E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	71
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-20°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln125v5-vqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Marking

Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples.

Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered.

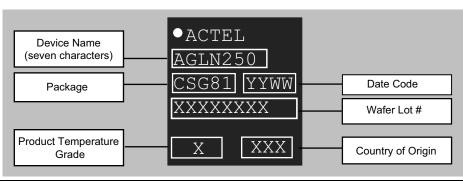


Figure 1 • Example of Device Marking for Small Form Factor Packages

Flash Advantages

Low Power

Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO nano devices also have low dynamic power consumption to further maximize power savings; power is reduced even further by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO nano devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic.

Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano devices cost-effective ASIC replacement solutions, especially for applications in the consumer, networking/communications, computing, and avionics markets.

With a variety of devices under \$1, IGLOO nano FPGAs enable cost-effective implementation of programmable logic and quick time to market.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on page 1-5 to Figure 1-4 on page 1-5):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLN030 and smaller devices do not support PLL or SRAM.

User Nonvolatile FlashROM

IGLOO nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO nano IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGLN030 and smaller devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The IGLOO nano development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature enables the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Microsemi Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO nano devices (except the AGLN030 and smaller devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGLN030 and smaller devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

Higher density IGLOO nano devices using either the two I/O bank or four I/O bank architectures provide designers with very flexible clock conditioning capabilities. AGLN060, AGLN125, and AGLN250 contain six CCCs. One CCC (center west side) has a PLL. The AGLN030 and smaller devices use different CCCs in their architecture (CCC-GL). These CCC-GLs contain a global MUX but do not have any PLLs or programmable delays.

For devices using the six CCC block architecture, these are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

IGLOO nano DC and Switching Characteristics

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Figure 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The maximum operating junction temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.46 \text{ W}$$

EQ	2
----	---

EQ 1

			$ heta_{ja}$			
Package Type	Pin Count	θ _{jc}	Still Air	200 ft./ min.	500 ft./ min.	Units
Chip Scale Package (CSP)	36	TBD	TBD	TBD	TBD	C/W
	81	TBD	TBD	TBD	TBD	C/W
Quad Flat No Lead (QFN)	48	TBD	TBD	TBD	TBD	C/W
	68	TBD	TBD	TBD	TBD	C/W
	100	TBD	TBD	TBD	TBD	C/W
Very Thin Quad Flat Pack (VQFP)	100	10.0	35.3	29.4	27.1	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)

For IGLOO nano V2 or V5 Devices, 1.5 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)										
VCC (V)	–40°C	–20°C	0°C	25°C	70°C	85°C	100°C					
1.425	0.947	0.956	0.965	0.978	1.000	1.009	1.013					
1.5	0.875	0.883	0.892	0.904	0.925	0.932	0.937					
1.575	0.821	0.829	0.837	0.848	0.868	0.875	0.879					

IGLOO nano DC and Switching Characteristics

Power Consumption of Various Internal Resources

 Table 2-15 •
 Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices

 For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device Sp	ecific Dyna	mic Power	· (µW/MHz)	
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PAC1	Clock contribution of a Global Rib	4.421	4.493	2.700	0	0	0
PAC2	Clock contribution of a Global Spine	2.704	1.976	1.982	4.002	4.002	2.633
PAC3	Clock contribution of a VersaTile row	1.496	1.504	1.511	1.346	1.346	1.340
PAC4	Clock contribution of a VersaTile used as a sequential module	0.152	0.153	0.153	0.148	0.148	0.143
PAC5	First contribution of a VersaTile used as a sequential module			0.0	57		
PAC6	Second contribution of a VersaTile used as a sequential module						
PAC7	Contribution of a VersaTile used as a combinatorial module			0.	17		
PAC8	Average contribution of a routing net			0.	.7		
PAC9	Contribution of an I/O input pin (standard-dependent)	in See Table 2-13 on page 2-9.					
PAC10	Contribution of an I/O output pin (standard-dependent)	in See Table 2-14.					
PAC11	Average contribution of a RAM block during a read operation		25.00			N/A	
PAC12	Average contribution of a RAM block during a write operation	< 30.00 N/A					
PAC13	Dynamic contribution for PLL		2.70			N/A	

