	75	GNDQ
6	GAC2/IO131RSB1	41	IO84RSB1	76	GBA1/IO40RSB0
7	IO130RSB1	42	IO81RSB1	77	GBA0/IO39RSB0
8	IO129RSB1	43	IO75RSB1	78	GBB1/IO38RSB0
9	GND	44	GDC2/IO72RSB1	79	GBB0/IO37RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	80	GBC1/IO36RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	81	GBC0/IO35RSB0
12	VCOMPLF	47	TCK	82	IO32RSB0
13	GFA0/IO122RSB1	48	TDI	83	IO28RSB0
14	VCCPLF	49	TMS	84	IO25RSB0
15	GFA1/IO121RSB1	50	VMV1	85	IO22RSB0
16	GFA2/IO120RSB1	51	GND	86	IO19RSB0
17	VCC	52	VPUMP	87	VCCIB0
18	VCCIB1	53	NC	88	GND
19	GEC0/IO111RSB1	54	TDO	89	VCC
20	GEB1/IO110RSB1	55	TRST	90	IO15RSB0
21	GEB0/IO109RSB1	56	VJTAG	91	IO13RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	92	IO11RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	93	IO09RSB0
24	VMV1	59	GDC1/IO61RSB0	94	IO07RSB0
25	GNDQ	60	GCC2/IO59RSB0	95	GAC1/IO05RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	96	GAC0/IO04RSB0
27	FF/GEB2/IO105RSB1	62	GCA0/IO56RSB0	97	GAB1/IO03RSB0
28	GEC2/IO104RSB1	63	GCA1/IO55RSB0	98	GAB0/IO02RSB0
29	IO102RSB1	64	GCC0/IO52RSB0	99	GAA1/IO01RSB0
30	IO100RSB1	65	GCC1/IO51RSB0	100	GAA0/IO00RSB0
31	IO99RSB1	66	VCCIB0	L	
32	IO97RSB1	67	GND		
33	IO96RSB1	68	VCC		
34	IO95RSB1	69	IO47RSB0		
35	IO94RSB1	70	GBC2/IO45RSB0		

IGLOO nano Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 9 (Mar2010) Product Brief Advance v0.9 Packaging Advance v0.8	All product tables and pin tables were updated to show clearly that AGLN030 is available only in the Z feature grade at this time. The nano-Z feature grade devices are designated with a Z at the end of the part number.	
Revision 8 (Jan 2009)	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance".	I
Product Brief Advance v0.8	The note for AGLN030 in the "IGLOO nano Devices" table and "I/Os Per Package" table was revised to remove the statement regarding package compatibility with lower density nano devices.	
	The "I/Os with Advanced I/O Standards" section was revised to add definitions for hot-swap and cold-sparing.	1-8
Packaging Advance v0.7	The "UC81", "CS81", "QN48", and "QN68" pin tables for AGLN030 are new.	4-5, 4-8, 4-17,4-21
	The "CS81"pin table for AGLN060 is new.	4-9
	The "CS81" and "VQ100" pin tables for AGLN060Z are new.	4-10, 4-25
	The "CS81" and "VQ100" pin tables for AGLN125Z are new.	4-12, 4-27
	The "CS81" and "VQ100" pin tables for AGLN250Z is new.	4-14, 4-29
Revision 7 (Apr 2009) Product Brief Advance v0.7 DC and Switching Characteristics Advance v0.3	The –F speed grade is no longer offered for IGLOO nano devices and was removed from the datasheet.	N/A
Revision 6 (Mar 2009)	The "VQ100" pin table for AGLN030 is new.	4-23
Packaging Advance v0.6		
Revision 5 (Feb 2009) Packaging Advance v0.5	The "100-Pin QFN" section was removed.	N/A
Revision 4 (Feb 2009)	The QN100 package was removed for all devices.	N/A
Product Brief Advance v0.6	"IGLOO nano Devices" table was updated to change the maximum user I/Os for AGLN030 from 81 to 77.	II
	The "Device Marking" section is new.	V
Revision 3 (Feb 2009) Product Brief Advance v0.5	The following table note was removed from "IGLOO nano Devices" table: "Six chip (main) and three quadrant global networks are available for AGLN060 and above."	
	The CS81 package was added for AGLN250 in the "IGLOO nano Products Available in the Z Feature Grade" table.	VI
Packaging Advance v0.4	The "UC81" and "CS81" pin tables for AGLN020 are new.	4-4, 4-7
	The "CS81" pin table for AGLN250 is new.	4-13

Datasheet Information

Revision / Version	Changes	Page
Revision 2 (Dec 2008) Product Brief Advance v0.4	The second table note in "IGLOO nano Devices" table was revised to state, "AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. AGLN030 and smaller devices do not support this feature."	II
	The I/Os per package for CS81 were revised to 60 for AGLN060, AGLN125, and AGLN250 in the "I/Os Per Package"table.	II
Packaging Advance v0.3	The "UC36" pin table is new.	4-2
Revision 1 (Nov 2008) Product Brief Advance v0.3	The "Advanced I/Os" section was updated to include wide power supply voltage support for 1.14 V to 1.575 V.	Ι
	The AGLN030 device was added to product tables and replaces AGL030 entries that were formerly in the tables.	VI
	The "I/Os Per Package"table was updated for the CS81 package to change the number of I/Os for AGLN060, AGLN125, and AGLN250 from 66 to 64.	II
	The "Wide Range I/O Support" section is new.	1-8
	The table notes and references were revised in Table 2-2 • Recommended Operating Conditions ¹ . VMV was included with VCCI and a table note was added stating, "VMV pins must be connected to the corresponding VCCI pins. See <i>Pin Descriptions</i> for further information." Please review carefully.	2-2
	VJTAG was added to the list in the table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*. Values were added for AGLN010, AGLN015, and AGLN030 for 1.5 V.	2-7
	VCCI was removed from the list in the table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*.	2-8
	Values for I _{CCA} current were updated for AGLN010, AGLN015, and AGLN030 in Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ .	2-8
	Values for PAC1 and PAC2 were added to Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices and Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices.	2-10, 2-11
	Table notes regarding wide range support were added to Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels.	2-19
	1.2 V LVCMOS wide range values were added to Table 2-22 • Summary of Maximum and Minimum DC Input Levels and Table 2-23 • Summary of AC Measuring Points.	2-19, 2-20
	The following table note was added to Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings and Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings: "All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification."	2-21
	3.3 V LVCMOS Wide Range and 1.2 V Wide Range were added to Table 2-28 • I/O Output Buffer Maximum Resistances ¹ andTable 2-30 • I/O Short Currents IOSH/IOSL.	2-23, 2-24