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device	-Specific	Static Powe	er (mW)		
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010	
PDC1	Array static power in Active mode	See Table 2-12 on page 2-8						
	Array static power in Static (Idle) mode	See Table 2-12 on page 2-8						
PDC3	Array static power in Flash*Freeze mode	See Table 2-9 on page 2-7						
PDC4 ¹	Static PLL contribution		1.84			N/A		
PDC5	Bank quiescent power (VCCI-dependent) ²		See Table 2-12 on page 2-8					

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

Applies to IGLOO nano at 1.5 V Core Operating Conditions

Table 2-25 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 3.0 V

I/O Standard	Drive Strength (mA)	Equivalent Software Default t Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	t _{воит}	top	t _{DIN}	t _{PY}	tpys	teour	tzı	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	0.97	2.56	0.19	1.20	1.66	0.66	2.57	2.02	2.82	3.31	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	0.97	2.39	0.19	1.19	1.52	0.66	2.44	2.24	2.02	2.15	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK PL}	JLL-UP) ¹ (Ω)	$R_{(WEAK PULL-DOWN)}^2$ (Ω)		
VCCI	Min.	Max.	Min.	Max.	
3.3 V	10 K	45 K	10 K	45 K	
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K	
2.5 V	11 K	55 K	12 K	74 K	
1.8 V	18 K	70 K	17 K	110 K	
1.5 V	19 K	90 K	19 K	140 K	
1.2 V	25 K	110 K	25 K	150 K	
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K	

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
 R_(WEAK PULL-DOWN-MAX) = (VOLspec) / I_(WEAK PULL-DOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
_	4 mA	25	27
Γ	6 mA	51	54
Γ	8 mA	51	54
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent s	oftware default drive
2.5 V LVCMOS	2 mA	16	18
Γ	4 mA	16	18
	6 mA	32	37
Γ	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
Γ	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16
1.2 V LVCMOS	1 mA	10	13
1.2 V LVCMOS Wide Range	100 µA	10	13

Note: $^{*}T_{J} = 100^{\circ}C$

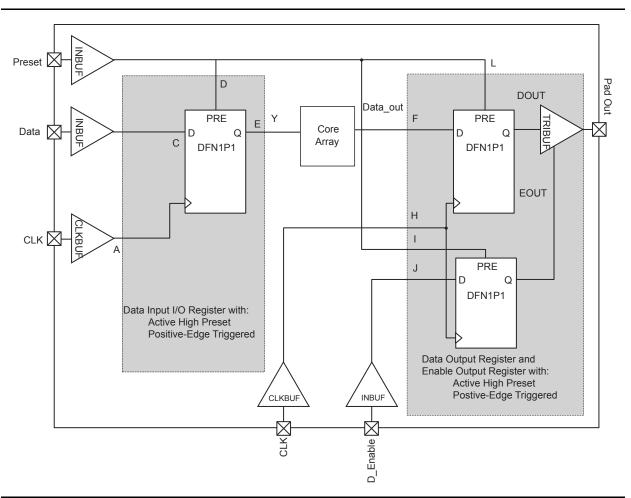
3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range ¹	Software		ΊL	,	VIH	VOL	VOH	IOL	I _{OH}	IIL ²	IIH ³
Drive Strength	Default Drive Strength Option ⁴	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VCCI - 0.2	100	100	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VCCI - 0.2	100	100	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10

Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range

Notes:

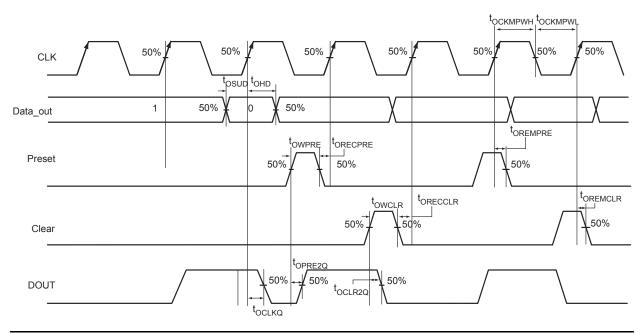
1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification.


2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

5. Currents are measured at 85°C junction temperature.


6. Software default selection is highlighted in gray.

Fully Registered I/O Buffers with Asynchronous Preset

I/O Register Specifications

Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-74 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-98 • AGLN125 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		S	Std.				
Parameter	Description	Min. ¹	Max. ²	Units			
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns			
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns			
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns			
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns			
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns			

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-99 • AGLN250 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

			Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.11	2.57	ns
t _{RCKH}	Input High Delay for Global Clock	2.19	2.81	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-104 • RAM4K9

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.25	ns
t _{ENH}	REN, WEN hold time	0.25	ns
t _{BKS}	BLK setup time	2.54	ns
t _{BKH}	BLK hold time	0.25	ns
t _{DS}	Input data (DIN) setup time	1.10	ns
t _{DH}	Input data (DIN) hold time	0.55	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	5.51	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	4.77	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	2.82	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.01	ns
t _{RSTBQ}	RESET LOW to data out LOW on DOUT (flow-through)	3.21	ns
	RESET LOW to data out LOW on DO (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Related Documents

User Guides

IGLOO nano FPGA Fabric User's Guide

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

FPGA and SoC Product Catalog

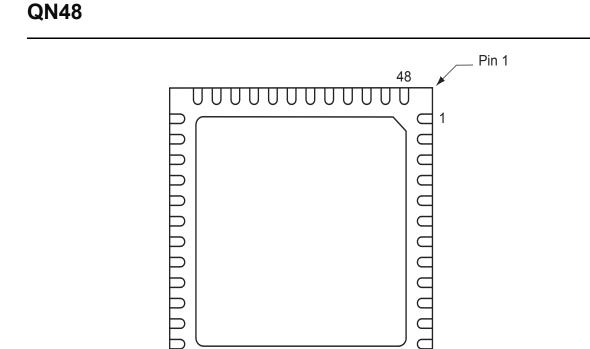
Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments


	UC81	UC81		
Pin Number	AGLN020 Function	Pin Number	AGLN020 Function	
A1	IO64RSB2	E1	GEC0/IO48RSB2	
A2	IO54RSB2	E2	GEA0/IO47RSB2	
A3	IO57RSB2	E3	NC	
A4	IO36RSB1	E4	VCCIB1	
A5	IO32RSB1	E5	VCC	
A6	IO24RSB1	E6	VCCIB0	
A7	IO20RSB1	E7	NC	
A8	IO04RSB0	E8	GDA0/IO15RSB0	
A9	IO08RSB0	E9	GDC0/IO14RSB0	
B1	IO59RSB2	F1	IO46RSB2	
B2	IO55RSB2	F2	IO45RSB2	
B3	IO62RSB2	F3	NC	
B4	IO34RSB1	F4	GND	
B5	IO28RSB1	F5	VCCIB1	
B6	IO22RSB1	F6	NC	
B7	IO18RSB1	F7	NC	
B8	IO00RSB0	F8	IO16RSB0	
B9	IO03RSB0	F9	IO17RSB0	
C1	IO51RSB2	G1	IO43RSB2	
C2	IO50RSB2	G2	IO42RSB2	
C3	NC	G3	IO41RSB2	
C4	NC	G4	IO31RSB1	
C5	NC	G5	NC	
C6	NC	G6	IO21RSB1	
C7	NC	G7	NC	
C8	IO10RSB0	G8	VJTAG	
C9	IO07RSB0	G9	TRST	
D1	IO49RSB2	H1	IO40RSB2	
D2	IO44RSB2	H2	FF/IO39RSB1	
D3	NC	H3	IO35RSB1	
D4	VCC	H4	IO29RSB1	
D5	VCCIB2	H5	IO26RSB1	
D6	GND	H6	IO25RSB1	
D7	NC	H7	IO19RSB1	
D8	IO13RSB0	H8	TDI	
D9	IO12RSB0	H9	TDO	

UC81					
Pin Number AGLN020 Functio					
J1	IO38RSB1				
J2	IO37RSB1				
J3	IO33RSB1				
J4	IO30RSB1				
J5	IO27RSB1				
J6	IO23RSB1				
J7	ТСК				
J8	TMS				
J9	VPUMP				

IGLOO nano Low Power Flash FPGAs

	UC81	UC81		
Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	
A1	IO00RSB0	D9	IO30RSB0	
A2	IO02RSB0	E1	GEB0/IO71RSB1	
A3	IO06RSB0	E2	GEA0/IO72RSB1	
A4	IO11RSB0	E3	GEC0/IO73RSB1	
A5	IO16RSB0	E4	VCCIB1	
A6	IO19RSB0	E5	VCC	
A7	IO22RSB0	E6	VCCIB0	
A8	IO24RSB0	E7	GDC0/IO32RSB0	
A9	IO26RSB0	E8	GDA0/IO33RSB0	
B1	IO81RSB1	E9	GDB0/IO34RSB0	
B2	IO04RSB0	F1	IO68RSB1	
B3	IO10RSB0	F2	IO67RSB1	
B4	IO13RSB0	F3	IO64RSB1	
B5	IO15RSB0	F4	GND	
B6	IO20RSB0	F5	VCCIB1	
B7	IO21RSB0	F6	IO47RSB1	
B8	B8 IO28RSB0		IO36RSB0	
B9	B9 IO25RSB0 F		IO38RSB0	
C1	IO79RSB1	F9	IO40RSB0	
C2	IO80RSB1	G1	IO65RSB1	
C3	IO08RSB0	G2	IO66RSB1	
C4	IO12RSB0	G3	IO57RSB1	
C5	IO17RSB0	G4	IO53RSB1	
C6	IO14RSB0	G5	IO49RSB1	
C7	IO18RSB0	G6	IO45RSB1	
C8	IO29RSB0	G7	IO46RSB1	
C9	IO27RSB0	G8	VJTAG	
D1	IO74RSB1	G9	TRST	
D2	IO76RSB1	H1	IO62RSB1	
D3	IO77RSB1	H2	FF/IO60RSB1	
D4	VCC	H3	IO58RSB1	
D5	VCCIB0	H4	IO54RSB1	
D6	GND	H5	IO48RSB1	
D7	IO23RSB0	H6	IO43RSB1	
D8	IO31RSB0	H7	IO42RSB1	

UC81				
Pin Number	AGLN030Z Function			
H8	TDI			
H9	TDO			
J1	IO63RSB1			
J2	IO61RSB1			
J3	IO59RSB1			
J4	IO56RSB1			
J5	IO52RSB1			
J6	IO44RSB1			
J7	ТСК			
J8	TMS			
J9	VPUMP			

 $\underline{\mathsf{n}}\,\underline{\mathsf{$

Notes:

- 1. This is the bottom view of the package.
- The die attach paddle of the package is tied to ground (GND). 2.

7

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

QN48				
AGLN010				
Pin Number	Function			
1	GEC0/IO37RSB1			
2	IO36RSB1			
3	GEA0/IO34RSB1			
4	IO22RSB1			
5	GND			
6	VCCIB1			
7	IO24RSB1			
8	IO33RSB1			
9	IO26RSB1			
10	IO32RSB1			
11	IO27RSB1			
12	IO29RSB1			
13	IO30RSB1			
14	FF/IO31RSB1			
15	IO28RSB1			
16	IO25RSB1			
17	IO23RSB1			
18	VCC			
19	VCCIB1			
20	IO17RSB1			
21	IO14RSB1			
22	ТСК			
23	TDI			
24	TMS			
25	VPUMP			
26	TDO			
27	TRST			
28	VJTAG			
29	IO11RSB0			
30	IO10RSB0			
31	IO09RSB0			
32	IO08RSB0			
33	VCCIB0			
34	GND			
35	VCC			

QN48				
Pin Number	AGLN010 Function			
36	IO07RSB0			
37	IO06RSB0			
38	GDA0/IO05RSB0			
39	IO03RSB0			
40	GDC0/IO01RSB0			
41	IO12RSB1			
42	IO13RSB1			
43	IO15RSB1			
44	IO16RSB1			
45	IO18RSB1			
46	IO19RSB1			
47	IO20RSB1			
48	IO21RSB1			

IGLOO nano Low Power Flash FPGAs

VQ100			VQ100		VQ100	
Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	Pin Number	AGLN030Z Function	
1	GND	36	IO51RSB1	71	IO29RSB0	
2	IO82RSB1	37	VCC	72	IO28RSB0	
3	IO81RSB1	38	GND	73	IO27RSB0	
4	IO80RSB1	39	VCCIB1	74	IO26RSB0	
5	IO79RSB1	40	IO49RSB1	75	IO25RSB0	
6	IO78RSB1	41	IO47RSB1	76	IO24RSB0	
7	IO77RSB1	42	IO46RSB1	77	IO23RSB0	
8	IO76RSB1	43	IO45RSB1	78	IO22RSB0	
9	GND	44	IO44RSB1	79	IO21RSB0	
10	IO75RSB1	45	IO43RSB1	80	IO20RSB0	
11	IO74RSB1	46	IO42RSB1	81	IO19RSB0	
12	GEC0/IO73RSB1	47	ТСК	82	IO18RSB0	
13	GEA0/IO72RSB1	48	TDI	83	IO17RSB0	
14	GEB0/IO71RSB1	49	TMS	84	IO16RSB0	
15	IO70RSB1	50	NC	85	IO15RSB0	
16	IO69RSB1	51	GND	86	IO14RSB0	
17	VCC	52	VPUMP	87	VCCIB0	
18	VCCIB1	53	NC	88	GND	
19	IO68RSB1	54	TDO	89	VCC	
20	IO67RSB1	55	TRST	90	IO12RSB0	
21	IO66RSB1	56	VJTAG	91	IO10RSB0	
22	IO65RSB1	57	IO41RSB0	92	IO08RSB0	
23	IO64RSB1	58	IO40RSB0	93	IO07RSB0	
24	IO63RSB1	59	IO39RSB0	94	IO06RSB0	
25	IO62RSB1	60	IO38RSB0	95	IO05RSB0	
26	IO61RSB1	61	IO37RSB0	96	IO04RSB0	
27	FF/IO60RSB1	62	IO36RSB0	97	IO03RSB0	
28	IO59RSB1	63	GDB0/IO34RSB0	98	IO02RSB0	
29	IO58RSB1	64	GDA0/IO33RSB0	99	IO01RSB0	
30	IO57RSB1	65	GDC0/IO32RSB0	100	IO00RSB0	
31	IO56RSB1	66	VCCIB0			
32	IO55RSB1	67	GND			
33	IO54RSB1	68	VCC			
34	IO53RSB1	69	IO31RSB0			
35	IO52RSB1	70	IO30RSB0			

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100		VQ100	
Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function
1	GND	35	IO62RSB1	69	IO31RSB0
2	GAA2/IO51RSB1	36	IO61RSB1	70	GBC2/IO29RSB0
3	IO52RSB1	37	VCC	71	GBB2/IO27RSB0
4	GAB2/IO53RSB1	38	GND	72	IO26RSB0
5	IO95RSB1	39	VCCIB1	73	GBA2/IO25RSB0
6	GAC2/IO94RSB1	40	IO60RSB1	74	VMV0
7	IO93RSB1	41	IO59RSB1	75	GNDQ
8	IO92RSB1	42	IO58RSB1	76	GBA1/IO24RSB0
9	GND	43	IO57RSB1	77	GBA0/IO23RSB0
10	GFB1/IO87RSB1	44	GDC2/IO56RSB1	78	GBB1/IO22RSB0
11	GFB0/IO86RSB1	45*	GDB2/IO55RSB1	79	GBB0/IO21RSB0
12	VCOMPLF	46	GDA2/IO54RSB1	80	GBC1/IO20RSB0
13	GFA0/IO85RSB1	47	ТСК	81	GBC0/IO19RSB0
14	VCCPLF	48	TDI	82	IO18RSB0
15	GFA1/IO84RSB1	49	TMS	83	IO17RSB0
16	GFA2/IO83RSB1	50	VMV1	84	IO15RSB0
17	VCC	51	GND	85	IO13RSB0
18	VCCIB1	52	VPUMP	86	IO11RSB0
19	GEC1/IO77RSB1	53	NC	87	VCCIB0
20	GEB1/IO75RSB1	54	TDO	88	GND
21	GEB0/IO74RSB1	55	TRST	89	VCC
22	GEA1/IO73RSB1	56	VJTAG	90	IO10RSB0
23	GEA0/IO72RSB1	57	GDA1/IO49RSB0	91	IO09RSB0
24	VMV1	58	GDC0/IO46RSB0	92	IO08RSB0
25	GNDQ	59	GDC1/IO45RSB0	93	GAC1/IO07RSB0
26	GEA2/IO71RSB1	60	GCC2/IO43RSB0	94	GAC0/IO06RSB0
27	FF/GEB2/IO70RSB1	61	GCB2/IO42RSB0	95	GAB1/IO05RSB0
28	GEC2/IO69RSB1	62	GCA0/IO40RSB0	96	GAB0/IO04RSB0
29	IO68RSB1	63	GCA1/IO39RSB0	97	GAA1/IO03RSB0
30	IO67RSB1	64	GCC0/IO36RSB0	98	GAA0/IO02RSB0
31	IO66RSB1	65	GCC1/IO35RSB0	99	IO01RSB0
32	IO65RSB1	66	VCCIB0	100	IO00RSB0
33	IO64RSB1	67	GND		
34	IO63RSB1	68	VCC		

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-VQ100.